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1. Introduction. Our aim is to test numerically the new method of
interpolation determinants (cf. [2], [6]) in the context of linear forms in two
logarithms. In the recent years, M. Mignotte and M. Waldschmidt have used
Schneider’s construction in a series of papers [3]–[5] to get lower bounds for
such a linear form with rational integer coefficients. They got relatively pre-
cise results with a numerical constant around a few hundreds. Here we take
up Schneider’s method again in the framework of interpolation determinants.
We decrease the constant to less than one hundred when the logarithms in-
volved are real numbers. Theorems 1 and 2 are simple corollaries of our main
result which is Theorem 3. At first glance, the statement of Theorem 3 seems
to be complicated, but it is much more precise than the above mentioned
corollaries, which are only examples of applications. Let us also mention
that we have been led in Section 3 to some technical lemmas which may be
useful in some other situations apart from transcendental number theory.

A preliminary version of this text can also be found in [6], in the form of
an appendix to lectures given by M. Waldschmidt at Madras Math. Science
Institute. I would like to thank Dong Ping Ping and M. Waldschmidt for
useful comments and remarks during the writing of this paper.

2. Statement of the results. Let α1 and α2 be two real algebraic
numbers which are supposed to be ≥ 1 and multiplicatively independent.
We shall give lower bounds for the linear form

Λ = b2 logα2 − b1 logα1 ,

where b1 and b2 are rational integers which can be supposed to be ≥ 1
without loss of generality.

For any algebraic number α of degree d over Q and whose minimal
polynomial over Z is written as a

∏d
i=1(X − α(i)) where the roots α(i) are
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complex numbers, let us denote by

h(α) =
1
d

(
log |a|+

d∑

i=1

log max(1, |α(i)|)
)

the usual (Weil’s) absolute logarithmic height of α.
Let D be the degree over Q of the number field Q(α1, α2), and let a1, a2

be two real numbers > 1 such that

h(αi) ≤ log ai (i = 1, 2) .

For each pair of integers b1 ≥ 1, b2 ≥ 1, set

b′ =
b1

D log a2
+

b2
D log a1

.

Our first result gives the asymptotical value of the constant c when b′ tends
to infinity.

Theorem 1. For each number c > 48, there exists a number b′(c) such
that

log |Λ| ≥ −cD4(log b′)2 log a1 log a2

for each pair of integers b1 ≥ 1, b2 ≥ 1 with b′ ≥ b′(c).

We can of course compute effectively such a constant b′(c) in term of c.
Here is a concrete example.

Theorem 2. Suppose that log a1 ≥ 1, log a2 ≥ 1 and log b′ ≥ 25. Then

log |Λ| ≥ −87D4(0.5 + log b′)2 log a1 log a2.

Our main result is the following

Theorem 3. Let K be an integer ≥ 2, let L, R1, R2, S1, S2 be integers
≥ 1 and let % be a real number ≥ 1. Suppose that

(1) R1S1 ≥ max(K,L), R2S2 ≥ 2KL .

Define

R = R1 +R2 − 1, S = S1 + S2 − 1, γ = RS/(KL) ,

g =
1
4
− 1

12γ
+ max

(
1

4γL2 ,
γ

4LR2 ,
γ

4LS2

)
.

For integers b1 ≥ 1, b2 ≥ 1, set

b = ((R− 1)b2 + (S − 1)b1)
(K−1∏

k=1

k!
)−2/(K2−K)

.

Suppose now that α1 and α2 are multiplicatively independent , that the num-
bers rb2 + sb1 (0 ≤ r ≤ R − 1, 0 ≤ s ≤ S − 1) are pairwise distinct ,



Interpolation determinants 183

and that

(2) K(L− 1) log %+ (K − 3) log 2

> 2D log(KL) +D(K − 1) log b

+ gL((%− 1)(R logα1 + S logα2) + 2D(R log a1 + S log a2)) .

Then we have the lower bound

|Λ′| ≥ %−KL+1/2 ,

where

Λ′ = Λmax
(
LSeLS|Λ|/(2b2)

2b2
,
LReLR|Λ|/(2b1)

2b1

)
.

Theorems 1 and 2 will be deduced from Theorem 3 by plugging the
inequalities αi ≤ aDi (i = 1, 2) in condition (2) for specific values of the
parameters K, L, R1, R2, S1, S2 and %.

3. Technical lemmas. We shall have to investigate the determinant of
a matrix whose entries are monomials in α1 and α2. It is crucial to know
what sort of monomials appear in the expansion of this determinant. To that
purpose, we shall use some combinatorial results which have been gathered
in this section because their statements are independent of the original prob-
lem.

Lemma 1. Let K , S and N be integers ≥ 1. Then
N∑
ν=1

([
ν − 1
K

]
+ 1
)([

N − ν
S

]
+ 1
)
≥ N(2N2 + 3KN + 3SN + 3KS + 1)

12KS
.

P r o o f. Denote the left hand side by E. We shall decompose E into
subsums corresponding to the congruence classes of ν modulo K and S
successively.

If ν is congruent to k modulo K, where 1 ≤ k ≤ K, then [(ν − 1)/K] =
(ν − k)/K, so that we can write

E =
1
K

( N∑
ν=1

νaν

)
+

1
K

( K∑

k=1

(K − k)Sk
)
,

where we have set

aν =
[
N − ν
S

]
+ 1, Sk =

∑
ν

aν ,

and where ν in Sk is congruent to k modulo K.
Note that the sequence (aν)1≤ν≤N is non-increasing, so that the sequence

(Sk)1≤k≤K of partial sums is also non-increasing. By Abel’s summation,
we get
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K∑

k=1

(K − k)Sk =
K−1∑

k=1

k∑

j=1

Sj ≥
K−1∑

k=1

kSk ,

from which it follows that
K∑

k=1

(K − k)Sk ≥ K

2

K−1∑

k=1

Sk ≥ K − 1
2

K∑

k=1

Sk ,

the last term being equal to ((K − 1)/2)(
∑N
ν=1 aν). In this first step, we

have got the lower bound

E ≥ 1
K

N∑
ν=1

(
ν +

K − 1
2

)([
N − ν
S

]
+ 1
)

=
1
K

N∑
ν=1

([
ν − 1
S

]
+ 1
)
bν ,

where we have set bν = N − ν + ((K + 1)/2) (1 ≤ ν ≤ N). The sequence
(bν)1≤ν≤N is also non-increasing. The same argument, with K replaced by
S and (aν) replaced by (bν), provides the lower bound

N∑
ν=1

([
ν − 1
S

]
+ 1
)
bν ≥ 1

S

N∑
ν=1

(
ν +

S − 1
2

)
bν ,

from which it follows that

E ≥ 1
KS

N∑
ν=1

(
ν +

S − 1
2

)(
N − ν + 1 +

K − 1
2

)
.

But the last sum is elementarily seen to be equal to

N(2N2 + 3KN + 3SN + 3KS + 1)/12 ,

and the lemma is proven.

The next lemma is also computational.

Lemma 2. Let N and S be natural integers. Then
N∑
ν=1

[
ν − 1
S

]
≤ (2N − S)2

8S
.

P r o o f. Denote the left hand side by F . If N ≤ S, then F = 0 while the
right hand side is ≥ 0. Suppose now that N > S. By Euclidean division, we
can write N = (a+ 1)S + b (1 ≤ b ≤ S, a ≥ 0). Then

F =
(a+1)S∑
ν=1

[
ν − 1
S

]
+

N∑

ν=(a+1)S+1

(a+ 1) =
S(a2 + a)

2
+ (a+ 1)b

=
N2 − SN + b(S − b)

2S
≤ N2

2S
− N

2
+
S

8
,

because b is located between 1 and S.
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Let K and L be integers ≥ 1, and let N = KL. Define

lν =
[
ν − 1
K

]
(1 ≤ ν ≤ N) ,

so that (lν)1≤ν≤N is nothing but the sequence of integers (0, . . . , L − 1),
repeated K times and arranged in increasing order. The next lemma will be
directly used to estimate our determinants.

Lemma 3. Under the above notation, let furthermore R and S be integers
≥ 1. For each sequence (r1, . . . , rN ) of integers between 0 and R − 1, with
any given integer repeated at most S times, we have the estimate

M −G ≤
N∑
ν=1

lνrν ≤M +G ,

where

M =
(L− 1)(r1 + . . .+ rN )

2
, G =

NLR

2

(
1
4
− 1

12γ
+ ε

)
,

γ =
RS

KL
, ε = max

(
1

4γL2 ,
γ

4LR2

)
.

P r o o f. In other words, the problem is to estimate the oscillation of the
sum

σ =
N∑
ν=1

(
lν − L− 1

2

)
rν ,

when (r1, . . . , rN ) runs over the set of sequences of N integers, with values
between 0 and R−1, in which a given integer appears at most S times. Note
first that the terms of σ with 1 ≤ ν ≤ (N + 1)/2 are ≤ 0, while those with
(N + 1)/2 ≤ ν ≤ N are ≥ 0. The symmetry

lN−ν+1 + lν = L− 1 (1 ≤ ν ≤ N)

allows us to write σ in the form

σ = −
∑

(N+1)/2≤ν≤N

(
lν − L− 1

2

)
rN−ν+1 +

∑

(N+1)/2≤ν≤N

(
lν − L− 1

2

)
rν .

To estimate of the above sums, we have to distinguish two cases, according
to the parity of L.

(i) Suppose that L is odd. Define N ′ = K(L− 1)/2. In this case,

∑

(N+1)/2≤ν≤N

(
lν − L− 1

2

)
rν =

N ′∑
ν=1

([
ν − 1
K

]
+ 1
)
rN ′+K+ν ,
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and σ is the difference of two numbers of the form

β =
N ′∑
ν=1

([
ν − 1
K

]
+ 1
)
bν ,

where (b1, . . . , bN ′) denotes a sequence of N ′ integers between 0 and R − 1
with each value appearing at most S times. It follows that

−maxβ + minβ ≤ σ ≤ maxβ −minβ .

The substitution bν 7→ R− 1− bν shows that

maxβ + minβ = (R− 1)
N ′∑
ν=1

([
ν − 1
K

]
+ 1
)

=
1
8

(R− 1)K(L2 − 1) ,

giving the upper bound

|σ| ≤ (R− 1)K(L2 − 1)
8

− 2 minβ .

We have to find the value minβ. Let us show that

minβ =
N ′∑
ν=1

([
ν − 1
K

]
+ 1
)[

N ′ − ν
S

]
,

that is to say that the minimal value is reached for the sequence bν =
[(N ′ − ν)/S] (1 ≤ ν ≤ N ′). Note first that for each minimal sequence (bν),
we have bi ≥ bj whenever [(i− 1)/K] < [(j− 1)/K]. Indeed, if we denote by
(b′ν) the sequence obtained from (bν) by permuting bi and bj , we have

N ′∑
ν=1

([
ν − 1
K

]
+ 1
)

(b′ν − bν) =
([

j − 1
K

]
−
[
i− 1
K

])
(bi − bj) ,

which must be ≥ 0 by the minimal property of (bν). As the value of the sum

N ′∑
ν=1

([
ν − 1
K

]
+ 1
)
bν

is invariant under permutations in each subsequence (b1, . . . , bK), (bK+1, . . .
. . . , b2K), . . . , we may suppose without restriction that the sequence (bν)
is non-increasing. By minimality, it is then clear that the S last values
bN ′ , . . . , bN ′−S+1 are necessarily equal to zero, the S preceding ones are
equal to one, and so on. In other words, we have bν = [(N ′ − ν)/S] for
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1 ≤ ν ≤ N ′. We have proven the upper bound

|σ| ≤ (R− 1)K(L2 − 1)
8

− 2
N ′∑
ν=1

([
ν − 1
K

]
+ 1
)([

N ′ − ν
S

]
+ 1
)

+ 2
N ′∑
ν=1

([
ν − 1
K

]
+ 1
)
.

The second sum in the right hand side is equal to K(L2 − 1)/8, while
Lemma 1, with N replaced by N ′, gives the lower bound

K(L− 1)
24KS

(
K2(L− 1)2

2
+

3K2(L− 1)
2

+
3KS(L+ 1)

2
+ 1
)

≥ 1
48S

(K2(L3 − 3L+ 2) + 3KS(L2 − 1))

for the sum in the middle term. Putting all together and using the trivial
estimate

(R− 1)K(L2 − 1)
8

≤ RKL2

8
− K(L2 − 1)

8
,

we finally get

|σ| ≤ RKL2

8
− K2L3

24S
+
K2L

8S
− K2

12S
.

Neglecting the last term, we can write

|σ| ≤ NLR

2

(
1
4
− 1

12γ
+

1
4γL2

)
≤ G .

(ii) Suppose now that L is even. Set N ′ = KL/2 = N/2. In this case,

∑

(N+1)/2≤ν≤N

(
lν − L− 1

2

)
rν =

N ′∑
ν=1

([
ν − 1
K

]
+

1
2

)
rν+N ′ .

The proof runs along the same lines, with sums of the form

β =
N ′∑
ν=1

([
ν − 1
K

]
+

1
2

)
bν ,

for which, with corresponding notations, we obtain the upper bound

|σ| ≤ (R− 1)
( N ′∑
ν=1

([
ν − 1
K

]
+

1
2

))
− 2

N ′∑
ν=1

([
ν − 1
K

]
+

1
2

)[
N ′ − ν
S

]
.

The right side is better written as

(R+ 1)KL2

8
− 2

N ′∑
ν=1

([
ν − 1
K

]
+ 1
)([

N ′ − ν
S

]
+ 1
)

+
N ′∑
ν=1

([
ν − 1
S

]
+ 1
)
.
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In the same way, using Lemmas 1 and 2, we finally get

|σ| ≤ RKL2

8
− K2L3

24S
− L

12S
+
S

8
=
NLR

2

(
1
4
− 1

12γ
− 1

6γK2L2 +
γ

4LR2

)
.

Neglecting the third term, we obtain |σ| ≤ G.

R e m a r k. The upper bound |σ| ≤ NLR/8 can be proven very easily in
the following way. We write

σ =
N∑
ν=1

(
lν − L− 1

2

)
rν =

N∑
ν=1

(
lν − L− 1

2

)
(rν − η)

for each complex number η, because the average value of the sequence
(lν)1≤ν≤N is (L − 1)/2. Choosing the center η = (R− 1)/2 and bounding
|rν − η| ≤ (R− 1)/2, we get

|σ| ≤ R− 1
2

N∑
ν=1

∣∣∣∣lν −
L− 1

2

∣∣∣∣ .

If we suppose for instance that L is odd, the last sum is easily seen to be
K(L2 − 1)/4. We get

|σ| ≤ K(R− 1)(L2 − 1)
8

≤ NLR

8
,

and the same for L even. Lemmas 1 and 2 lead to subtracting 1/(24γ)
from 1/8.

4. Zero estimate. Let K,L,R1, R2, S1, S2 be integers ≥ 1. As in The-
orem 3, put

R = R1 +R2 − 1, S = S1 + S2 − 1 .

Let b1 and b2 be two complex numbers. For positive integers n and p, denote
as usual by

(
n
p

)
= n . . . (n− p+ 1)/p! the binomial coefficient, and denote

by A the KL×RS matrix with entries(
rb2 + sb1

k

)
αlr1 α

ls
2 ,

where (k, l) (0 ≤ k ≤ K − 1, 0 ≤ l ≤ L − 1) is the row index, while (r, s)
(0 ≤ r ≤ R− 1, 0 ≤ s ≤ S− 1) is the column index. It will be convenient to
number the rows by setting

ki = i− 1−K
[
i− 1
L

]
, li =

[
i− 1
K

]
(1 ≤ i ≤ KL) .

The order of the columns is irrelevant. Various zero estimates can show
that under suitable conditions, the matrix A is of maximal rank. Here is an
example.
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Lemma 4. Suppose that

(1) R1S1 ≥ max(K,L) and R2S2 ≥ 2KL .

Suppose also that the numbers α1 and α2 are multiplicatively independent
and that the RS numbers rb2 + sb1 (0 ≤ r ≤ R − 1, 0 ≤ s ≤ S − 1) are all
distinct. Then the rank of the matrix A is equal to KL.

P r o o f. We have to show that the KL rows of A are linearly independent.
If not, there would exist a non-zero polynomial P [X,Y ], with degree in X
bounded by K − 1 and degree in Y bounded by L − 1, vanishing at the
points

(rb2 + sb1, α
r
1α

s
2) (0 ≤ r ≤ R− 1, 0 ≤ s ≤ S − 1) .

Now Proposition 4.1 of [4] shows that the assumptions of the lemma cannot
be satisfied. Notice that our hypotheses are stronger than those of Proposi-
tion 4.1, and that the strict inequalities (a), (b), (c) in this proposition be-
come the inequalities (1), because of a shift by one in the degrees. Of course,
a suspicious reader could object that the set of points we consider is not the
same as in Proposition 4.1. One can answer that, first, when R1, R2, S1, S2

are odd, the two sets of points differ by a translation in Ga ×Gm, and sec-
ondly, that if one of the parameters is even, the proof runs along the same
lines!

5. Arithmetical lower bounds for minors of A. We begin the proof
of Theorem 3. So we have six parameters K, L, R1, R2, S1, S2 satisfying
(1) and integers b1 ≥ 1, b2 ≥ 1 which are almost linearly independent in the
sense that the numbers rb2 +sb1 (0 ≤ r ≤ R−1, 0 ≤ s ≤ S−1) are pairwise
distinct. By Lemma 4, the matrix A associated with this set of data is of
maximal rank N := KL. Let ∆ be a non-zero N × N minor of A. For a
suitable ordering of columns in ∆, we can write

∆ = det
((

rjb2 + sjb1
ki

)
α
lirj
1 α

lisj
2

)

1≤i,j≤N
.

The aim of this section is to prove the following lower bound for |∆|.
Lemma 5. Define

g =
1
4
− 1

12γ
+ max

(
1

4γL2 ,
γ

4LR2 ,
γ

4LS2

)
,

G1 = gLRN/2, G2 = gLSN/2 ,

M1 = (L− 1)(r1 + . . .+ rN )/2, M2 = (L− 1)(s1 + . . .+ sN )/2 .

Then
log |∆| ≥ − (D − 1) log(N !) + (M1 +G1) logα1 + (M2 +G2) logα2

− 2DG1 log a1 − 2DG2 log a2 − 1
2 (D − 1)(K − 1)N log b .
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(Recall that we have defined

b = ((R− 1)b2 + (S − 1)b1)
(K−1∏

k=1

k!
)−2/(K2−K)

.)

P r o o f. For any polynomial P with integer coefficients, denote as usual
by L(P ) the length of P , that is, the sum of the absolute values of the
coefficients of P .

Let us now consider the polynomial

P (X,Y ) =
∑
σ

sg(σ)
N∏

i=1

(
rσ(i)b2 + sσ(i)b1

ki

)
XΣNi=1lirσ(i)Y ΣNi=1lisσ(i) ,

where σ runs over the symmetric group SN , and sg(σ) means the signature of
the permutation σ. By expanding the determinant ∆, we get ∆ = P (α1, α2).
As (

rjb2 + sjb1
ki

)
≤ ((R− 1)b2 + (S − 1)b1)ki

ki!
(1 ≤ i ≤ N) ,

and
∑N
i=1 ki = (K − 1)N/2, we easily see that L(P ) is bounded by

N !((R− 1)b2 + (S − 1)b1)(K−1)N/2

∏N
i=1 ki!

= N ! b(K−1)N/2 .

To get a good lower bound for |∆|, we have to notice that P is divisible by
a large power of X and Y . More precisely, Lemma 3 gives the estimates

M1 −G1 ≤
∑

lirσ(i) ≤M1 +G1 ,

M2 −G2 ≤
∑

lisσ(i) ≤M2 +G2 .

Denote by V1 (resp. V2) the integer part of M1 + G1 (resp. M2 + G2), and
by U1 (resp. U2) the least integer ≥M1−G1 (resp. M2−G2). Then we can
write

∆ = P (α1, α2) = αV1
1 αV2

2 P̃

(
1
α1
,

1
α2

)
,

where P̃ (X,Y ) is a polynomial with integer coefficients, with the same length
as P , and whose degree in X (resp. Y ) is bounded by V1−U1 (resp. V2−U2).
As h(1/α1) = h(α1) and h(1/α2) = h(α2), Liouville’s inequality, in the form
of Lemma 2.3 from [4], gives the lower bound

log
∣∣∣∣P̃
(

1
α1
,

1
α2

)∣∣∣∣ ≥ − (D − 1) logL(P̃ )

−D(V1 − U1) log a1 −D(V2 − U2) log a2 .
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Taking into account the above upper bound for L(P ) = L(P̃ ), we get

log |∆| ≥ − (D − 1) log(N !) + V1 logα1 + V2 logα2

−D(V1 − U1) log a1 −D(V2 − U2) log a2

− 1
2 (D − 1)(K − 1)N log b .

Now, from the inequalities D log ai ≥ logαi ≥ 0, we get

Vi logαi −D(Vi − Ui) log ai ≥ (Mi +Gi) logαi − 2DGi log ai

for i = 1, 2, which implies the conclusion of Lemma 5.

6. Analytic upper bound for |∆|. Here is the crucial point where the
smallness of |Λ| is used essentially.

Lemma 6. Let % be a real number ≥ 1. Suppose that

|Λ′| ≤ %−N+1/2 .

Then

|∆| ≤ %−(N2−N)/22N (N !)
(
%b

2

)(K−1)N/2

αM1+%G1
1 αM2+%G2

2 .

P r o o f. Without loss of generality, we may assume that

b1 logα1 ≤ b2 logα2 ,

so that Λ ≥ 0. Set β = b1/b2. Then

logα2 = β logα1 + Λ/b2 .

Let us first modify slightly the matrix whose ∆ is the determinant. For any
complex number η, as

(
rjb2 + sjb1

ki

)
=
bki2

ki!
(rj + sjβ − η)ki + (terms of degree < ki)

we have by multilinearity

∆ = det
(
bki2

ki!
(rj + sjβ − η)kiαlirj1 α

lisj
2

)
.

Then it is convenient to center the exponents li around their average value
(L− 1)/2. In this way we get

∆ = αM1
1 αM2

2 det
(
bki2

ki!
(rj + sjβ − η)kiαλirj1 α

λisj
2

)
,

where λi = li − (L− 1)/2 (1 ≤ i ≤ N). We now write

α
λirj
1 α

λisj
2 = α

λi(rj+sjβ)
1 eλisjΛ/b2 = α

λi(rj+sjβ)
1 (1 + Λ′θi,j)
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with

θi,j =
eλisjΛ/b2 − 1

Λ′
,

so that

|θi,j | ≤ 2b2(e|λi|sjΛ/b2 − 1)
LSΛeLSΛ/(2b2)

≤ 1

(here is the unique reason for which it is better to work with Λ′ instead of
Λ). Plugging this expression in the determinant ∆, we get

(∗) ∆ = αM1
1 αM2

2

( ∑

I⊆{1,...,N}
(Λ′)N−Card I∆I

)
,

where

∆I = det




ci,1 . . . ci,N

θi,1ci,1 . . . θi,Nci,N



}
i∈I

}
i 6∈I

and

ci,j =
bki2

ki!
(rj + sjβ − η)kiαλi(rj+sjβ)

1 .

As
∑N
i=1 λi = 0, one can replace in ∆I the quantity ci,j by ci,jα

−λiη
1 , so

that

∆I = det




ϕi(z1) . . . ϕi(zN )

θi,1ϕi(z1) . . . θi,Nϕi(zN )



}
i∈I

}
i 6∈I

where

ϕi(z) =
bki2

ki!
zkiαλiz1 (1 ≤ i ≤ N) ,

zj = rj + sjβ − η (1 ≤ j ≤ N) .

Take now η = ((R− 1) + β(S − 1))/2, so that

|zj | ≤ (R− 1) + β(S − 1)
2

(1 ≤ j ≤ N) .

We next give an upper bound for |∆I |. Let us consider the entire function
ΦI of the complex variable x defined by

ΦI(x) = det




ϕi(xz1) . . . ϕi(xzN )

θi,1ϕi(xz1) . . . θi,Nϕi(xzN )



}
i∈I

}
i 6∈I

so that ∆I = ΦI(1). Here is the key point of our argument.

Lemma 7. For each subset I ⊆ {1, . . . , N} of cardinality ν, the function
ΦI has a zero at the origin with multiplicity ≥ (ν2 − ν)/2.
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P r o o f. We expand each ϕi with i ∈ I in Taylor’s series at the origin:

ϕi(z) =
∑

n≥0

pi,nz
n .

Plugging these expressions into the determinant defining ΦI , we obtain

ΦI(x) =
∑

ni,i∈I

(∏

i∈I
pi,nix

ni
)

det




zni1 . . . zniN

θi,1ϕi(xz1) . . . θi,Nϕi(xzN )



}
i∈I

}
i 6∈I

where the summation indices ni, i ∈ I, run a priori independently from zero
to infinity. But we see that if nα = nβ for some distinct α and β in I, then
the corresponding term in the sum is zero, because rows α and β in the
determinant are equal. So we may restrict our summation index to the set
of ni, i ∈ I, which are pairwise distinct. For such indices, we obviously have

∑

i∈I
ni ≥ 0 + . . .+ (ν − 1) =

ν2 − ν
2

.

It follows that ΦI has a zero at the origin of order ≥ (ν2 − ν)/2.
The usual Schwarz lemma then implies

|∆I | = |ΦI(1)| ≤ %−(ν2−ν)/2 max
|x|=%

|ΦI(x)|

for any real number % ≥ 1. Using these inequalities for all subsets I ⊆
{1, . . . , N}, together with

|Λ′| ≤ %−N+1/2 ,

and substituting in (∗), we get

|∆| ≤ αM1
1 αM2

2 2N max
0≤ν≤N

(%−(N−1/2)(N−ν)−(ν2−ν)/2) max
I

max
|x|=%

|ΦI(x)| .

As

min
0≤ν≤N

((
N − 1

2

)
(N − ν) +

ν2 − ν
2

)
=
N2 −N

2
,

we get

|∆| ≤ αM1
1 αM2

2 2N%−(N2−N)/2 max
I

max
|x|=%

|ΦI(x)| .

Then Lemma 6 is an immediate consequence of the following upper bound:

Lemma 8. For each subset I ⊆ {1, . . . , N} and each complex number x,
we have

|ΦI(x)| ≤ N !
( |x|b

2

)(K−1)N/2

α
|x|G1
1 α

|x|G2
2 .
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P r o o f. Since |θi,j | ≤ 1, expanding the determinant ΦI(x) shows that

|ΦI(x)| ≤ N ! max
σ

∣∣∣
N∏

i=1

ϕi(xzσ(i))
∣∣∣ ,

where σ runs over all permutations σ ∈ SN . We have
N∏

i=1

ϕi(xzσ(i)) =
N∏

i=1

(b2xzσ(i))
ki

ki!
α

(Σλizσ(i))x
1 ,

and∑
λizσ(i) =

∑
λi(rσ(i) + βsσ(i) − η)

=
∑

λi(rσ(i) + βsσ(i)) =
(∑

λirσ(i)

)
+ β

(∑
λisσ(i)

)
.

Now Lemma 3 gives respectively the upper boundG1 andG2 for the absolute
values of the last two sums. We get∣∣∣

∑
λizσ(i)

∣∣∣ ≤ G1 + βG2 .

By assumption αβ1 ≤ α2. Finally, the exponential term in the product∏N
i=1 ϕi(xzσ(i)) is bounded by α

|x|G1
1 α

|x|G2
2 , as was to be shown. For the

monomial term, it is enough to use the simple bound

|zj | ≤ (R− 1) + β(S − 1)
2

(1 ≤ j ≤ N) ,

so that
N∏

i=1

|b2xzσ(i)|ki
ki!

≤
(
b2|x|((R− 1) + β(S − 1))

2

)(K−1)N/2(K−1∏

k=1

k!
)−L

=
( |x|b

2

)(K−1)N/2

.

R e m a r k. The determinant ∆ is just the interpolation determinant of
the N functions in two variables x, y,

ϕi(x, y) =
bki2

ki!
xkiαlix1 eliy (1 ≤ i ≤ N) ,

evaluated at the N points

(rj + βsj , sjΛ/b2) (1 ≤ j ≤ N) .

For bounding such a determinant, the general pattern is to expand it in
a Taylor series (around the origin or any other point) of the 2N variables
xj , yj (1 ≤ j ≤ N), determined by the coordinates of the given N points.

In our special case, the second coordinate y is small, so it has been
sufficient to expand ϕi(x, y) to order 1 in y.
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7. End of the proof of Theorem 3. On the contrary, suppose that
the conditions of Theorem 3 are satisfied and that

|Λ′| ≤ %−KL+1/2 .

Lemmas 5 and 6 allow us to give the following estimate for log |∆|:
−(D − 1) log(N !) + (M1 +G1) logα1 + (M2 +G2) logα2

−2D(G1 log a1 +G2 log a2)− 1
2 (D − 1)(K − 1)N log b

≤ log |∆| ≤ N log 2 + log(N !) + 1
2 (K − 1)N log(%b/2)

+ (M1 + %G1) logα1 + (M2 + %G2) logα2

− 1
2 (N2 −N) log % .

The quantities involving M1 and M2 cancel on both sides of the above in-
equalities. We finally get the opposite of (2) by bounding log(N !) ≤ N logN
and replacing N,G1, G2 by their values. This contradiction proves Theo-
rem 3.

8. Proof of Theorems 1 and 2. As α1 ≤ aD1 and α2 ≤ aD2 , it is
sufficient to check instead of (2) the stronger, but simpler, inequality

(3) K(L− 1) log %+ (K − 3) log 2

> 2D log(KL) +D(K − 1) log b+ g(%+ 1)DL(R log a1 + S log a2) .

Now, we have to compare b and b′. This will be provided by

Lemma 9. For any integers R ≥ 1, S ≥ 1 and K ≥ 2, we have

b ≤ 5((R− 1)b2 + (S − 1)b1)
K − 1

.

P r o o f. We are led to give a uniform lower bound for
(K−1∏

k=1

k!
)2/(K2−K)

.

Let us show that this quantity is ≥ (K − 1)/5 for any K ≥ 2, which is
the meaning of Lemma 9. This is a problem of standard calculus. One can
proceed as follows. First notice that

K−1∏

k=1

k! =
K−1∏

k=1

(K − k)k =
K−1∏

k=1

kK−k =
((K − 1)!)K∏K−1

k=1 kk
.

Now we are reduced to giving an upper bound for
∏K−1
k=1 kk. Let us show

that
K−1∑

k=1

k log k ≤ K2 −K
2

log(K − 1)− K2 −K
4

+
K

3
,
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for K ≥ 2. We use Euler–Maclaurin’s summation formula, in the notations
of formula (7.2.4), p. 303 of [1]:

f(1) + . . .+ f(n) =
n∫

1

f(x) dx+
f(1) + f(n)

2
+
f ′(n)− f ′(1)

12
+R1

with r = 1 and

R1 ≤ 1
2π2

n∫
1

|f (3)(x)| dx .

We take f(x) = x log x and n = K − 1 to get
K−1∑

k=1

k log k ≤ (K − 1)2

2
log(K − 1)− (K − 1)2

4
+

1
4

+
(K − 1) log(K − 1)

2
+

log(K − 1)
12

+
1

2π2 ,

and it is enough to bound log(K − 1) ≤ K − 2 for any K ≥ 2. Now, we use
the standard lower bound

(K − 1)! ≥ (K − 1)K−1e−(K−1) .

Putting all together, we get
(K−1∏

k=1

k!
)2/(K2−K)

≥ (K − 1)e−3/2−2/(3(K−1)) ≥ K − 1
5

,

for K ≥ 8. If K = 2, . . . , 7, the inequality between the left hand side and
the right hand side is obvious.

The principle of the proofs of Theorems 1 and 2 is as follows. In each
case, we shall define a system of parameters K,L,R1, R2, S1, S2, % satisfying
the conditions (1) and (3). Theorem 3 provides a lower bound for |Λ′|, and
consequently for |Λ|, if we assume that the numbers rb1 +sb2 (0 ≤ r ≤ R−1,
0 ≤ s ≤ S − 1) are pairwise distinct. If this last condition is not satisfied,
Liouville’s inequality furnishes a much better lower bound for |Λ| than the
one which is required.

Let c1 > 0, c2 > 0, c3 > 0, c4 > 0 and f be constants (that is to say,
numbers independent of b′, a1, and a2) which will be defined in each case.
For simplicity, define B = f + log b′. We set

K = [c1D3B log a1 log a2], L = [c2DB] ,

R1 = [c3D3/2B1/2 log a2] + 1, R2 = [c4D2B log a2] ,

S1 = [c3D3/2B1/2 log a1] + 1, S2 = [c4D2B log a1] .

Let us begin with Theorem 1 for which the computations are simpler
because it suffices to compare the leading terms for largeB in the inequalities
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involved. First, thanks to Lemma 9, we bound

b ≤ 5((R− 1)b2 + (S − 1)b1)
K − 1

≤ ef b′ = eB ,

if we have chosen f > log 5 + log c4 − log c1. To satisfy (1) and (3) for large
B, it is enough to choose positive constants c1, . . . , c4 so that

c4 >
√

2c1c2 ,

c1c2 log % > c1 + 2g(%+ 1)c2c4 ,(4)

c3 = max(
√
c1,
√
c2 ) .

Note that γ = RS/(KL) > 2 and then g > 1/4 − 1/24 = 5/24. We easily
check that there exist positive solutions of the system (4) which are as close
as we wish to the limit values

c1 =
64g2(%+ 1)2

(log %)3 , c2 =
2

log %
, c3 = max(

√
c1,
√
c2 ), c4 =

√
2c1c2 ,

with g = 5/24. Strictly speaking, these values are not convenient because
they lead to equalities in the first two relations of (4). Now choose % = 5.8,
so that

c1 = 23.64 . . . , c2 = 1.13 . . . , c3 = 4.86 . . . , c4 = 7.33 . . .

Theorem 3 yields the alternative: either

log |Λ′| ≥ −KL log % ≥ −c1c2 log %D4B2 log a1 log a2 ,

or there exist two integers r and s, with |r| ≤ R− 1, |s| ≤ S − 1, such that
rb2 + sb1 = 0. Obviously we may suppose that r and s are relatively prime.
Then from Lemma 2.2 in [4], we get

|Λ| ≥ |r logα1 + s logα2| ≥ exp{−D log 2−D(|r| log a1 + |s| log a2)} ,
which implies

log |Λ| ≥ −D log 2− 2c3D5/2B1/2 log a1 log a2 − 2c4D3B log a1 log a2 .

Here, the main term is the third, which is better than required. To conclude,
one has only to remark that for the above limit values, we have c1c2 log % <
48 and log |Λ′/Λ| = O(logB).

For Theorem 2, the preceding arguments have to be made effective. We
choose our constants slightly larger than the above limit values. Set

c1 = 36, c2 = 1.5, c3 = 6, c4 = 6
√

3 + 0.04 = 10.43 . . . ,

f = 0.49, % = 4.9 .

Using systematically estimates of the type

(x− 0.04)y < [xy] ≤ xy ,
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which are true for any real numbers x ≥ 0 and y ≥ 25, we easily check that
for B ≥ 25, we have

R ≤ 11.633D2B log a2, S ≤ 11.633D2B log a1 ,

γ ≤ 2.578, g ≤ 0.218

(note that the third term from the definition of g in Theorem 3 is bounded
by 10−4). Lemma 9 gives the upper bounds

b ≤ 5((R− 1)b2 + (S − 1)b1)
K − 1

≤ 5(Rb2 + Sb1)
K

≤ 1.62b′

showing that log b ≤ B. Inequalities (1) are consequences of the lower bounds

R1 ≥ 6D3/2B1/2 log a2, R2 ≥ 6
√

3D2B log a2 ,

S1 ≥ 6D3/2B1/2 log a1, S2 ≥ 6
√

3D2B log a1 .

To check the main inequality (3), it is convenient to break it into two parts

K(L− 1) log % > D(K − 1)B + g(%+ 1)DL(R log a1 + S log a2) ,(3.1)

(K − 3) log 2 > 2D log(KL) .(3.2)

The reader will easily check that the left hand side of (3.1) is ≥ 81.15D4B2×
log a1 log a2, while the right hand side is ≤ 80.89D4B2 log a1 log a2, for
B ≥ 25. The condition (3.2) is quite surely satisfied for B ≥ 25. By Theo-
rem 3, we know that either

log |Λ′| ≥ −KL log % ≥ −86D4B2 log a1 log a2 ,

or

log |Λ| ≥ −D log 2−DR log a1 −DS log a2 ≥ −24D3B log a1 log a2 .

Finally, the bound (quite weak for B ≥ 25)

1 + logL+ logS + logR ≤ D4B2 log a1 log a2

provides us with the required lower bound

log |Λ| ≥ −87D4B2 log a1 log a2 .
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