Kuroda's class number formula

by

Franz Lemmermeyer (Heidelberg)

Introduction. Let k be a number field and K / k a V_{4}-extension, i.e. a normal extension with $\operatorname{Gal}(K / k)=V_{4}$, where V_{4} is Klein's four-group. K / k has three intermediate fields, say k_{1}, k_{2}, and k_{3}. We will use the symbol $N^{i}\left(\right.$ resp. $\left.N_{i}\right)$ to denote the norm of $K / k_{i}\left(\right.$ resp. $\left.k_{i} / k\right)$, and by a widespread abuse of notation we will apply N^{i} and N_{i} not only to numbers but also to ideals and ideal classes. The unit groups (groups of roots of unity, class numbers) in these fields will be denoted by $E_{k}, E_{1}, E_{2}, E_{3}, E_{K}$ $\left(W_{k}, W_{1}, \ldots, h_{k}, h_{1}, \ldots\right)$ respectively, and the (finite) index $q(K)=\left(E_{K}\right.$: $E_{1} E_{2} E_{3}$) is called the unit index of K / k.

For $k=\mathbb{Q}, k_{1}=\mathbb{Q}(\sqrt{-1})$ and $k_{2}=\mathbb{Q}(\sqrt{m})$ it was already known to Dirichlet [5] that $h_{K}=\frac{1}{2} q(K) h_{2} h_{3}$. Bachmann [2], Amberg [1] and Herglotz [12] generalized this class number formula gradually to arbitrary extensions K / \mathbb{Q} whose Galois groups are elementary abelian 2-groups. A remark of Hasse [11, p. 3] seems to suggest that Varmon [30] proved a class number formula for extensions K / k with $\operatorname{Gal}(K / k)$ an elementary abelian p-group; unfortunately, his paper was not accessible to me. Kuroda [18] later gave a formula in case there is no ramification at the infinite primes. Wada [31] stated a formula for 2 -extensions of $k=\mathbb{Q}$ without any restriction on the ramification (and without proof), and finally Walter [32] used Brauer's class number relations to deduce the most general Kuroda-type formula.

As we shall see below, Walter's formula for V_{4}-extensions does not always give correct results if K contains the 8 th root of unity. This does not, however, seem to affect the validity of the work of Parry [22, 23] and Castela [4] who made use of Walter's formula.

The proofs mentioned above use analytic methods; for V_{4}-extensions K / \mathbb{Q}, however, there exist algebraic proofs given by Hilbert [14] (if $\sqrt{-1}$ $\in K$), Kuroda [17] (if $\sqrt{-1} \in K$), Halter-Koch [9] (if K is imaginary), and Kubota $[15,16]$. For base fields $k \neq \mathbb{Q}$, on the other hand, nothing seems to be known except the very recent work of Berger [3].

In this paper we will show how Kubota's proof can be generalized. In
the first half of our proof, where we measure the extent to which $\mathrm{Cl}(K)$ is generated by the $\mathrm{Cl}\left(k_{i}\right)$, we will use class field theory in its ideal-theoretic formulation (cf. Hasse [10] or Garbanati [7]). The second half of the proof is a somewhat lengthy index computation.

1. Kuroda's formula. For any number field F, let $\mathrm{Cl}_{u}(F)$ be the odd part of the ideal class group of F, i.e. the direct product of the p-Sylow subgroups of $\mathrm{Cl}(F), p \neq 2$. It has already been noticed by Hilbert that the odd part of $\mathrm{Cl}(F)$ behaves well in 2-extensions, and the following fact is a special case of a theorem of Nehrkorn [21] (it can also be found in Kuroda [18] or Reichardt [27]):

$$
\begin{equation*}
\mathrm{Cl}_{u}(K) \cong\left(\underset{i=1}{\underset{X}{X}} \mathrm{Cl}_{u}\left(k_{i}\right) / \mathrm{Cl}_{u}(k)\right) \times \mathrm{Cl}_{u}(k) \quad \text { for } V_{4} \text {-extension } K / k \tag{1.1}
\end{equation*}
$$

Here X denotes the direct product. This simple formula allows us to compute the structure of $\mathrm{Cl}_{u}(K)$; of course we cannot expect a similar result to hold for $\mathrm{Cl}_{2}(K)$, mainly because of the following two reasons:

1. Ideal classes of k_{i} can become principal in K (capitulation), and this means that we cannot regard $\mathrm{Cl}_{2}\left(k_{i}\right)$ as a subgroup of $\mathrm{Cl}_{2}(K)$.
2. Even if they do not capitulate, ideal classes of subfields can coincide in K : consider a prime ideal \mathfrak{p} which ramifies in k_{1} and k_{2}; if the prime ideals above \mathfrak{p} in k_{1} and k_{2} are not principal, they will generate the same non-trivial ideal class in K.

Nevertheless there is a homomorphism

$$
j: \mathrm{Cl}\left(k_{1}\right) \times \mathrm{Cl}\left(k_{2}\right) \times \mathrm{Cl}\left(k_{3}\right) \rightarrow \mathrm{Cl}(K)
$$

defined as follows: let $c_{i}=\left[\mathfrak{a}_{i}\right]$ be the ideal class in k_{i} generated by \mathfrak{a}_{i}; then $\mathfrak{a}_{i} \mathfrak{O}_{K}$ is the ideal in \mathfrak{O}_{K} (= ring of integers in K) generated by \mathfrak{a}_{i}, and it is obvious that $j\left(c_{1}, c_{2}, c_{3}\right)=\left[\mathfrak{a}_{1} \mathfrak{a}_{2} \mathfrak{a}_{3} \mathfrak{D}_{K}\right]$ is well defined, and that moreover

$$
h(K)=\frac{|\operatorname{cok} j|}{|\operatorname{ker} j|} \cdot h_{1} h_{2} h_{3} .
$$

In order to compute $h(k)$ we have to determine the orders of the groups $\operatorname{ker} j$ and $\operatorname{cok} j=\mathrm{Cl}(K) / \mathrm{im} j$. This will be done as follows:

$$
\begin{align*}
& \text { Let } \hat{j} \text { be the restriction of } j \text { to the subgroup } \tag{1.2}\\
& \qquad \widehat{C}=\left\{\left(c_{1}, c_{2}, c_{3}\right) \mid N_{1} c_{1} N_{2} c_{2} N_{3} c_{3}=1\right\}
\end{align*}
$$

of the direct product $\mathrm{Cl}\left(k_{1}\right) \times \mathrm{Cl}\left(k_{2}\right) \times \mathrm{Cl}\left(k_{3}\right)$. Then

$$
h_{k} \cdot \frac{|\operatorname{cok} j|}{|\operatorname{ker} j|}=\frac{|\operatorname{cok} \widehat{j}|}{|\operatorname{ker} \widehat{j}|} .
$$

Now the reciprocity law of Artin, combined with Galois theory, gives a correspondence $\stackrel{\text { Art }}{\longleftrightarrow}$ between subgroups of $\mathrm{Cl}(K)$ and subfields of the Hilbert class field K^{1} of K. We will find that im $\widehat{j} \stackrel{\text { Art }}{\longleftrightarrow} K_{\text {gen }}$, the genus class field of K with respect to k, and then the well known formula of Furuta [6] shows

$$
\begin{equation*}
|\operatorname{cok} \widehat{j}|=(\mathrm{Cl}(K): \operatorname{im} \widehat{j})=\left(K_{\text {gen }}: k\right)=2^{d-2} h_{k}\left\{\prod e(\mathfrak{p})\right\} /\left(E_{k}: H\right) \tag{1.3}
\end{equation*}
$$

where

- d is the number of infinite places ramified in K / k;
- $e(\mathfrak{p})$ is the ramification index in K / k of a prime ideal \mathfrak{p} in k;
- H is the group of units in E_{k} which are norm residues in K / k;
- Π is extended over all (finite) prime ideals of k.

The computation of $|\operatorname{ker} \widehat{j}|$ is a bit tedious, but in the end we will find

$$
\begin{equation*}
|\operatorname{ker} \widehat{j}|=2^{v-1} h_{k}^{2} \prod e(\mathfrak{p}) \cdot\left(H: E_{k}^{2}\right) / q(K) \tag{1.4}
\end{equation*}
$$

where $v=1$, if $K=k(\sqrt{\varepsilon}, \sqrt{\eta})$ with units $\varepsilon, \eta \in E_{k}$, and $v=0$ otherwise.
If we collect these results, define κ to be the \mathbb{Z}-rank of E_{k}, and recall the formula $\left(E_{k}: E_{k}^{2}\right)=2^{\kappa+1}$, we obtain

$$
\begin{equation*}
\text { Kuroda's class number formula for } V_{4} \text {-extensions } K / k \text { : } \tag{1.5}
\end{equation*}
$$

$$
h(K)=2^{d-\kappa-2-v} q(K) h_{1} h_{2} h_{3} / h_{k}^{2}
$$

In particular,

$$
h(K)= \begin{cases}\frac{1}{4} q(K) h_{1} h_{2} h_{3} & \text { if } k=\mathbb{Q} \text { and } K \text { is real } \\ \frac{1}{2} q(K) h_{1} h_{2} h_{3} & \text { if } k=\mathbb{Q} \text { and } K \text { is imaginary } \\ \frac{1}{4} q(K) h_{1} h_{2} h_{3} / h_{k}^{2} & \text { if } k \text { is an imaginary quadratic } \\ \quad \text { extension of } \mathbb{Q}\end{cases}
$$

2. The proofs. In order to prove (1.2) we define a homomorphism $\nu: C=\mathrm{Cl}\left(k_{1}\right) \times \mathrm{Cl}\left(k_{2}\right) \times \mathrm{Cl}\left(k_{3}\right) \rightarrow \mathrm{Cl}(k), \quad \nu\left(c_{1}, c_{2}, c_{3}\right)=N_{1} c_{1} N_{2} c_{2} N_{3} c_{3}$.

If at least one of the extensions k_{i} / k is ramified, we know $N_{i} \mathrm{Cl}\left(k_{i}\right)=$ $\mathrm{Cl}(k)$ by class field theory. If all the k_{i} / k are unramified, the groups $N_{i} \mathrm{Cl}\left(k_{i}\right)$ will have index $2=\left(k_{i}: k\right)$ in $\mathrm{Cl}(k)$, and they will be different since

$$
k_{i} / k \stackrel{\mathrm{Art}}{\longleftrightarrow} N_{i} \mathrm{Cl}\left(k_{i}\right)
$$

in this case. Therefore ν is onto, and if we put $\widehat{C}=$ ker ν we get an exact sequence $1 \rightarrow \widehat{C} \rightarrow C \rightarrow \mathrm{Cl}(k) \rightarrow 1$.

Let \widehat{j} be the restriction of j to \widehat{C}; then the diagram

is exact and commutes. The "serpent lemma" gives us an exact sequence

$$
1 \rightarrow \operatorname{ker} \widehat{j} \rightarrow \operatorname{ker} j \rightarrow \mathrm{Cl}(k) \rightarrow \operatorname{cok} \widehat{j} \rightarrow \operatorname{cok} j \rightarrow 1
$$

and this implies the index relation we wanted to prove:

$$
h_{k} \cdot \frac{|\operatorname{cok} j|}{|\operatorname{ker} j|}=\frac{|\operatorname{cok} \widehat{j}|}{|\operatorname{ker} \widehat{j}|} .
$$

Before we start to prove (1.3), we define $K^{(2)}$ to be the maximal field in $K_{\text {gen }} / k$ such that $\operatorname{Gal}\left(K^{(2)} / k\right)$ is an elementary abelian 2-group. Moreover, we let J_{K} (resp. H_{K}) denote the group of (fractional) ideals (resp. principal ideals) of K.
(2.1) To every subfield F of the Hilbert class field K^{1} of K belongs exactly one ideal group \mathfrak{h}_{F} with $H_{K} \subset \mathfrak{h}_{F} \subset J_{K}$. Under this correspondence,

$$
\operatorname{Gal}\left(K^{1} / F\right) \cong \operatorname{Cl}(K) /\left(J_{K} / \mathfrak{h}_{F}\right) \cong \mathfrak{h}_{F} / H_{K},
$$

and we find the following diagram of subfields F and corresponding Galois groups $\operatorname{Gal}\left(K^{1} / F\right)$:

Proof. The correspondence $K^{(2)} \leftrightarrow \mathrm{im} j$ will not be needed in the sequel and is included only for the sake of completeness; the main ingredients for a proof can be found in Kubota [16, Hilfssatz 13].

Before we start proving $K_{\text {gen }} \leftrightarrow \operatorname{im} \widehat{j}$ we recall that $K_{\text {gen }}$ is the class field of k for the ideal group $N_{K / k} H_{K}^{(\mathfrak{m})} \cdot H_{\mathfrak{m}}^{(1)}$ of the norm residues mod \mathfrak{m} where the defining modulus \mathfrak{m} is a multiple of the conductor $\mathfrak{f}(K / k)$ (the notation is explained in Hasse [10] or Garbanati [7], the result can be found
in Scholz [29] or Gurak [8]). The assertion of Herz [13, Prop. 1] that $K_{\text {gen }}$ is the class field for $N_{K / k} H_{K}^{(\mathfrak{m})}$ is faulty: one mistake in his proof lies in the erroneous assumption that every principal ideal of K is the norm of an ideal from K^{1}. Although this is true for prime ideals, it does not hold generally, as the following simple counterexample shows: the Hilbert class field of $K=\mathbb{Q}(\sqrt{-5})$ is $K^{1}=K(\sqrt{-1})$, and the principal ideal $(1+\sqrt{-5})$ cannot be a norm from K^{1} since the prime ideals above $(2,1+\sqrt{-5})$ and $(3,1+\sqrt{-5})$ are inert in K^{1} / K. Moreover, contrary to Herz's claim, not every ideal in the Hilbert class field of K is principal: this is, of course, only true for ideals from K.

Our task now is to transfer the ideal group $N_{K / k} H_{K}^{(\mathfrak{m})} \cdot H_{\mathfrak{m}}^{(1)}$ in k, which is defined $\bmod \mathfrak{m}$, to an ideal group in K defined $\bmod 1$. To do this we need
(2.2) For V_{4}-extensions K / k, the following assertions are equivalent:
(i) $r \in k^{\times}$is a norm residue in K / k at every place of k;
(ii) $r \in k^{\times}$is a (global) norm from k_{1} / k and k_{2} / k;
(iii) there exist $\alpha \in K^{\times}$and $a \in k^{\times}$such that $r=a^{2} \cdot N_{K / k} \alpha$.

The elements of $N_{K / k} H_{K}^{(\mathfrak{m})} \cdot H_{\mathfrak{m}}^{(1)}$ therefore have the form $\left(a^{2} \cdot N_{K / k} \alpha\right)$, where $a \in k, \alpha \in K$, and $(\alpha)+\mathfrak{m}=(1)$. Using the Verschiebungssatz we find that $K_{\text {gen }} / K$ belongs to the group

$$
\mathfrak{h}_{\mathrm{gen}}=\left\{\mathfrak{a} \in J_{K} \mid \mathfrak{a}+\mathfrak{m}=(1), N_{K / k} \mathfrak{a} \in N_{K / k} H_{K}^{(\mathfrak{m})} \cdot H_{\mathfrak{m}}^{(1)}\right\}
$$

Now $N_{K / k} \mathfrak{a}=\left(a \cdot N_{K / k} \alpha\right) \Leftrightarrow N_{K / k}(\mathfrak{a} / \alpha)=(a)$; we put $\mathfrak{b}=\mathfrak{a} / \alpha$ and claim that there are ideals \mathfrak{a}_{i} in k_{i} such that $\mathfrak{b}=\mathfrak{a}_{1} \mathfrak{a}_{2} \mathfrak{a}_{3}$. We assume without loss of generality that \mathfrak{b} is an (entire) ideal in \mathfrak{D}_{K}. We may also assume that no ideal lying in a subfield k_{i} divides \mathfrak{b}. But then any $\mathfrak{P} \mid \mathfrak{b}$ necessarily has inertial degree 1 , and no conjugate of \mathfrak{P} divides \mathfrak{b}. Writing $\mathfrak{P}^{m} \| \mathfrak{b}$ we deduce

$$
\left(N_{K / k} \mathfrak{P}\right)^{\mathfrak{m}} \| N_{K / k} \mathfrak{b}=\left(a^{2}\right),
$$

and this implies $2 \mid m$.
If σ, τ, and $\sigma \tau$ are the automorphism of K / k fixing k_{1}, k_{2} and k_{3} respectively, the identity

$$
2=1+\sigma+1+\tau-(1+\sigma \tau) \sigma
$$

in $\mathbb{Z}[\operatorname{Gal}(K / k)]$ shows $\mathfrak{P}^{2}=N^{1} \mathfrak{P} \cdot N^{2} \mathfrak{P} \cdot\left(N^{3} \mathfrak{P}\right)^{-\sigma}$, and we are done.
Now $\left(a^{2}\right)=N_{K / k} \mathfrak{b}=N_{K / k}\left(\mathfrak{a}_{1} \mathfrak{a}_{2} \mathfrak{a}_{3}\right)=\left(N_{1} \mathfrak{a}_{1} N_{2} \mathfrak{a}_{2} N_{3} \mathfrak{a}_{3}\right)^{2}$, and extracting the square root we obtain $(a)=N_{1} \mathfrak{a}_{1} N_{2} \mathfrak{a}_{2} N_{3} \mathfrak{a}_{3}$.

Conversely, all ideals $\mathfrak{a}=\mathfrak{a}_{1} \mathfrak{a}_{2} \mathfrak{a}_{3}$ with $\mathfrak{a}+\mathfrak{m}=$ (1) and $(a)=$ $N_{1} \mathfrak{a}_{1} N_{2} \mathfrak{a}_{2} N_{3} \mathfrak{a}_{3}$ lie in $\mathfrak{h}_{\text {gen }}$, and the same is true of all principal ideals prime to \mathfrak{m} since the class field $K_{\mathfrak{h}}$ corresponding to \mathfrak{h} is unramified if and only if
$H_{K}^{(\mathfrak{m})} \subset \mathfrak{h}$. Therefore

$$
\begin{aligned}
& \mathfrak{h}_{\text {gen }}=\left\{\mathfrak{a}=\mathfrak{a}_{1} \mathfrak{a}_{2} \mathfrak{a}_{3} \mid \mathfrak{a}+\mathfrak{m}=(1), \quad N_{1} \mathfrak{a}_{1} N_{2} \mathfrak{a}_{2} N_{3} \mathfrak{a}_{3}=(a)\right. \\
& \text { for some } a \in k\} \cdot H_{K}^{(\mathfrak{m})}
\end{aligned}
$$

and by removing the condition $\mathfrak{a}+\mathfrak{m}=(1)$, which amounts to replacing $\mathfrak{h}_{\text {gen }}$ by an equivalent ideal group, we finally see

$$
\mathfrak{h}_{\text {gen }}=\left\{\mathfrak{a}=\mathfrak{a}_{1} \mathfrak{a}_{2} \mathfrak{a}_{3} \mid N_{1} \mathfrak{a}_{1} N_{2} \mathfrak{a}_{2} N_{3} \mathfrak{a}_{3}=(a) \text { for some } a \in k\right\} \cdot H_{K}
$$

The corresponding class group is $J_{K} / \mathfrak{h}_{\text {gen }}$, and this gives

$$
\operatorname{Gal}\left(K_{\mathrm{gen}} / K\right) \cong \mathfrak{h}_{\mathrm{gen}} / H_{K}=\left\{c=c_{1} c_{2} c_{3} \mid N_{1} c_{1} N_{2} c_{2} N_{3} c_{3}=1\right\}=\widehat{C}
$$

Now (1.3) follows from Furuta's formula for the genus class number.
It remains to prove (2.2); this result is due to Pitti [24-26], and similar observations have been made by Leep and Wadsworth [19, 20]. Our proof of (ii) \Rightarrow (iii) goes back to Kubota [15, Hilfssatz 14], while (iii) \Rightarrow (i) has already been noticed by Scholz [28, p. 102].
$($ i $) \Rightarrow$ (ii) is just an application of Hasse's norm residue theorem for cyclic extensions;
(ii) \Rightarrow (iii). Choose $\alpha_{1} \in k_{1}$ and $\alpha_{2} \in k_{2}$ with $N_{1} \alpha_{1}=N_{2} \alpha_{2}=r$. Since $\sigma \tau$ acts non-trivially on k_{1} and k_{2}, this implies $\left(\alpha_{1} / \alpha_{2}\right)^{1+\sigma \tau}=1$. Hilbert's theorem 90 shows the existence of $\alpha \in K^{\times}$such that $\alpha_{1} / \alpha_{2}=\alpha^{1-\sigma \tau}$. Now

$$
\alpha^{1-\sigma \tau}=\alpha^{1+\sigma}\left(\alpha^{1+\tau}\right)^{-\sigma} \quad \text { and } \quad \alpha^{1+\sigma} / \alpha_{1}=\left(\alpha^{1+\tau}\right)^{\sigma} / \alpha_{2} \in k_{1} \cap k_{2}=k
$$

Put $a=\alpha^{1+\sigma} / \alpha_{1}$ and verify $N_{K / k} \alpha=\left(\alpha^{1+\sigma}\right)^{1+\tau}=r a^{2}$.
$($ iii $) \Rightarrow$ (i) is a consequence of formula (9) in $\S 6$ of part II of Hasse's "Zahlbericht" [10] which says

$$
\left(\frac{\beta, k_{1} k_{2}}{\mathfrak{p}}\right)=\left(\frac{\beta, k_{1}}{\mathfrak{p}}\right)\left(\frac{\beta, k_{2}}{\mathfrak{p}}\right) .
$$

Since $r=N_{i}\left(\left(N^{i} \alpha\right) / a\right), i=1,2$, we see that r is a norm from k_{1} and k_{2}, and Hasse's formula just tells us that r is a norm residue in $k_{1} k_{2}=K$.

Before we proceed with the computation of $|\operatorname{ker} \widehat{j}|$, we will pause for a moment to look at (2.1) with more care. The fact that $K_{\text {gen }}$ is the class field of k for the ideal group $N_{K / k} H_{K}^{(\mathfrak{m})} \cdot H_{\mathfrak{m}}^{(1)}$ is well known for abelian K / k. Moreover, the principal genus theorem of class field theory says that $K_{\text {gen }}$ is the class field of K for the class group $\left\{c^{\sigma-1} \mid c \in \mathrm{Cl}(K)\right\}$, if $\operatorname{Gal}(K / k)=\langle\sigma\rangle$ is cyclic. If K / k is abelian (and not necessarily cyclic), the class field $K_{\text {cen }}$ for the class group $\left\langle c^{\sigma-1} \mid c \in \mathrm{Cl}(K), \sigma \in \operatorname{Gal}(K / k)\right\rangle$ is called the central class field, and in general $K_{\text {cen }}$ is strictly bigger than $K_{\text {gen }}$. A description of $K_{\text {gen }}$ in terms of the ideal class group of K is unknown for non-cyclic K / k, and (2.1) answers this open question for the simplest non-cyclic group, the
four-group $V_{4} \cong(\mathbb{Z} / 2 \mathbb{Z})^{2}$. For other non-cyclic groups, this is very much an open problem.

In the V_{4}-case, the fact that $\left\langle c^{\sigma-1} \mid c \in \mathrm{Cl}(K), \sigma \in \operatorname{Gal}(K / k)\right\rangle \subset \operatorname{im} \widehat{j}$ can be verified directly by noting that $c^{\sigma-1}=\left(c^{\sigma}\right)^{\sigma \tau+1} \cdot\left(c^{-1}\right)^{\tau+1} \in C_{2} \times C_{3}$ is annihilated by ν.

The computation of $|\operatorname{ker} \widehat{j}|$ will be done in several steps. We call an ideal \mathfrak{a}_{1} in k_{1} ambiguous if $\mathfrak{a}_{1}^{\tau}=\mathfrak{a}_{1}$. An ideal class $c \in \mathrm{Cl}\left(k_{1}\right)$ is called ambiguous if $c^{\tau}=c$, and strongly ambiguous if $c=\left[\mathfrak{a}_{1}\right]$ for an ambiguous ideal \mathfrak{a}_{1}. Let A_{i} denote the group of strongly ambiguous ideal classes in $k_{i}(i=1,2,3)$. Then $A=A_{1} \times A_{2} \times A_{3}$ is a subgroup of C, and $\widehat{A}=\widehat{C} \cap A_{1} \times A_{2} \times A_{3}$ is a subgroup of \widehat{C}. The idea of the proof is to restrict \widehat{j} (once more) from \widehat{C} to \widehat{A} and to compute the kernel of this restricted map by using the formula for the number of ambiguous ideal classes.

In (1.3) we defined H as the group of units in E_{k} which are norm residues in K / k at every place of k. Using (2.2) we see that

$$
H=\left\{\eta \in E_{k}: \eta=N_{i} \alpha_{i} \text { for some } \alpha_{i} \in k_{i}, i=1,2,3\right\}
$$

Let $H_{0}=E_{1}^{N} \cap E_{2}^{N} \cap E_{3}^{N}$ be the subgroup of H consisting of those units that are relative norms of units for every k_{i} / k. The computation of $|\operatorname{ker} \widehat{j}|$ starts with the following observation:
(2.3) If j^{*} is the restriction of \widehat{j} to \widehat{A}, then $|\operatorname{ker} \widehat{j}|=\left(H: H_{0}\right) \cdot\left|\operatorname{ker} j^{*}\right|$.

Let $R=\left\{\mathfrak{a}_{1} \mathfrak{a}_{2} \mathfrak{a}_{3} \mid \mathfrak{a}_{i} \in I_{i}\right.$ is ambiguous in $\left.k_{i} / k\right\}$ and $R_{\pi}=R \cap H_{K}$; then

$$
\begin{equation*}
\left|\operatorname{ker} j^{*}\right|=|A| /\left(R: R_{\pi}\right) . \tag{2.4}
\end{equation*}
$$

Now the computation of $|\operatorname{ker} \hat{j}|$ is reduced to the determination of ($H: H_{0}$) and $\left(R: R_{\pi}\right)$; let $t=|\operatorname{Ram}(K / k)|$ be the number of (finite) prime ideals of k ramified in K, and λ denote the \mathbb{Z}-rank of E_{K}. We will prove

$$
\begin{equation*}
\left(R: R_{\pi}\right)=2^{t+\kappa-\lambda-2-v} h_{k} q(K) \prod\left(E_{i}^{N}: E_{k}^{2}\right) /\left(H_{0}: E_{k}^{2}\right) \tag{2.5}
\end{equation*}
$$

The number $\left|A_{i}\right|$ of strongly ambiguous ideal classes in k_{i} / k is given by the well known formula (cf. Hasse's Zahlbericht [10], Teil Ia, §13).
$\left|A_{i}\right|=2^{\delta_{i}-\kappa-2} h_{k} \cdot\left(E_{i}^{N}: E_{k}^{2}\right)$, where δ_{i} denotes the number of (finite and infinite) places in k which are ramified in k_{i} / k.
Once we know how the δ_{i} are related to t, κ, λ etc., we will be able to deduce (1.4) from (2.3)-(2.6). To this end, let t_{i} be the "finite part" of δ_{i}, i.e. the number $\left|\operatorname{Ram}\left(k_{i} / k\right)\right|$ of prime ideals in k ramified in k_{i} / k, and let d_{i} denote the infinite part. Then $\delta_{i}=d_{i}+t_{i}$, and

$$
\begin{equation*}
2^{t_{1}+t_{2}+t_{3}}=2^{t} \cdot \prod e(\mathfrak{p}), \quad 2 d=d_{1}+d_{2}+d_{3}, \quad \text { and } \quad \lambda-4 \kappa=3-2 d . \tag{2.7}
\end{equation*}
$$

Since $|A|=\Pi\left|A_{i}\right|$, we obtain from (2.4) and (2.6)

$$
|A|=2^{\delta_{1}+\delta_{2}+\delta_{3}-3 \kappa-6} h_{k}^{3} \cdot \prod\left(E_{i}^{N}: E_{k}^{2}\right) ;
$$

dividing by (2.5) yields

$$
\left|\operatorname{ker} j^{*}\right|=2^{t_{1}+t_{2}+t_{3}-t+d_{1}+d_{2}+d_{3}+\lambda-4 \kappa-4+v} h_{k}^{2} \cdot\left(H_{0}: E_{k}^{2}\right) / q(K),
$$

and using (2.7) we find

$$
\left|\operatorname{ker} j^{*}\right|=2^{v-1} h_{k}^{2} \prod e(\mathfrak{p}) \cdot\left(H_{0}: E_{k}^{2}\right) / q(K) .
$$

Substituting this formula into equation (2.3) we finally obtain (1.4).
In order to prove (2.3) let $\left(\left[\mathfrak{a}_{1}\right],\left[\mathfrak{a}_{2}\right],\left[\mathfrak{a}_{3}\right]\right) \in \operatorname{ker} \widehat{j}$; then $\mathfrak{a}_{1} \mathfrak{a}_{2} \mathfrak{a}_{3}=(\alpha)$ for some $\alpha \in K^{\times}$. Since $\left(N_{K / k} \alpha\right)=\left(N_{1} \mathfrak{a}_{1} \cdot N_{2} \mathfrak{a}_{2} \cdot N_{3} \mathfrak{a}_{3}\right)^{2}$ (equality of ideals in \mathfrak{O}_{k}) and because $\left(\left[\mathfrak{a}_{1}\right],\left[\mathfrak{a}_{2}\right],\left[\mathfrak{a}_{3}\right]\right) \in \widehat{C}$, there exists $a \in k$ such that $\left(N_{K / k} \alpha\right)=(a)^{2}$. This shows that $\eta=\left(N_{K / k} \alpha\right) / a^{2}$ is a unit in E_{k}, which is unique $\bmod N E_{K} \cdot E_{k}^{2}$. Moreover, $\eta \in H$ since $\eta=N_{i}\left(\left(N^{i} \alpha\right) / a\right)$. Therefore

$$
\vartheta_{0}: \operatorname{ker} \widehat{j} \rightarrow H / N E_{K} \cdot E_{k}^{2}, \quad\left(\left[\mathfrak{a}_{1}\right],\left[\mathfrak{a}_{2}\right],\left[\mathfrak{a}_{3}\right]\right) \rightarrow \eta N E_{K} \cdot E_{k}^{2},
$$

is a well defined homomorphism. We want to show that ϑ_{0} is onto: to this end, let $\eta \in H$; using (2.2) we can find an $a \in k$ such that $N_{K / k} \alpha=\eta a^{2}$. In the proof of (2.1) we have seen that an equation $N_{K / k} \mathfrak{a}=(a)^{2}$ implies the existence of ideals \mathfrak{a}_{i} in k_{i} such that $\mathfrak{a}=\mathfrak{a}_{1} \mathfrak{a}_{2} \mathfrak{a}_{3}$. This gives $(\alpha)=\mathfrak{a}_{1} \mathfrak{a}_{2} \mathfrak{a}_{3}$.

Now $\left(N_{1} \mathfrak{a}_{1} \cdot N_{2} \mathfrak{a}_{2} \cdot N_{3} \mathfrak{a}_{3}\right)^{2}=\left(N_{K / k} \alpha\right)=(a)^{2}$ yields $(a)=N_{1} \mathfrak{a}_{1} \cdot N_{2} \mathfrak{a}_{2}$. $N_{3} \mathfrak{a}_{3}$, and we have shown $\eta \in \operatorname{im} \vartheta_{0}$.

Since $\vartheta_{0}: \operatorname{ker} \widehat{j} H / N E_{K} \cdot E_{k}^{2}$ is onto, the same is true for any homomorphism ker $\widehat{j} H / H_{0}$ which is induced by an inclusion $N E_{K} \cdot E_{k}^{2} \subset H_{0} \subset H$. Obviously, the group $H_{0}=E_{1}^{N} \cap E_{2}^{N} \cap E_{3}^{N}$ defined above is such a group, and so $\vartheta: \operatorname{ker} \widehat{j} H / H_{0}$ is onto. An element $\left(\left[\mathfrak{a}_{1}\right],\left[\mathfrak{a}_{2}\right],\left[\mathfrak{a}_{3}\right]\right) \in \operatorname{ker} \widehat{j}$ belongs to ker ϑ if and only if

$$
\mathfrak{a}_{1} \mathfrak{a}_{2} \mathfrak{a}_{3}=(\alpha), \quad(a)=N_{1} \mathfrak{a}_{1} \cdot N_{2} \mathfrak{a}_{2} \cdot N_{3} \mathfrak{a}_{3}, \quad\left(N_{L / k} \alpha\right) / a^{2}=\eta \in H_{0} .
$$

Let $\varrho_{i}=N^{i} \alpha / a$; then $\mathfrak{a}_{1}^{1-\tau}=\left(\varrho_{1}\right), \mathfrak{a}_{2}^{1-\sigma \tau}=\left(\varrho_{2}\right), \mathfrak{a}_{3}^{1-\sigma}=\left(\varrho_{3}\right)$ and $N_{i} \varrho_{i}=\eta \in H_{0}$. Writing $\eta=N_{i} \varepsilon_{i}$, where $\varepsilon_{i} \in E_{i}$, and replacing ϱ_{i} by $\varrho_{i} / \varepsilon_{i}$, we may assume that $N_{i} \varrho_{i}=1$. Hilbert's theorem 90 shows $\varrho_{1}=\beta_{1}^{1-\tau}$, $\varrho_{2}=\beta_{2}^{1-\sigma \tau}$, and $\varrho_{3}=\beta_{3}^{1-\sigma}$ for some $\beta_{i} \in k_{i}$. The ideals $\mathfrak{b}_{i}=\mathfrak{a}_{i} \beta_{i}^{-1}$ are ambiguous, and we have $\left[\mathfrak{b}_{i}\right]=\left[\mathfrak{a}_{i}\right]$. This means that the ideal classes $\left[\mathfrak{a}_{i}\right]$ are strongly ambiguous, and we conclude

$$
\operatorname{ker} \vartheta \subset \operatorname{ker} \widehat{j} \cap A_{1} \times A_{2} \times A_{3}=\operatorname{ker} j^{*} .
$$

If, on the other hand, $\left(\left[\mathfrak{a}_{1}\right],\left[\mathfrak{a}_{2}\right],\left[\mathfrak{a}_{3}\right]\right) \in \operatorname{ker} \widehat{j}$ and the ideals \mathfrak{a}_{i} are ambiguous, then the $\varrho_{i}=N^{i} \alpha / a$ are units, and

$$
\eta=\vartheta\left(\left[\mathfrak{a}_{1}\right],\left[\mathfrak{a}_{2}\right],\left[\mathfrak{a}_{3}\right]\right)=N_{i} \varrho_{i} \in E_{1}^{N} \cap E_{2}^{N} \cap E_{3}^{N}=H_{0} .
$$

We have seen that $\operatorname{ker} \vartheta=\operatorname{ker} j^{*}$, which shows that the sequence

$$
1 \rightarrow \operatorname{ker} j^{*} \rightarrow \operatorname{ker} \widehat{j} \xrightarrow{\vartheta} H / H_{0} \rightarrow 1
$$

is exact; (2.3) follows at once.
The proof of (2.4) will be done in two steps. First we notice that im j^{*} consists of those ideal classes in $j(\widehat{C})$ that are generated by ambiguous ideals in k_{i} / k. Define

$$
\begin{aligned}
& R=\left\{\mathfrak{A} \mid \mathfrak{A}=\mathfrak{a}_{1} \mathfrak{a}_{2} \mathfrak{a}_{3}, \mathfrak{a}_{i} \in J_{i} \text { ambiguous }\right\}, \\
& \widehat{R}=\left\{\mathfrak{A} \mid \mathfrak{A}=\mathfrak{a}_{1} \mathfrak{a}_{2} \mathfrak{a}_{3}, \mathfrak{a}_{i} \in J_{i} \text { ambiguous, } \nu\left(\left[\mathfrak{a}_{1}\right],\left[\mathfrak{a}_{2}\right],\left[\mathfrak{a}_{3}\right]\right)=1\right\},
\end{aligned}
$$

and let π be the homomorphism $J_{K} \supset \widehat{R} \ni \mathfrak{A} \rightarrow[\mathfrak{A}] \in \mathrm{Cl}(K)$. Then $\pi: \widehat{R} \rightarrow \operatorname{im} j^{*}$ is obviously onto, and $\operatorname{ker} \pi=\widehat{R} \cap H_{K}$. But if $\varrho \in K$ and $(\varrho)=\mathfrak{a}_{1} \mathfrak{a}_{2} \mathfrak{a}_{3} \in \widehat{R}$,

$$
(\varrho)^{2}=\left(\mathfrak{a}_{1} \mathfrak{a}_{2} \mathfrak{a}_{3}\right)^{2}=\left(N_{1} \mathfrak{a}_{1} \cdot N_{2} \mathfrak{a}_{2} \cdot N_{3} \mathfrak{a}_{3}\right)=(r)
$$

for some $r \in k$. This shows

$$
\operatorname{ker} \pi=\left\{(\varrho) \mid \varrho \in K,(\varrho)^{2}=(r) \text { for some } r \in k\right\}=R_{\pi}
$$

therefore

$$
\left(\widehat{R}: R_{\pi}\right)=|\operatorname{im} \pi|=\left|\operatorname{im} j^{*}\right|=\left(\widehat{A}: \operatorname{ker} j^{*}\right)
$$

which is equivalent to

$$
\begin{equation*}
\left|\operatorname{ker} j^{*}\right|=|\widehat{A}| /\left(\widehat{R}: R_{\pi}\right) \tag{2.8}
\end{equation*}
$$

The homomorphism $\nu: C \rightarrow \mathrm{Cl}(k)$ defined at the beginning of Section 2 sends $\left(\left[\mathfrak{a}_{1}\right],\left[\mathfrak{a}_{2}\right],\left[\mathfrak{a}_{3}\right]\right) \in A=A_{1} \times A_{2} \times A_{3} \subset C$ to $\left[\mathfrak{a}_{1} \mathfrak{a}_{2} \mathfrak{a}_{3}\right]^{2} \in \mathrm{Cl}(k)$ (remember that the square of an ambiguous ideal of k_{i} / k is an ideal in \mathfrak{O}_{k}), and we see that

$$
1 \rightarrow \widehat{A} \rightarrow A \xrightarrow{\nu} A_{1}^{2} A_{2}^{2} A_{3}^{2} \rightarrow 1
$$

is a short exact sequence. Now

$$
1 \rightarrow \widehat{R} \rightarrow R \xrightarrow{\stackrel{\bar{\nu}}{\longrightarrow}} A_{1}^{2} A_{2}^{2} A_{3}^{2} \rightarrow 1
$$

where $\bar{\nu}\left(\mathfrak{a}_{1} \mathfrak{a}_{2} \mathfrak{a}_{3}\right)=\nu\left(\left[\mathfrak{a}_{1}\right],\left[\mathfrak{a}_{2}\right],\left[\mathfrak{a}_{3}\right]\right)=\left[\mathfrak{a}_{1} \mathfrak{a}_{2} \mathfrak{a}_{3}\right]^{2}$, is also exact. From these facts we conclude $(A: \widehat{A})=(R: \widehat{R})$, and this allows us to transform (2.8):

$$
\left|\operatorname{ker} j^{*}\right|=|\widehat{A}| /\left(\widehat{R}: R_{\pi}\right)=(A: \widehat{A})|\widehat{A}| /(R: \widehat{R})\left(\widehat{R}: R_{\pi}\right)=|A| /\left(R: R_{\pi}\right)
$$

This is just (2.4).
Next we determine $\left(R: R_{\pi}\right)$. To this end, let $(\varrho) \in R_{\pi}$. Then $(\varrho)^{2}=(r)$ for some $r \in k^{\times}$, and $\eta=\varrho^{2} / r$ is a unit in \mathfrak{O}_{K}. Since the ideal (ϱ) is fixed by $\operatorname{Gal}(K / k), \eta_{i}=\left(N_{K / k_{i}} \varrho\right) / r$ is a unit in E_{i}. If $\sigma \in \operatorname{Gal}(K / k)$ is an automorphism that acts non-trivially on k_{3} / k, we find that $\eta=\eta_{1} \eta_{2} \eta_{3}^{-\sigma} \in$ $E_{1} E_{2} E_{3}$, where

$$
N_{1} \eta_{1}=N_{2} \eta_{2}=N_{3}\left(\eta_{3}^{-\sigma}\right)=\left(N_{K / k} \varrho\right) / r^{2}
$$

The unit η we have found is determined up to a factor $\in E_{k} E^{2}$ (from now on, the unit group E_{K} will appear quite often, so we will write E instead of E_{K}), and so we can define a homomorphism $\varphi: R_{\pi} \rightarrow E / E_{k} E^{2}$ by assigning the class of the unit $\eta=\varrho^{2} / r$ to an ideal $(\varrho) \in R_{\pi}$ that satisfies $(\varrho)^{2}=(r), r \in k^{\times}$. We cannot expect φ to be onto because only such units $\eta_{1} \eta_{2} \eta_{3} \in E_{1} E_{2} E_{3}$ can lie in the image of φ whose relative norms $N_{i} \eta_{i}$ coincide. Therefore we define

$$
E^{*}=\left\{e_{1} e_{2} e_{3} \mid e_{i} \in E_{i}, N_{1} e_{1} \equiv N_{2} e_{2} \equiv N_{3} e_{3} \bmod E_{k}^{2}\right\}
$$

and observe that $\operatorname{im} \varphi \subset E^{*} / E_{k} E^{2}$. Moreover,
(2.9) Let $\eta=e_{1} e_{2} e_{3} \in E^{*}$; then $K(\sqrt{\eta}) / k$ is a normal extension, $\operatorname{Gal}(K(\sqrt{\eta}) / k)$ is elementary abelian, and there are $\varrho \in K^{\times}$and $r \in k^{\times}$such that $\eta=\varrho^{2} / r$.

Proof. $K(\sqrt{\eta}) / k$ is normal if and only if for every $\sigma \in \operatorname{Gal}(K / k)$ there exists an $\alpha_{\sigma} \in K^{\times}$such that $\eta^{1-\sigma}=\alpha_{\sigma}^{2}$. Let $\operatorname{Gal}(K / k)=\{1, \sigma, \tau, \sigma \tau\}$ and suppose that σ fixes k_{1}; then

$$
\eta^{1-\sigma}=\left(e_{1} e_{2} e_{3}\right)^{1-\sigma}=\left(e_{2} e_{3}\right)^{1-\sigma}=\left(e_{2} e_{3}\right)^{2} /\left(N_{2} e_{2} \cdot N_{3} e_{3}\right)
$$

and this is a square in K^{\times}since $N_{2} e_{2} \equiv N_{3} e_{3} \bmod E_{k}^{2}$.
It is an easy exercise to show that $\operatorname{Gal}(K / k)$ is elementary abelian if and only if $\alpha_{\sigma}^{1+\sigma}=\alpha_{\tau}^{1+\tau}=\alpha_{\sigma \tau}^{1+\sigma \tau}=+1$. In our case, these equations are easily verified (for example $\alpha_{\sigma}=e_{2} e_{3} / e$ for some $e \in E_{k}$ such that $e^{2}=N_{2} e_{2} \cdot N_{3} e_{3}$, and therefore $\left.\alpha_{\sigma}^{1+\sigma}=\left(N_{2} e_{2} N_{3} e_{3}\right) / e^{2}=+1\right)$.

Now $K(\sqrt{\eta}) / k$ is elementary abelian, and so $k(\sqrt{\eta})=k(\sqrt{r})$ for some $r \in k^{\times}$. This implies the existence of $\varrho \in k^{\times}$such that $\varrho^{2}=\eta r$.

Because of (2.9), $\varphi: R_{\pi} \rightarrow E^{*} / E_{k} E^{2}$ is onto. Moreover,

$$
\begin{aligned}
\operatorname{ker} \varphi & =\left\{(\varrho) \in R_{\pi} \mid \varrho^{2} / r=u e^{2}, u \in E_{k}, e \in E\right\} \\
& =\left\{(\varrho) \in R_{\pi} \mid \exists r \in k^{\times}, e \in E:(\varrho / e)^{2}=r\right\} \\
& =\left\{(\varrho) \in R_{\pi} \mid \varrho^{2}=r \text { for } r \in k^{\times}\right\}
\end{aligned}
$$

Let $R_{0}=\operatorname{ker} \varphi$; the group of principal ideals H_{k} is a subgroup of R_{0}, and it has index $\left(R_{0}: H_{k}\right)=2^{2-u}$, where $2^{u}=\left(E^{(2)}: E_{k}\right)$ and $E^{(2)}=\{e \in$ $\left.E: e^{2} \in E_{k}\right)$. The proof is very easy: let $\Lambda=\left\{\varrho \in K^{\times} \mid \varrho^{2} \in k^{\times}\right\}$and map Λ / k^{\times}onto R_{0} / H_{k} by sending ϱk^{\times}to ($\left.\varrho\right) H_{k}$. The sequence

$$
1 \rightarrow E^{(2)} k^{\times} / k^{\times} \rightarrow \Lambda / k^{\times} \rightarrow R_{0} / H_{k} \rightarrow 1
$$

is exact, and since Λ / k^{\times}has order $4\left(\Lambda / k^{\times}=\left\{k^{\times}, \sqrt{a} k^{\times}, \sqrt{b} k^{\times}, \sqrt{a b} k^{\times}\right\}\right.$, where $K=k(\sqrt{a}, \sqrt{b})$) and $E^{(2)} k^{\times} / k^{\times} \cong E^{(2)} / E_{k}$, the claim is proven. We
see

$$
\left(R_{0}: H_{k}\right)= \begin{cases}1 & \text { if we can choose } a, b \in E_{k} \\ 2 & \text { if we can choose } a \in E_{k} \text { or } b \in E_{k}, \text { but not both, } \\ 4 & \text { otherwise } .\end{cases}
$$

Now we find $\left(R: H_{k}\right)=\left(R: J_{k}\right)\left(J_{k}: H_{k}\right)=2^{t} h_{k}$, where $t=$ $|\operatorname{Ram}(K / k)|$, and

$$
\begin{aligned}
\left(R: R_{\pi}\right) & =\left(R: H_{k}\right) /\left\{\left(R_{\pi}: R_{0}\right)\left(R_{0}: H_{k}\right)\right\} \\
& =2^{t-2} h_{k}\left(E^{(2)}: E_{k}\right) /\left(E^{*}: E_{k} E^{2}\right) .
\end{aligned}
$$

Since

$$
\begin{gathered}
\left(E: E_{k} E^{2}\right)=\left(E: E^{2}\right) /\left(E_{k} E^{2}: E^{2}\right) \\
\left(E_{k} E^{2}: E^{2}\right)=\left(E_{k}: E^{2} \cap E_{k}\right)=\frac{\left(E_{k}: E_{k}^{2}\right)}{\left(E^{2} \cap E_{k}: E_{k}^{2}\right)}
\end{gathered}
$$

and

$$
\left(E^{2} \cap E_{k}: E_{k}^{2}\right)=\left(E^{(2)}: E_{k}\right),
$$

we get $\left(E: E_{k} E^{2}\right)=2^{\lambda-\kappa}\left(E^{(2)}: E_{k}\right)$, where λ and κ denote the \mathbb{Z}-rank of E and E_{k}, respectively. Collecting everything, we find

$$
\begin{aligned}
\left(R: R_{\pi}\right) & =2^{t} h_{k} /\left\{\left(E^{*}: E_{k} E^{2}\right)\left(R_{0}: H_{k}\right)\right\} \\
& =2^{t} h_{k}\left(E: E^{*}\right)\left(E^{(2)}: E_{k}\right) / 4\left(E: E_{k} E^{2}\right)=2^{t+\kappa-\lambda-2} h_{k}\left(E: E^{*}\right) .
\end{aligned}
$$

$\operatorname{But}\left(E: E^{*}\right)=\left(E: E_{1} E_{2} E_{3}\right) \cdot\left(E_{1} E_{2} E_{3}: E^{*}\right)$, and the first factor is the unit index $q(K)$; this shows

$$
\begin{equation*}
\left(R: R_{\pi}\right)=2^{t+\kappa-\lambda-2} h_{k} \cdot q(K) \cdot\left(E_{1} E_{2} E_{3}: E^{*}\right) . \tag{2.10}
\end{equation*}
$$

In order to study the group $E_{1} E_{2} E_{3} / E^{*}$, we define $E_{i}^{*}=\left\{e_{i} \in E_{i}\right.$: $\left.N_{i} e_{i} \in E_{k}^{2}\right\}$ and notice $E_{1}^{*} E_{2}^{*} E_{3}^{*} \subset E^{*} \subset E_{1} E_{2} E_{3} \subset E$. The group $E^{*} / E_{1}^{*} E_{2}^{*} E_{3}^{*}$ is actually one we have encountered before:

$$
\begin{equation*}
E^{*} / E_{1}^{*} E_{2}^{*} E_{3}^{*} \cong H_{0} / E_{k}^{2} \tag{2.11}
\end{equation*}
$$

Proof. Map $e_{1} e_{2} e_{3} \in E^{*}$ onto the coset $N_{1} e_{1} E_{k}^{2}=N_{2} e_{2} E_{k}^{2}=N_{3} e_{3} E_{k}^{2}$.
It is therefore sufficient to compute the index $\left(E_{1} E_{2} E_{3}: E_{1}^{*} E_{2}^{*} E_{3}^{*}\right)$; to this end we introduce the natural homomorphism

$$
\xi: E_{1} / E_{1}^{*} \times E_{2} / E_{2}^{*} \times E_{3} / E_{3}^{*} \rightarrow E_{1} E_{2} E_{3} / E_{1}^{*} E_{2}^{*} E_{3}^{*},
$$

which, of course, is onto. Letting \bar{e}_{i} denote the coset $e_{i} E_{i}^{*}$ we find

$$
\operatorname{ker} \xi=\left\{\left(\bar{e}_{1}, \bar{e}_{2}, \bar{e}_{3}\right): e_{1} e_{2} e_{3}=u_{1} u_{2} u_{3} \text { for some } u_{i} \in E_{i}^{*}\right\} .
$$

We need to characterize $\operatorname{ker} \xi$. Assume that $\left(e_{1} E_{1}^{*}, e_{2} E_{2}^{*}, e_{3} E_{3}^{*}\right) \in \operatorname{ker} \xi$; then $e_{1} e_{2} e_{3}=u_{1} u_{2} u_{3}$ for some $u_{i} \in E_{i}^{*}$. Replacing the $e_{i} E_{i}^{*}$ by $e_{i} u_{i}^{-1} E_{i}^{*}$ if necessary, we may assume that $e_{1} e_{2} e_{3}=1$. Applying $1+\sigma$ to this equation (where σ fixes k_{1}) yields $e_{1}^{2} N_{2} e_{2} N_{3} e_{3}=1$, and this implies $e_{1}^{2} \in E_{k}$; in a
similar way we find $e_{2}^{2} \in E_{k}$ and $e_{3}^{2} \in E_{k}$. If $N_{2} e_{2}$ were a square in E_{k}, so were $N_{3} e_{3}$, and e_{1} would have to lie in E_{k} : but then $e_{i} \in E_{i}^{*}$ for $i=1,2,3$, and ($\bar{e}_{1}, \bar{e}_{2}, \bar{e}_{3}$) is trivial. So if $\operatorname{ker} \xi \neq 1$, we must have $e_{i} \in E_{i} \backslash E_{k}$ for $i=2,3$; but we have seen $e_{i}^{2}=: \varepsilon_{i} \in E_{k}$, so we get $k_{i}=k\left(\sqrt{\varepsilon_{i}}\right)$ for $i=2,3$ and, therefore, $k_{1}=k\left(\sqrt{\varepsilon_{2} \varepsilon_{3}}\right)$. Moreover,

$$
\operatorname{ker} \xi=\left\{1,\left(\sqrt{\varepsilon_{1}} E_{1}^{*}, \sqrt{\varepsilon_{2}} E_{2}^{*}, \sqrt{\varepsilon_{3}} E_{3}^{*}\right)\right\} .
$$

Thus we have shown that $\operatorname{ker} \xi \neq 1$ implies $u=2$ and $|\operatorname{ker} \xi|=2$, where the index $2^{u}=\left(E^{(2)}: E_{k}\right)$ was introduced above. If, on the other hand, $u=2$, then $k_{i}=k\left(\sqrt{\varepsilon_{i}}\right)$ for units $\varepsilon_{i} \in E_{k}$, and $\left(\sqrt{\varepsilon_{1}} E_{1}^{*}, \sqrt{\varepsilon_{2}} E_{2}^{*}, \sqrt{\varepsilon_{3}} E_{3}^{*}\right)$ is a non-trivial element of $\operatorname{ker} \xi$. Therefore $|\operatorname{ker} \xi|=2^{v}$ with $v=2^{u}-u-1$, and

$$
\begin{equation*}
\left(E_{1} E_{2} E_{3}: E_{1}^{*} E_{2}^{*} E_{3}^{*}\right)=2^{-v}\left\{\prod\left(E_{i}: E_{i}^{*}\right)\right\} \tag{2.12}
\end{equation*}
$$

To determine ($E_{i}: E_{i}^{*}$), we make use of a well known group-theoretical lemma:
(2.13) Let G be a group and assume that H is a subgroup of finite index in G. If f is a homomorphism from G to another group, then

$$
(G: H)=\left(G^{f}: H^{f}\right)\left(G_{f} H: H\right),
$$

where $G^{f}=\operatorname{im} f, G_{f}=\operatorname{ker} f$, and H^{f} is the image of the restriction of f to H.
We apply this lemma to $G=E_{i}, H=E_{i}^{*}, f=N_{i}$. Then $G_{f}=\left\{\varepsilon \in E_{i}\right.$: $\left.N_{i} \varepsilon=1\right\} \subset E_{i}^{*}=H, G^{f}=E_{i}^{N}=\left\{N_{i} \varepsilon: \varepsilon \in E_{i}\right\}$, and $H^{f}=E_{k}^{2}$, and (2.13) gives

$$
\left(E_{i}: E_{i}^{*}\right)=(G: H)=\left(G^{f}: H^{f}\right)=\left(E_{i}^{N}: E_{k}^{2}\right) .
$$

Putting (2.10)-(2.12) together, we find

$$
\begin{aligned}
\left(R: R_{\pi}\right) & =2^{t+\kappa-\lambda-2} h_{k} \cdot q(K) \cdot\left(E_{1} E_{2} E_{3}: E^{*}\right) \\
& =2^{t+\kappa-\lambda-2} h_{k} \cdot q(K) \cdot\left(E_{1} E_{2} E_{3}: E_{1}^{*} E_{2}^{*} E_{3}^{*}\right) /\left(E^{*}: E_{1}^{*} E_{2}^{*} E_{3}^{*}\right) \\
& =2^{t+\kappa-\lambda-2-v} h_{k} \cdot q(K) \cdot \prod\left(E_{i}^{N}: E_{k}^{2}\right) /\left(H_{0}: E_{k}^{2}\right),
\end{aligned}
$$

which is (2.5).
The only claim left to prove is (2.7). If \mathfrak{p} is a place in k which ramifies in K / k, then $e(\mathfrak{p})=2$ if \mathfrak{p} ramifies in two of the three intermediate fields, and $e(\mathfrak{p})=4$ if \mathfrak{p} is ramified in k_{i} / k for $i=1,2,3$ (this can only happen for $\mathfrak{p} \mid 2$). This observation yields the first and the second equation in (2.7).

Now $n=(k: \mathbb{Q})=r_{k}+2 s_{k}$ and $4 n=(K: \mathbb{Q})=r_{K}+2 s_{K}$, where r_{*} (resp. s_{*}) denotes the number of real (resp. complex) infinite places in a field. Suppose that exactly d infinite places of k ramify in K / k; then $r_{K}=$ $4\left(r_{k}-d\right), s_{K}=4 s_{k}+2 d$, and Dirichlet's unit theorem gives $\kappa=r_{k}+s_{k}-1$
and

$$
\lambda=r_{K}+s_{K}-1=4\left(r_{k}-d\right)+4 s_{k}+2 d-1=4 \kappa-2 d+3
$$

3. Walter's formula. Assume that K / k is a normal extension, $\operatorname{Gal}(K / k)=(\mathbb{Z} / l \mathbb{Z})^{m}(l$ prime $)$, and suppose moreover that there is no ramification above the infinite primes of k. The formula given by Kuroda [18] is

$$
\frac{H}{h}=l^{-A}\left(E: E_{\Omega}\right) \cdot \prod h_{i} / h .
$$

Here

- h is the class number of k,
- H is the class number of K,
- h_{i} is the class number of the intermediate field k_{i}; there are exactly $t=\left(l^{m}-1\right) /(l-1)$ such k_{i},
- E is the unit group of \mathfrak{O}_{K},
- $E_{\Omega}=\prod E_{i}$ is the group generated by the units of the subfields k_{i},
- $A=\frac{l^{u}-1}{l-1}-u+\frac{\kappa+1}{2}\left((m-1)\left(l^{m}-1\right)+\frac{l^{m}-1}{l-1}-m\right)-\kappa\left(\frac{l^{m}-1}{l-1}-m\right)$;
- u is the number of independent extensions of type $k_{i}=k(\sqrt[l]{e})$, where e is a unit in \mathfrak{O}_{k}.
Using these notations, the formula given by Walter [32] reads as follows:

$$
\frac{H}{h}=l^{-A}\left(E: W E_{\Omega}\right) \cdot \prod h_{i} / h
$$

where W is the group of roots of unity in K and

$$
A=\frac{l^{u}-1}{l-1}-u+\frac{1}{2}(m-1)(\lambda-1)-\frac{\kappa-1}{2}\left(\frac{l^{m}-1}{l-1}-1\right)-w .
$$

In order to define w, we have to distinguish two cases:
(A) None of the k_{i} has the form $k_{i}=k(\sqrt{-1})$: then $w=0$;
(B) $l=2$ and $k_{1}=k(\sqrt{-1})$, say; then $2^{w}=\left(W^{(2)}: W_{1}^{(2)}\right)$, where $W^{(2)}$ (resp. $W_{1}^{(2)}$) is the 2-Sylow group of W (resp. W_{1}), and W_{1} is the group of roots of unity in k_{1}.

It is easily seen that $2^{w}=\left(W: \prod W_{i}\right)$ (just remember that the field of p^{n} th roots of unity has cyclic Galois group over \mathbb{Q} for $p>2$). If we recall the fact that Kuroda's formula applies only if no infinite places ramify (which implies that $\lambda+1=l^{m}(\kappa+1)$), the two formulae give the same result if and only if $\gamma:=\left(E: E_{\Omega}\right) / 2^{w}\left(E: W E_{\Omega}\right)=1$. Obviously $\gamma=1$ if $l>2$; for $l=2$ we obtain

$$
\left(E: E_{\Omega}\right)=\left(E: W E_{\Omega}\right)\left(W E_{\Omega}: E_{\Omega}\right)=\left(E: W E_{\Omega}\right)\left(W: E_{\Omega} \cap W\right)
$$

Now $\prod W_{i} \subset E_{\Omega} \cap W$, therefore

$$
\left(W: E_{\Omega} \cap W\right)=\left(W: \prod W_{i}\right) /\left(E_{\Omega} \cap W: \prod W_{i}\right)
$$

and

$$
\gamma=\left(E: E_{\Omega}\right) / 2^{w}\left(E: W E_{\Omega}\right)=\left(E_{\Omega} \cap W: \prod W_{i}\right) .
$$

As can be seen, $\gamma=1$ if and only if $W \cap \prod E_{i}=\prod W_{i}$, i.e. if and only if every root of unity that can be written as a product of units from the subfields, is actually a product of roots of unity lying in the subfields. If K does not contain the 8th roots of unity, this is certainly true; the following example shows that it does not hold in general. Take $k=\mathbb{Q}(\sqrt{3}), K=$ $\mathbb{Q}(i, \sqrt{2}, \sqrt{3})=\mathbb{Q}\left(\zeta_{24}\right)$; Walter's formula yields $h(K)=2$; but $\mathbb{Z}\left[\zeta_{24}\right]$ is known to be Euclidean with respect to the norm, and therefore has class number 1.

Let $k_{1}=k(i), k_{2}=k(\sqrt{2}), k_{3}=k(\sqrt{-2})$; we define

$$
\begin{gathered}
\varepsilon_{2}=1+\sqrt{2}, \quad \varepsilon_{3}=2+\sqrt{3}, \quad \varepsilon_{6}=5+2 \sqrt{6}, \\
\sqrt{\varepsilon_{3}}=(1+\sqrt{3}) / \sqrt{2}, \quad \sqrt{\varepsilon_{6}}=\sqrt{2}+\sqrt{3} \\
\sqrt{-\varepsilon_{3}}=(1+\sqrt{3}) / \sqrt{2} i, \quad \sqrt{i \varepsilon_{3}}=(1+\sqrt{3}) /(1-i), \\
\sqrt{\zeta_{8} \varepsilon_{2} \sqrt{\varepsilon_{3} \varepsilon_{6}}}=\frac{1}{4}(4+3 \sqrt{2}+2 \sqrt{3}+\sqrt{6}+2 i+\sqrt{-2}+\sqrt{-6}) .
\end{gathered}
$$

Then $\kappa=1, \lambda=3, t_{1}=2, t_{2}=3, d=2, u=2$ since $k_{1}=k(\sqrt{-1})$, $k_{2}=k\left(\sqrt{\varepsilon_{3}}\right)$, and $k_{3}=k\left(\sqrt{-\varepsilon_{3}}\right), w=1$ since $W=\left\langle\zeta_{24}\right\rangle$ and $W_{1}=\left\langle\zeta_{12}\right\rangle$, and $q(K)=2$ (in this example, the unit indices $\left(E: E_{\Omega}\right)$ and $\left(E: W E_{\Omega}\right)$ coincide, and in Wada [31] it is shown that $\left.\left(E: E_{\Omega}\right)=2\right)$. Walter's formula gives

$$
h(K)=\frac{1}{2} q(K) \cdot \prod h_{i}=\frac{1}{2} \cdot 2 \cdot 2=2 .
$$

We have also computed the groups that occur in our proof of Kuroda's formula:

- $E_{k}=\left\langle-1, \varepsilon_{3}\right\rangle ;$
- $E_{1}=\left\langle\zeta_{12}, \sqrt{i \varepsilon_{3}}\right\rangle, E_{1}^{*}=\left\langle\zeta_{12}, \varepsilon_{3}\right\rangle, E_{1}^{N}=\left\langle\varepsilon_{3}\right\rangle ;$
- $E_{2}=\left\langle-1, \varepsilon_{2}, \sqrt{\varepsilon_{3}}, \sqrt{\varepsilon_{6}}\right\rangle, E_{2}^{*}=\left\langle-1, \varepsilon_{2}^{2}, \varepsilon_{3}, \sqrt{\varepsilon_{6}}\right\rangle, E_{2}^{N}=\left\langle-1, \varepsilon_{3}\right\rangle$;
- $E_{3}=\left\langle-1, \sqrt{-\varepsilon_{3}}\right\rangle, E_{3}^{*}=\left\langle-1, \varepsilon_{3}\right\rangle, E_{3}^{N}=\left\langle\varepsilon_{3}\right\rangle ;$
- $\prod^{\prime}\left(E_{i}: E_{i}^{*}\right)=2 \cdot 4 \cdot 2=16$;
- $H_{0}=\left\langle\varepsilon_{3}\right\rangle ; H=H_{0}$, since -1 certainly is no norm residue $\bmod \infty$;
- $E=\left\langle\zeta_{24}, \varepsilon_{2}, \sqrt{\varepsilon_{3}}, \sqrt{\zeta_{8} \varepsilon_{2} \sqrt{\varepsilon_{3} \varepsilon_{6}}}\right\rangle$ (cf. Wada [31]);
- $E_{1} E_{2} E_{3}=\left\langle\zeta_{24}, \varepsilon_{2}, \sqrt{\varepsilon_{3}}, \sqrt{\varepsilon_{6}}\right\rangle\left(\zeta_{8}=\sqrt{i \varepsilon_{3}} / \sqrt{\varepsilon_{3}}\right), q(K)=2$;
- $E^{*}=\left\langle\zeta_{12}, \varepsilon_{2}^{2}, \sqrt{i \varepsilon_{3}}, \sqrt{\varepsilon_{6}}\right\rangle,\left(E: E^{*}\right)=8,\left(E_{1} E_{2} E_{3}: E^{*}\right)=4$;
- $E_{1}^{*} E_{2}^{*} E_{3}^{*}=\left\langle\zeta_{12}, \varepsilon_{2}^{2}, \varepsilon_{3}, \sqrt{\varepsilon_{6}}\right\rangle,\left(E^{*}: E_{1}^{*} E_{2}^{*} E_{3}^{*}\right)=2$;
- $E^{(2)}=\left\langle i, \sqrt{\varepsilon_{3}}\right\rangle$;
- $\operatorname{ker} \psi=\left\{(\overline{1}, \overline{1}, \overline{1}),\left(i E_{1}^{*}, \sqrt{\varepsilon_{3}} E_{2}^{*}, \sqrt{-\varepsilon_{3}} E_{3}^{*}\right)\right\}$, because $i \cdot \sqrt{\varepsilon_{3}} \sqrt{-\varepsilon_{3}}=\varepsilon_{3}$ can be written in the form $\varepsilon_{3}=\varepsilon_{3} \cdot 1 \cdot 1 \in E_{1}^{*} E_{2}^{*} E_{3}^{*}$, while $\sqrt{\varepsilon_{3}} \notin E_{2}^{*}$.
The prime ideal 2 in k_{3} above 2 generates an ideal class of order 2 in $\mathrm{Cl}\left(k_{3}\right): \mathbf{2}$ is not principal, because its relative norm to $\mathbb{Q}(\sqrt{-6})$ is not, and its order divides 2 because $\mathbf{2}^{2}=(1+\sqrt{3})$. This implies

$$
\left|A_{1}\right|=\left|A_{2}\right|=1, \quad A_{3}=\langle[\mathbf{2}]\rangle, \quad \operatorname{ker} j=\operatorname{ker} j^{*}=1 \times 1 \times A_{3} \cong A_{3} .
$$

References

[1] E. J. Amberg, Über den Körper, dessen Zahlen sich rational aus zwei Quadratwurzeln zusammensetzen, Diss., Zürich, 1897.
[2] P. Bachmann, Zur Theorie der complexen Zahlen, J. Reine Angew. Math. 67 (1867), 200-204.
[3] R. I. Berger, Hasse's class number product formula for generalized Dirichlet fields and other types of number fields, Manuscripta Math. 76 (1992), 397-406.
[4] C. Castela, Nombre de classes d'idéaux d'une extension diédrale d'un corps de nombres, C. R. Acad. Sci. Paris Sér. A 287 (1978), 483-486.
[5] G. L. Dirichlet, Recherches sur les formes quadratiques à coëfficients et à indéterminées complexes, J. Reine Angew. Math. 24 (1842), 291-371.
[6] Y. Furuta, The genus field and genus number in algebraic number fields, Nagoya Math. J. 29 (1967), 281-285.
[7] D. Garbanati, Class field theory summarized, Rocky Mountain J. Math. 11 (1980), 195-225.
[8] S. J. Gurak, Ideal-theoretic characterization of the relative genus field, J. Reine Angew. Math. 296 (1977), 119-124.
[9] F. Halter-Koch, Ein Satz über die Geschlechter relativ-zyklischer Zahlkörper von Primzahlgrad und seine Anwendung auf biquadratisch-bizyklische Zahlkörper, J. Number Theory 4 (1972), 144-156.
[10] H. Hasse, Zahlbericht, 3 Aufl., Physica, 1970.
[11] —, Über die Klassenzahl abelscher Zahlkörper, Springer, 1985.
[12] G. Herglotz, Über einen Dirichletschen Satz, Math. Z. 12 (1922), 255-261.
[13] C. S. Herz, Construction of class fields, in: Seminar on Complex Multiplication, Lecture Notes in Math. 21, Springer, 1957, VIII, 1-21.
[14] D. Hilbert, Über den Dirichletschen biquadratischen Zahlkörper, Math. Ann. 45 (1894), 309-340; see also: Gesammelte Abhandlungen I, Springer, 1970, 24-52.
[15] T. Kubota, Über die Beziehung der Klassenzahlen der Unterkörper des bizyklischen biquadratischen Zahlkörper, Nagoya Math. J. 6 (1953), 119-127.
[16] —, Über den bizyklischen biquadratischen Zahlkörper, ibid. 10 (1956), 65-85.
[17] S. Kuroda, Über den Dirichletschen Körper, J. Fac. Sci. Imp. Univ. Tokyo Sec. I 4 (5) (1943), 383-406.
[18] —, Über die Klassenzahlen algebraischer Zahlkörper, Nagoya Math. J. 1 (1950), 1-10.
[19] D. B. Leep and A. R. Wadsworth, The transfer ideal of quadratic forms and a Hasse norm theorem mod squares, Trans. Amer. Math. Soc. 315 (1989), 415-431.
[20] -, -, The Hasse norm theorem mod squares, J. Number Theory 42 (1992), 337348.
[21] H. Nehrkorn, Über absolute Idealklassengruppen und Einheiten in algebraischen Zahlkörpern, Abh. Math. Sem. Univ. Hamburg 9 (1933), 318-334.
[22] Ch. J. Parry, Real quadratic fields with class numbers divisible by five, Math. Comp. 31 (1977), 1019-1029.
[23] —, On the class number of relative quadratic fields, ibid. 32 (1978), 1261-1270.
[24] Ch. Pitti, Étude des normes dans les extensions à groupe de Klein, C. R. Acad. Sci. Paris Sér. A 274 (1972), 1433-1435.
[25] - , Étude des normes dans les extensions à groupe de Klein, Séminaire Delange-Pisot-Poitou 14 (1972/73), no. 7.
[26] -, Éléments de norme 1 dans les extensions à groupe de Klein, C. R. Acad. Sci. Paris Sér. A 277 (1973), 273-275.
[27] H. Reichardt, Uber die Idealklassengruppe des Dirichletschen biquadratischen Zahlenkörpers, Acta Arith. 21 (1972), 323-327.
[28] A. Scholz, Totale Normenreste, die keine Normen sind, als Erzeuger nichtabelscher Körpererweiterungen I, J. Reine Angew. Math. 175 (1936), 100-107.
[29] -, Totale Normenreste, die keine Normen sind, als Erzeuger nichtabelscher Körpererweiterungen II, ibid. 182 (1940), 217-234.
[30] J. Varmon, Über abelsche Körper, deren alle Gruppeninvarianten aus einer Primzahl l bestehen, und über abelsche Körper als Kreiskörper, Akad. Abhandl., Lund, 1925.
[31] H. Wada, On the class number and the unit group of certain algebraic number fields, J. Fac. Sci. Univ. Tokyo 13 (1966), 201-209.
[32] C. D. Walter, Kuroda's class number relation, Acta Arith. 35 (1979), 41-51.

ERWIN-ROHDE-STR. 19
69120 HEIDELBERG, GERMANY

