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Introduction. Let k be a number field and K/k a V4-extension, i.e.
a normal extension with Gal(K/k) = V4, where V4 is Klein’s four-group.
K/k has three intermediate fields, say k1, k2, and k3. We will use the
symbol N i (resp. Ni) to denote the norm of K/ki (resp. ki/k), and by a
widespread abuse of notation we will apply N i and Ni not only to num-
bers but also to ideals and ideal classes. The unit groups (groups of roots of
unity, class numbers) in these fields will be denoted by Ek, E1, E2, E3, EK
(Wk,W1, . . . , hk, h1, . . .) respectively, and the (finite) index q(K) = (EK :
E1E2E3) is called the unit index of K/k.

For k = Q, k1 = Q(
√−1) and k2 = Q(

√
m) it was already known

to Dirichlet [5] that hK = 1
2q(K)h2h3. Bachmann [2], Amberg [1] and Her-

glotz [12] generalized this class number formula gradually to arbitrary exten-
sions K/Q whose Galois groups are elementary abelian 2-groups. A remark
of Hasse [11, p. 3] seems to suggest that Varmon [30] proved a class number
formula for extensions K/k with Gal(K/k) an elementary abelian p-group;
unfortunately, his paper was not accessible to me. Kuroda [18] later gave
a formula in case there is no ramification at the infinite primes. Wada [31]
stated a formula for 2-extensions of k = Q without any restriction on the
ramification (and without proof), and finally Walter [32] used Brauer’s class
number relations to deduce the most general Kuroda-type formula.

As we shall see below, Walter’s formula for V4-extensions does not always
give correct results if K contains the 8th root of unity. This does not, how-
ever, seem to affect the validity of the work of Parry [22, 23] and Castela [4]
who made use of Walter’s formula.

The proofs mentioned above use analytic methods; for V4-extensions
K/Q, however, there exist algebraic proofs given by Hilbert [14] (if

√−1
∈ K), Kuroda [17] (if

√−1 ∈ K), Halter-Koch [9] (if K is imaginary), and
Kubota [15, 16]. For base fields k 6= Q, on the other hand, nothing seems to
be known except the very recent work of Berger [3].

In this paper we will show how Kubota’s proof can be generalized. In
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the first half of our proof, where we measure the extent to which Cl(K) is
generated by the Cl(ki), we will use class field theory in its ideal-theoretic
formulation (cf. Hasse [10] or Garbanati [7]). The second half of the proof
is a somewhat lengthy index computation.

1. Kuroda’s formula. For any number field F , let Clu(F ) be the odd
part of the ideal class group of F , i.e. the direct product of the p-Sylow
subgroups of Cl(F ), p 6= 2. It has already been noticed by Hilbert that
the odd part of Cl(F ) behaves well in 2-extensions, and the following fact
is a special case of a theorem of Nehrkorn [21] (it can also be found in
Kuroda [18] or Reichardt [27]):

(1.1) Clu(K) ∼=
( 3×
i=1

Clu(ki)/Clu(k)
)
×Clu(k) for V4-extension K/k .

Here× denotes the direct product. This simple formula allows us to
compute the structure of Clu(K); of course we cannot expect a similar result
to hold for Cl2(K), mainly because of the following two reasons:

1. Ideal classes of ki can become principal in K (capitulation), and this
means that we cannot regard Cl2(ki) as a subgroup of Cl2(K).

2. Even if they do not capitulate, ideal classes of subfields can coincide
in K: consider a prime ideal p which ramifies in k1 and k2; if the prime
ideals above p in k1 and k2 are not principal, they will generate the same
non-trivial ideal class in K.

Nevertheless there is a homomorphism

j : Cl(k1)× Cl(k2)× Cl(k3)→ Cl(K)

defined as follows: let ci = [ai] be the ideal class in ki generated by ai; then
aiOK is the ideal in OK (= ring of integers in K) generated by ai, and it is
obvious that j(c1, c2, c3) = [a1a2a3OK ] is well defined, and that moreover

h(K) =
|cok j|
|ker j| · h1h2h3 .

In order to compute h(k) we have to determine the orders of the groups
ker j and cok j = Cl(K)/ im j. This will be done as follows:

(1.2) Let ĵ be the restriction of j to the subgroup

Ĉ = {(c1, c2, c3) |N1c1N2c2N3c3 = 1}
of the direct product Cl(k1)× Cl(k2)× Cl(k3). Then

hk · |cok j|
|ker j| =

|cok ĵ|
|ker ĵ| .



Kuroda’s class number formula 247

Now the reciprocity law of Artin, combined with Galois theory, gives
a correspondence Art←→ between subgroups of Cl(K) and subfields of the
Hilbert class field K1 of K. We will find that im ĵ

Art←→ Kgen, the genus class
field of K with respect to k, and then the well known formula of Furuta [6]
shows

(1.3) |cok ĵ| = (Cl(K) : im ĵ) = (Kgen : k) = 2d−2hk

{∏
e(p)

}/
(Ek : H) ,

where

• d is the number of infinite places ramified in K/k;
• e(p) is the ramification index in K/k of a prime ideal p in k;
• H is the group of units in Ek which are norm residues in K/k;
• ∏ is extended over all (finite) prime ideals of k.

The computation of |ker ĵ| is a bit tedious, but in the end we will find

(1.4) |ker ĵ| = 2v−1h2
k

∏
e(p) · (H : E2

k)/q(K) ,

where v = 1, if K = k(
√
ε,
√
η) with units ε, η ∈ Ek, and v = 0 otherwise.

If we collect these results, define κ to be the Z-rank of Ek, and recall the
formula (Ek : E2

k) = 2κ+1, we obtain

(1.5) Kuroda’s class number formula for V4-extensions K/k:

h(K) = 2d−κ−2−vq(K)h1h2h3/h
2
k .

In particular,

h(K) =





1
4q(K)h1h2h3 if k = Q and K is real,
1
2q(K)h1h2h3 if k = Q and K is imaginary,
1
4q(K)h1h2h3/h

2
k if k is an imaginary quadratic

extension of Q.

2. The proofs. In order to prove (1.2) we define a homomorphism

ν : C = Cl(k1)×Cl(k2)×Cl(k3)→ Cl(k) , ν(c1, c2, c3) = N1c1N2c2N3c3 .

If at least one of the extensions ki/k is ramified, we know Ni Cl(ki) =
Cl(k) by class field theory. If all the ki/k are unramified, the groups Ni Cl(ki)
will have index 2 = (ki : k) in Cl(k), and they will be different since

ki/k
Art←→ Ni Cl(ki)

in this case. Therefore ν is onto, and if we put Ĉ = ker ν we get an exact
sequence 1→ Ĉ → C → Cl(k)→ 1.
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Let ĵ be the restriction of j to Ĉ; then the diagram

1 Ĉ C Cl(k) 1

1 Cl(L) Cl(L) 1 1

//

ĵ

²²

//

j

²²

ν //

²²

//

// // // //

is exact and commutes. The “serpent lemma” gives us an exact sequence

1→ ker ĵ → ker j → Cl(k)→ cok ĵ → cok j → 1 ,

and this implies the index relation we wanted to prove:

hk · |cok j|
|ker j| =

|cok ĵ|
|ker ĵ| .

Before we start to prove (1.3), we define K(2) to be the maximal field in
Kgen/k such that Gal(K(2)/k) is an elementary abelian 2-group. Moreover,
we let JK (resp. HK) denote the group of (fractional) ideals (resp. principal
ideals) of K.

(2.1) To every subfield F of the Hilbert class field K1 of K belongs exactly
one ideal group hF with HK ⊂ hF ⊂ JK . Under this correspondence,

Gal(K1/F ) ∼= Cl(K)/(JK/hF ) ∼= hF /HK ,

and we find the following diagram of subfields F and corresponding
Galois groups Gal(K1/F ):

K1 1

Kgen im ĵ

K(2) im j

K Cl(K).

oo //

oo //

oo //

oo //

P r o o f. The correspondence K(2) ↔ im j will not be needed in the sequel
and is included only for the sake of completeness; the main ingredients for
a proof can be found in Kubota [16, Hilfssatz 13].

Before we start proving Kgen ↔ im ĵ we recall that Kgen is the class
field of k for the ideal group NK/kH

(m)
K ·H(1)

m of the norm residues mod m
where the defining modulus m is a multiple of the conductor f(K/k) (the
notation is explained in Hasse [10] or Garbanati [7], the result can be found
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in Scholz [29] or Gurak [8]). The assertion of Herz [13, Prop. 1] that Kgen

is the class field for NK/kH
(m)
K is faulty: one mistake in his proof lies in

the erroneous assumption that every principal ideal of K is the norm of
an ideal from K1. Although this is true for prime ideals, it does not hold
generally, as the following simple counterexample shows: the Hilbert class
field of K = Q(

√−5) is K1 = K(
√−1), and the principal ideal (1 +

√−5)
cannot be a norm from K1 since the prime ideals above (2, 1 +

√−5) and
(3, 1 +

√−5) are inert in K1/K. Moreover, contrary to Herz’s claim, not
every ideal in the Hilbert class field of K is principal: this is, of course, only
true for ideals from K.

Our task now is to transfer the ideal group NK/kH
(m)
K ·H(1)

m in k, which
is defined mod m, to an ideal group in K defined mod 1. To do this we need

(2.2) For V4-extensions K/k, the following assertions are equivalent :

(i) r ∈ k× is a norm residue in K/k at every place of k;
(ii) r ∈ k× is a (global) norm from k1/k and k2/k;
(iii) there exist α ∈ K× and a ∈ k× such that r = a2 ·NK/kα.

The elements of NK/kH
(m)
K ·H(1)

m therefore have the form (a2 ·NK/kα),
where a ∈ k, α ∈ K, and (α) + m = (1). Using the Verschiebungssatz we
find that Kgen/K belongs to the group

hgen = {a ∈ JK | a + m = (1) , NK/ka ∈ NK/kH(m)
K ·H(1)

m } .
Now NK/ka = (a ·NK/kα)⇔ NK/k(a/α) = (a); we put b = a/α and claim
that there are ideals ai in ki such that b = a1a2a3. We assume without loss
of generality that b is an (entire) ideal in OK . We may also assume that
no ideal lying in a subfield ki divides b. But then any P | b necessarily has
inertial degree 1, and no conjugate of P divides b. Writing Pm‖b we deduce

(NK/kP)m‖NK/kb = (a2) ,

and this implies 2 |m.
If σ, τ , and στ are the automorphism of K/k fixing k1, k2 and k3 re-

spectively, the identity

2 = 1 + σ + 1 + τ − (1 + στ)σ

in Z[Gal(K/k)] shows P2 = N1P ·N2P · (N3P)−σ, and we are done.
Now (a2) = NK/kb = NK/k(a1a2a3) = (N1a1N2a2N3a3)2, and extract-

ing the square root we obtain (a) = N1a1N2a2N3a3.
Conversely, all ideals a = a1a2a3 with a + m = (1) and (a) =

N1a1N2a2N3a3 lie in hgen, and the same is true of all principal ideals prime
to m since the class field Kh corresponding to h is unramified if and only if
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H
(m)
K ⊂ h. Therefore

hgen = {a = a1a2a3 | a + m = (1), N1a1N2a2N3a3 = (a)

for some a ∈ k} ·H(m)
K

and by removing the condition a+m = (1), which amounts to replacing hgen

by an equivalent ideal group, we finally see

hgen = {a = a1a2a3 |N1a1N2a2N3a3 = (a) for some a ∈ k} ·HK .

The corresponding class group is JK/hgen, and this gives

Gal(Kgen/K) ∼= hgen/HK = {c = c1c2c3 | N1c1N2c2N3c3 = 1} = Ĉ .

Now (1.3) follows from Furuta’s formula for the genus class number.

It remains to prove (2.2); this result is due to Pitti [24–26], and similar
observations have been made by Leep and Wadsworth [19, 20]. Our proof of
(ii)⇒(iii) goes back to Kubota [15, Hilfssatz 14], while (iii)⇒(i) has already
been noticed by Scholz [28, p. 102].

(i)⇒(ii) is just an application of Hasse’s norm residue theorem for cyclic
extensions;

(ii)⇒(iii). Choose α1 ∈ k1 and α2 ∈ k2 with N1α1 = N2α2 = r. Since
στ acts non-trivially on k1 and k2, this implies (α1/α2)1+στ = 1. Hilbert’s
theorem 90 shows the existence of α ∈ K× such that α1/α2 = α1−στ . Now

α1−στ = α1+σ(α1+τ )−σ and α1+σ/α1 = (α1+τ )σ/α2 ∈ k1 ∩ k2 = k .

Put a = α1+σ/α1 and verify NK/kα = (α1+σ)1+τ = ra2.
(iii)⇒(i) is a consequence of formula (9) in §6 of part II of Hasse’s

“Zahlbericht” [10] which says
(
β, k1k2

p

)
=
(
β, k1

p

)(
β, k2

p

)
.

Since r = Ni((N iα)/a), i = 1, 2, we see that r is a norm from k1 and k2,
and Hasse’s formula just tells us that r is a norm residue in k1k2 = K.

Before we proceed with the computation of |ker ĵ|, we will pause for a
moment to look at (2.1) with more care. The fact that Kgen is the class field
of k for the ideal group NK/kH

(m)
K · H(1)

m is well known for abelian K/k.
Moreover, the principal genus theorem of class field theory says that Kgen is
the class field of K for the class group {cσ−1 | c ∈ Cl(K)}, if Gal(K/k) = 〈σ〉
is cyclic. If K/k is abelian (and not necessarily cyclic), the class field Kcen

for the class group 〈cσ−1 | c ∈ Cl(K), σ ∈ Gal(K/k)〉 is called the central
class field , and in general Kcen is strictly bigger than Kgen. A description of
Kgen in terms of the ideal class group of K is unknown for non-cyclic K/k,
and (2.1) answers this open question for the simplest non-cyclic group, the
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four-group V4
∼= (Z/2Z)2. For other non-cyclic groups, this is very much an

open problem.
In the V4-case, the fact that 〈cσ−1 | c ∈ Cl(K), σ ∈ Gal(K/k)〉 ⊂ im ĵ

can be verified directly by noting that cσ−1 = (cσ)στ+1 · (c−1)τ+1 ∈ C2×C3

is annihilated by ν.

The computation of |ker ĵ| will be done in several steps. We call an ideal
a1 in k1 ambiguous if aτ1 = a1. An ideal class c ∈ Cl(k1) is called ambiguous
if cτ = c, and strongly ambiguous if c = [a1] for an ambiguous ideal a1. Let
Ai denote the group of strongly ambiguous ideal classes in ki (i = 1, 2, 3).
Then A = A1 ×A2 ×A3 is a subgroup of C, and Â = Ĉ ∩A1 ×A2 × A3 is
a subgroup of Ĉ. The idea of the proof is to restrict ĵ (once more) from Ĉ

to Â and to compute the kernel of this restricted map by using the formula
for the number of ambiguous ideal classes.

In (1.3) we defined H as the group of units in Ek which are norm residues
in K/k at every place of k. Using (2.2) we see that

H = {η ∈ Ek : η = Niαi for some αi ∈ ki, i = 1, 2, 3} .
Let H0 = EN1 ∩EN2 ∩EN3 be the subgroup of H consisting of those units

that are relative norms of units for every ki/k. The computation of |ker ĵ|
starts with the following observation:

(2.3) If j∗ is the restriction of ĵ to Â, then |ker ĵ| = (H : H0) · |ker j∗|.
Let R = {a1a2a3 | ai ∈ Ii is ambiguous in ki/k} and Rπ = R∩HK ; then

(2.4) |ker j∗| = |A|/(R : Rπ) .

Now the computation of |ker ĵ| is reduced to the determination of
(H : H0) and (R : Rπ); let t = |Ram(K/k)| be the number of (finite)
prime ideals of k ramified in K, and λ denote the Z-rank of EK . We will
prove

(2.5) (R : Rπ) = 2t+κ−λ−2−vhkq(K)
∏

(ENi : E2
k)/(H0 : E2

k) .

The number |Ai| of strongly ambiguous ideal classes in ki/k is given by
the well known formula (cf. Hasse’s Zahlbericht [10], Teil Ia, §13).

(2.6) |Ai| = 2δi−κ−2hk ·(ENi : E2
k), where δi denotes the number of (finite

and infinite) places in k which are ramified in ki/k.

Once we know how the δi are related to t, κ, λ etc., we will be able to
deduce (1.4) from (2.3)–(2.6). To this end, let ti be the “finite part” of δi,
i.e. the number |Ram(ki/k)| of prime ideals in k ramified in ki/k, and let di
denote the infinite part. Then δi = di + ti, and

(2.7) 2t1+t2+t3 = 2t·
∏

e(p) , 2d = d1+d2+d3 , and λ−4κ = 3−2d .
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Since |A| = ∏ |Ai|, we obtain from (2.4) and (2.6)

|A| = 2δ1+δ2+δ3−3κ−6h3
k ·
∏

(ENi : E2
k) ;

dividing by (2.5) yields

|ker j∗| = 2t1+t2+t3−t+d1+d2+d3+λ−4κ−4+vh2
k · (H0 : E2

k)/q(K) ,

and using (2.7) we find

|ker j∗| = 2v−1h2
k

∏
e(p) · (H0 : E2

k)/q(K) .

Substituting this formula into equation (2.3) we finally obtain (1.4).

In order to prove (2.3) let ([a1], [a2], [a3]) ∈ ker ĵ; then a1a2a3 = (α)
for some α ∈ K×. Since (NK/kα) = (N1a1 · N2a2 · N3a3)2 (equality of
ideals in Ok) and because ([a1], [a2], [a3]) ∈ Ĉ, there exists a ∈ k such that
(NK/kα) = (a)2. This shows that η = (NK/kα)/a2 is a unit in Ek, which is
unique mod NEK ·E2

k. Moreover, η ∈ H since η = Ni((N iα)/a). Therefore

ϑ0 : ker ĵ → H/NEK · E2
k , ([a1], [a2], [a3])→ ηNEK · E2

k ,

is a well defined homomorphism. We want to show that ϑ0 is onto: to this
end, let η ∈ H; using (2.2) we can find an a ∈ k such that NK/kα = ηa2. In
the proof of (2.1) we have seen that an equation NK/ka = (a)2 implies the
existence of ideals ai in ki such that a = a1a2a3. This gives (α) = a1a2a3.

Now (N1a1 ·N2a2 ·N3a3)2 = (NK/kα) = (a)2 yields (a) = N1a1 ·N2a2 ·
N3a3, and we have shown η ∈ imϑ0.

Since ϑ0 : ker ĵH/NEK · E2
k is onto, the same is true for any homomor-

phism ker ĵH/H0 which is induced by an inclusion NEK · E2
k ⊂ H0 ⊂ H.

Obviously, the group H0 = EN1 ∩ EN2 ∩ EN3 defined above is such a group,
and so ϑ : ker ĵH/H0 is onto. An element ([a1], [a2], [a3]) ∈ ker ĵ belongs to
kerϑ if and only if

a1a2a3 = (α) , (a) = N1a1 ·N2a2 ·N3a3 , (NL/kα)/a2 = η ∈ H0 .

Let %i = N iα/a; then a1−τ
1 = (%1), a1−στ

2 = (%2), a1−σ
3 = (%3) and

Ni%i = η ∈ H0. Writing η = Niεi, where εi ∈ Ei, and replacing %i by
%i/εi, we may assume that Ni%i = 1. Hilbert’s theorem 90 shows %1 = β1−τ

1 ,
%2 = β1−στ

2 , and %3 = β1−σ
3 for some βi ∈ ki. The ideals bi = aiβ

−1
i are

ambiguous, and we have [bi] = [ai]. This means that the ideal classes [ai]
are strongly ambiguous, and we conclude

kerϑ ⊂ ker ĵ ∩A1 ×A2 ×A3 = ker j∗ .

If, on the other hand, ([a1], [a2], [a3]) ∈ ker ĵ and the ideals ai are am-
biguous, then the %i = N iα/a are units, and

η = ϑ([a1], [a2], [a3]) = Ni%i ∈ EN1 ∩ EN2 ∩ EN3 = H0 .
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We have seen that kerϑ = ker j∗, which shows that the sequence

1→ ker j∗ → ker ĵ ϑ−→ H/H0 → 1

is exact; (2.3) follows at once.

The proof of (2.4) will be done in two steps. First we notice that im j∗

consists of those ideal classes in j(Ĉ) that are generated by ambiguous ideals
in ki/k. Define

R = {A | A = a1a2a3, ai ∈ Ji ambiguous} ,
R̂ = {A | A = a1a2a3, ai ∈ Ji ambiguous, ν([a1], [a2], [a3]) = 1} ,

and let π be the homomorphism JK ⊃ R̂ 3 A → [A] ∈ Cl(K). Then
π : R̂ → im j∗ is obviously onto, and kerπ = R̂ ∩ HK . But if % ∈ K and
(%) = a1a2a3 ∈ R̂,

(%)2 = (a1a2a3)2 = (N1a1 ·N2a2 ·N3a3) = (r)

for some r ∈ k. This shows

kerπ = {(%) | % ∈ K, (%)2 = (r) for some r ∈ k} = Rπ ,

therefore
(R̂ : Rπ) = |imπ| = |im j∗| = (Â : ker j∗) ,

which is equivalent to

(2.8) |ker j∗| = |Â|/(R̂ : Rπ) .

The homomorphism ν : C → Cl(k) defined at the beginning of Section 2
sends ([a1], [a2], [a3]) ∈ A = A1×A2×A3 ⊂ C to [a1a2a3]2 ∈ Cl(k) (remem-
ber that the square of an ambiguous ideal of ki/k is an ideal in Ok), and we
see that

1→ Â→ A
ν−→ A2

1A
2
2A

2
3 → 1

is a short exact sequence. Now

1→ R̂→ R
ν−→ A2

1A
2
2A

2
3 → 1

where ν(a1a2a3) = ν([a1], [a2], [a3]) = [a1a2a3]2, is also exact. From these
facts we conclude (A : Â) = (R : R̂), and this allows us to transform (2.8):

|ker j∗| = |Â|/(R̂ : Rπ) = (A : Â)|Â|/(R : R̂)(R̂ : Rπ) = |A|/(R : Rπ) .

This is just (2.4).
Next we determine (R : Rπ). To this end, let (%) ∈ Rπ. Then (%)2 = (r)

for some r ∈ k×, and η = %2/r is a unit in OK . Since the ideal (%) is
fixed by Gal(K/k), ηi = (NK/ki%)/r is a unit in Ei. If σ ∈ Gal(K/k) is an
automorphism that acts non-trivially on k3/k, we find that η = η1η2η

−σ
3 ∈

E1E2E3, where

N1η1 = N2η2 = N3(η−σ3 ) = (NK/k%)/r2 .
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The unit η we have found is determined up to a factor ∈ EkE2 (from
now on, the unit group EK will appear quite often, so we will write E
instead of EK), and so we can define a homomorphism ϕ : Rπ → E/EkE

2

by assigning the class of the unit η = %2/r to an ideal (%) ∈ Rπ that satisfies
(%)2 = (r), r ∈ k×. We cannot expect ϕ to be onto because only such
units η1η2η3 ∈ E1E2E3 can lie in the image of ϕ whose relative norms Niηi
coincide. Therefore we define

E∗ = {e1e2e3 | ei ∈ Ei, N1e1 ≡ N2e2 ≡ N3e3 mod E2
k}

and observe that imϕ ⊂ E∗/EkE2. Moreover,

(2.9) Let η = e1e2e3 ∈ E∗; then K(
√
η)/k is a normal extension,

Gal(K(
√
η)/k) is elementary abelian, and there are % ∈ K× and

r ∈ k× such that η = %2/r.

P r o o f. K(
√
η)/k is normal if and only if for every σ ∈ Gal(K/k) there

exists an ασ ∈ K× such that η1−σ = α2
σ. Let Gal(K/k) = {1, σ, τ, στ} and

suppose that σ fixes k1; then

η1−σ = (e1e2e3)1−σ = (e2e3)1−σ = (e2e3)2/(N2e2 ·N3e3) ,

and this is a square in K× since N2e2 ≡ N3e3 mod E2
k.

It is an easy exercise to show that Gal(K/k) is elementary abelian if
and only if α1+σ

σ = α1+τ
τ = α1+στ

στ = +1. In our case, these equations
are easily verified (for example ασ = e2e3/e for some e ∈ Ek such that
e2 = N2e2 ·N3e3, and therefore α1+σ

σ = (N2e2N3e3)/e2 = +1).
Now K(

√
η)/k is elementary abelian, and so k(

√
η) = k(

√
r) for some

r ∈ k×. This implies the existence of % ∈ k× such that %2 = ηr.

Because of (2.9), ϕ : Rπ → E∗/EkE2 is onto. Moreover,

kerϕ = {(%) ∈ Rπ | %2/r = ue2, u ∈ Ek, e ∈ E}
= {(%) ∈ Rπ | ∃r ∈ k×, e ∈ E : (%/e)2 = r}
= {(%) ∈ Rπ | %2 = r for r ∈ k×} .

Let R0 = kerϕ; the group of principal ideals Hk is a subgroup of R0,
and it has index (R0 : Hk) = 22−u, where 2u = (E(2) : Ek) and E(2) = {e ∈
E : e2 ∈ Ek). The proof is very easy: let Λ = {% ∈ K× | %2 ∈ k×} and map
Λ/k× onto R0/Hk by sending %k× to (%)Hk. The sequence

1→ E(2)k×/k× → Λ/k× → R0/Hk → 1

is exact, and since Λ/k× has order 4 (Λ/k× = {k×,√ak×,
√
bk×,

√
abk×},

where K = k(
√
a,
√
b)) and E(2)k×/k× ∼= E(2)/Ek, the claim is proven. We



Kuroda’s class number formula 255

see

(R0 : Hk) =

{
1 if we can choose a, b ∈ Ek,
2 if we can choose a ∈ Ek or b ∈ Ek, but not both,
4 otherwise.

Now we find (R : Hk) = (R : Jk)(Jk : Hk) = 2thk, where t =
|Ram(K/k)|, and

(R : Rπ) = (R : Hk)/{(Rπ : R0)(R0 : Hk)}
= 2t−2hk(E(2) : Ek)/(E∗ : EkE2) .

Since

(E : EkE2) = (E : E2)/(EkE2 : E2) ,

(EkE2 : E2) = (Ek : E2 ∩ Ek) =
(Ek : E2

k)
(E2 ∩ Ek : E2

k)
and

(E2 ∩ Ek : E2
k) = (E(2) : Ek) ,

we get (E : EkE2) = 2λ−κ(E(2) : Ek), where λ and κ denote the Z-rank of
E and Ek, respectively. Collecting everything, we find

(R : Rπ) = 2thk/{(E∗ : EkE2)(R0 : Hk)}
= 2thk(E : E∗)(E(2) : Ek)/4(E : EkE2) = 2t+κ−λ−2hk(E : E∗) .

But (E : E∗) = (E : E1E2E3) · (E1E2E3 : E∗), and the first factor is the
unit index q(K); this shows

(2.10) (R : Rπ) = 2t+κ−λ−2hk · q(K) · (E1E2E3 : E∗) .

In order to study the group E1E2E3/E
∗, we define E∗i = {ei ∈ Ei :

Niei ∈ E2
k} and notice E∗1E

∗
2E
∗
3 ⊂ E∗ ⊂ E1E2E3 ⊂ E. The group

E∗/E∗1E
∗
2E
∗
3 is actually one we have encountered before:

(2.11) E∗/E∗1E
∗
2E
∗
3
∼= H0/E

2
k .

P r o o f. Map e1e2e3 ∈ E∗ onto the coset N1e1E
2
k = N2e2E

2
k = N3e3E

2
k.

It is therefore sufficient to compute the index (E1E2E3 : E∗1E
∗
2E
∗
3 ); to

this end we introduce the natural homomorphism

ξ : E1/E
∗
1 × E2/E

∗
2 × E3/E

∗
3 → E1E2E3/E

∗
1E
∗
2E
∗
3 ,

which, of course, is onto. Letting ei denote the coset eiE∗i we find

ker ξ = {(e1, e2, e3) : e1e2e3 = u1u2u3 for some ui ∈ E∗i } .
We need to characterize ker ξ. Assume that (e1E

∗
1 , e2E

∗
2 , e3E

∗
3 ) ∈ ker ξ;

then e1e2e3 = u1u2u3 for some ui ∈ E∗i . Replacing the eiE∗i by eiu−1
i E∗i if

necessary, we may assume that e1e2e3 = 1. Applying 1 + σ to this equation
(where σ fixes k1) yields e2

1N2e2N3e3 = 1, and this implies e2
1 ∈ Ek; in a
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similar way we find e2
2 ∈ Ek and e2

3 ∈ Ek. If N2e2 were a square in Ek, so
were N3e3, and e1 would have to lie in Ek: but then ei ∈ E∗i for i = 1, 2, 3,
and (e1, e2, e3) is trivial. So if ker ξ 6= 1, we must have ei ∈ Ei \ Ek for
i = 2, 3; but we have seen e2

i =: εi ∈ Ek, so we get ki = k(
√
εi) for i = 2, 3

and, therefore, k1 = k(
√
ε2ε3). Moreover,

ker ξ = {1, (√ε1E
∗
1 ,
√
ε2E

∗
2 ,
√
ε3E

∗
3 )} .

Thus we have shown that ker ξ 6= 1 implies u = 2 and |ker ξ| = 2, where
the index 2u = (E(2) : Ek) was introduced above. If, on the other hand,
u = 2, then ki = k(

√
εi) for units εi ∈ Ek, and (

√
ε1E

∗
1 ,
√
ε2E

∗
2 ,
√
ε3E

∗
3 ) is a

non-trivial element of ker ξ. Therefore |ker ξ| = 2v with v = 2u − u− 1, and

(2.12) (E1E2E3 : E∗1E
∗
2E
∗
3 ) = 2−v

{∏
(Ei : E∗i )

}
.

To determine (Ei : E∗i ), we make use of a well known group-theoretical
lemma:

(2.13) Let G be a group and assume that H is a subgroup of finite index
in G. If f is a homomorphism from G to another group, then

(G : H) = (Gf : Hf )(GfH : H),

where Gf = im f , Gf = ker f , and Hf is the image of the restriction
of f to H.

We apply this lemma to G = Ei, H = E∗i , f = Ni. Then Gf = {ε ∈ Ei :
Niε = 1} ⊂ E∗i = H, Gf = ENi = {Niε : ε ∈ Ei}, and Hf = E2

k, and (2.13)
gives

(Ei : E∗i ) = (G : H) = (Gf : Hf ) = (ENi : E2
k) .

Putting (2.10)–(2.12) together, we find

(R : Rπ) = 2t+κ−λ−2hk · q(K) · (E1E2E3 : E∗)

= 2t+κ−λ−2hk · q(K) · (E1E2E3 : E∗1E
∗
2E
∗
3 )/(E∗ : E∗1E

∗
2E
∗
3 )

= 2t+κ−λ−2−vhk · q(K) ·
∏

(ENi : E2
k)/(H0 : E2

k) ,

which is (2.5).

The only claim left to prove is (2.7). If p is a place in k which ramifies
in K/k, then e(p) = 2 if p ramifies in two of the three intermediate fields,
and e(p) = 4 if p is ramified in ki/k for i = 1, 2, 3 (this can only happen for
p | 2). This observation yields the first and the second equation in (2.7).

Now n = (k : Q) = rk + 2sk and 4n = (K : Q) = rK + 2sK , where
r∗ (resp. s∗) denotes the number of real (resp. complex) infinite places in a
field. Suppose that exactly d infinite places of k ramify in K/k; then rK =
4(rk − d), sK = 4sk + 2d, and Dirichlet’s unit theorem gives κ = rk + sk − 1
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and

λ = rK + sK − 1 = 4(rk − d) + 4sk + 2d− 1 = 4κ− 2d+ 3 .

3. Walter’s formula. Assume that K/k is a normal extension,
Gal(K/k) = (Z/lZ)m (l prime), and suppose moreover that there is no ram-
ification above the infinite primes of k. The formula given by Kuroda [18]
is

H

h
= l−A(E : EΩ) ·

∏
hi/h .

Here

• h is the class number of k,
• H is the class number of K,
• hi is the class number of the intermediate field ki; there are exactly
t = (lm − 1)/(l − 1) such ki,
• E is the unit group of OK ,
• EΩ =

∏
Ei is the group generated by the units of the subfields ki,

• A =
lu − 1
l − 1

−u+
κ+ 1

2

(
(m−1)(lm−1)+

lm − 1
l − 1

−m
)
−κ
(
lm − 1
l − 1

−m
)

;

• u is the number of independent extensions of type ki = k( l
√
e), where

e is a unit in Ok.

Using these notations, the formula given by Walter [32] reads as follows:

H

h
= l−A(E : WEΩ) ·

∏
hi/h ,

where W is the group of roots of unity in K and

A =
lu − 1
l − 1

− u+
1
2

(m− 1)(λ− 1)− κ− 1
2

(
lm − 1
l − 1

− 1
)
− w .

In order to define w, we have to distinguish two cases:

(A) None of the ki has the form ki = k(
√−1): then w = 0;

(B) l = 2 and k1 = k(
√−1), say; then 2w = (W (2) : W (2)

1 ), where W (2)

(resp. W (2)
1 ) is the 2-Sylow group of W (resp. W1), and W1 is the group of

roots of unity in k1.

It is easily seen that 2w = (W :
∏
Wi) (just remember that the field of

pnth roots of unity has cyclic Galois group over Q for p > 2). If we recall the
fact that Kuroda’s formula applies only if no infinite places ramify (which
implies that λ+1 = lm(κ+1)), the two formulae give the same result if and
only if γ := (E : EΩ)/2w(E : WEΩ) = 1. Obviously γ = 1 if l > 2; for l = 2
we obtain

(E : EΩ) = (E : WEΩ)(WEΩ : EΩ) = (E : WEΩ)(W : EΩ ∩W ) .
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Now
∏
Wi ⊂ EΩ ∩W , therefore

(W : EΩ ∩W ) =
(
W :

∏
Wi

)/(
EΩ ∩W :

∏
Wi

)

and

γ = (E : EΩ)/2w(E : WEΩ) =
(
EΩ ∩W :

∏
Wi

)
.

As can be seen, γ = 1 if and only if W ∩ ∏Ei =
∏
Wi, i.e. if and only

if every root of unity that can be written as a product of units from the
subfields, is actually a product of roots of unity lying in the subfields. If K
does not contain the 8th roots of unity, this is certainly true; the following
example shows that it does not hold in general. Take k = Q(

√
3), K =

Q(i,
√

2,
√

3) = Q(ζ24); Walter’s formula yields h(K) = 2; but Z[ζ24] is
known to be Euclidean with respect to the norm, and therefore has class
number 1.

Let k1 = k(i), k2 = k(
√

2), k3 = k(
√−2); we define

ε2 = 1 +
√

2 , ε3 = 2 +
√

3 , ε6 = 5 + 2
√

6 ,√
ε3 = (1 +

√
3)/
√

2 ,
√
ε6 =

√
2 +
√

3 ,
√−ε3 = (1 +

√
3)/
√

2i ,
√
iε3 = (1 +

√
3)/(1− i) ,√

ζ8ε2
√
ε3ε6 =

1
4

(4 + 3
√

2 + 2
√

3 +
√

6 + 2i+
√−2 +

√−6) .

Then κ = 1, λ = 3, t1 = 2, t2 = 3, d = 2, u = 2 since k1 = k(
√−1),

k2 = k(
√
ε3), and k3 = k(

√−ε3), w = 1 since W = 〈ζ24〉 and W1 = 〈ζ12〉,
and q(K) = 2 (in this example, the unit indices (E : EΩ) and (E : WEΩ)
coincide, and in Wada [31] it is shown that (E : EΩ) = 2). Walter’s formula
gives

h(K) =
1
2
q(K) ·

∏
hi =

1
2
· 2 · 2 = 2 .

We have also computed the groups that occur in our proof of Kuroda’s
formula:

• Ek = 〈−1, ε3〉;
• E1 = 〈ζ12,

√
iε3〉, E∗1 = 〈ζ12, ε3〉, EN1 = 〈ε3〉;

• E2 = 〈−1, ε2,
√
ε3,
√
ε6〉, E∗2 = 〈−1, ε2

2, ε3,
√
ε6〉, EN2 = 〈−1, ε3〉;

• E3 = 〈−1,
√−ε3〉, E∗3 = 〈−1, ε3〉, EN3 = 〈ε3〉;

• ∏(Ei : E∗i ) = 2 · 4 · 2 = 16;
• H0 = 〈ε3〉; H = H0, since −1 certainly is no norm residue mod ∞;
• E = 〈ζ24, ε2,

√
ε3,
√
ζ8ε2
√
ε3ε6〉 (cf. Wada [31]);

• E1E2E3 = 〈ζ24, ε2,
√
ε3,
√
ε6〉 (ζ8 =

√
iε3/
√
ε3), q(K) = 2;

• E∗ = 〈ζ12, ε
2
2,
√
iε3,
√
ε6〉, (E : E∗) = 8, (E1E2E3 : E∗) = 4;

• E∗1E∗2E∗3 = 〈ζ12, ε
2
2, ε3,

√
ε6〉, (E∗ : E∗1E

∗
2E
∗
3 ) = 2;

• E(2) = 〈i,√ε3〉;
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• kerψ = {(1, 1, 1), (iE∗1 ,
√
ε3E

∗
2 ,
√−ε3E

∗
3 )}, because i · √ε3

√−ε3 = ε3

can be written in the form ε3 = ε3 · 1 · 1 ∈ E∗1E∗2E∗3 , while
√
ε3 6∈ E∗2 .

The prime ideal 2 in k3 above 2 generates an ideal class of order 2 in
Cl(k3): 2 is not principal, because its relative norm to Q(

√−6) is not, and
its order divides 2 because 22 = (1 +

√
3). This implies

|A1| = |A2| = 1, A3 = 〈[2]〉, ker j = ker j∗ = 1× 1×A3
∼= A3 .
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