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1. Introduction. In our paper [5] a sharp upper bound was given for
the degree of an arbitrary squarefree binary form F ∈ Z[X,Y ] in terms of
the absolute value of the discriminant of F . Further, all the binary forms
were listed for which this bound cannot be improved. This upper estimate
has been extended by Evertse and the author [3] to decomposable forms in
n ≥ 2 variables. The bound obtained in [3] depends also on n and is best
possible only for n = 2. The purpose of the present paper is to establish
an improvement of the bound of [3] which is already best possible for every
n ≥ 2. Moreover, all the squarefree decomposable forms in n variables over
Z will be determined for which our bound cannot be further sharpened. In
the proof we shall use some results and arguments of [5] and [3] and two
theorems of Heller [6] on linear systems with integral valued solutions.

2. Results. Let F (X) = F (X1, . . . , Xn) ∈ Z[X1, . . . , Xn] be a decom-
posable form of degree r with splitting field K over Q. Then F can be written
as

(1) F (X) = l1(X) . . . lr(X)

where l1, . . . , lr are linear forms with coefficients in K. Suppose that F is
squarefree, i.e. that it is not divisible by the square of a linear form over K.
Put

rank(F ) = rankK{l1, . . . , lr} .
Assume that F has rank m. Obviouslym ≤ n. Let I(F ) denote the collection
of linearly independent subsets of {l1, . . . , lr} of cardinality m. Denote by
OK the ring of integers of K, and by (li) the (possibly fractional) OK-ideal
generated by the coefficients of li. For any subset L = {li1 , . . . , lim} in I(F ),
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denote by li1 ∧ . . . ∧ lim the exterior product of the coefficient vectors of
li1 , . . . , lim , and by (li1 ∧ . . . ∧ lim) the OK-ideal generated by the coordi-
nates of this exterior product. The OK-ideal

D(L) =
(li1 ∧ . . . ∧ lim)
(li1) . . . (lim)

is integral. As was proved in [3], there is a positive rational integer DF ,
called the discriminant (1) of F , such that

(2) (DF ) =
∏

L∈I(F )

D(L)2 ,

where (DF ) denotes the OK-ideal generated by DF . The integer DF does
not depend on the choice of l1, . . . , lr and DλF = DF for all non-zero λ ∈ Q.
If in particular F is a primitive squarefree binary form of degree ≥ 2 (i.e.
the coefficients of F are relatively prime) then DF is just the absolute value
of the usual discriminant D(F ) of F (cf. [3]).

Two decomposable forms F (X1, . . . , Xn) and G(Y1, . . . , Ym) with coef-
ficients in Z are called integrally equivalent if each can be obtained from
the other by a linear transformation of variables with rational integer co-
efficients. It is easy to see that integrally equivalent decomposable forms
over Z have the same degree, same rank and same discriminant. For further
properties of discriminants, we refer to [2] and [3].

In [5] we proved that if F ∈ Z[X,Y ] is a squarefree binary form of degree
r ≥ 2 then

(3) r ≤ 3 +
2

log 3
· log |D(F )| .

Further, we showed that up to equivalence, the forms XY (X − Y ) and
XY (X − Y )(X2 + XY + Y 2) are the only binary forms for which equal-
ity occurs in (3). Recently Evertse and the author [3] proved that if F ∈
Z[X1, . . . , Xn] is a squarefree decomposable form of degree r and rankm then

(4) r ≤ 2m − 1 +
m

log 3
· logDF .

For primitive and squarefree binary forms F with integer coefficients this
implies (3).

We shall prove the following.

Theorem. Let F ∈ Z[X1, . . . , Xn] be a squarefree decomposable form of
degree r and rank m. Then

(5) r ≤
(
m+ 1

2

)
+

m

log 3
· logDF .

(1) For polynomials in several variables there exists also another concept of discrimi-
nant; see e.g. [4].



Degrees of decomposable forms 263

Further , equality holds if and only if F is integrally equivalent to a multiple
of one of the forms

G(Y1, . . . , Ym) = Y1 . . . Ym
∏

1≤i<j≤m
(Yi − Yj)

(when DF = 1) and

G(Y1, Y2) = Y1Y2(Y1 − Y2)(Y 2
1 + Y1Y2 + Y 2

2 )

(when m = 2 and DF = 3).

For n = 2, this gives the above-quoted result of the author [5]. Further,
for m > 2, (5) is an improvement of the estimate (4) of Evertse and the
author [3].

3. Proof. To prove our Theorem, we need several lemmas. We shall keep
the notation of Section 2.

Lemma 1. Let F ∈ Z[X1, . . . , Xn] be a squarefree decomposable form
such that F = F1F2 where F1 and F2 have their coefficients in Z. Then
DF1 ·DF2 divides DF in Z.

P r o o f. This is an immediate consequence of Lemma 1 of [3].

In what follows, let F ∈ Z[X1, . . . , Xn] be a squarefree decomposable
form of degree r and rank m, let K be the splitting field of F over Q, and
let

(1) F = l1 . . . lr

be a factorization of F into linear factors over K. Let again I(F ) denote the
collection of linearly independent subsets of {l1, . . . , lr} of cardinality m.

Lemma 2. Let

L1 = {li1 , . . . , lim} , L2 = {lj1 , . . . , ljm} ∈ I(F )

and suppose that

ljk =
m∑
p=1

ckplip for k = 1, . . . ,m .

Then
D(L2)
D(L1)

= (det(ckp))
(li1) . . . (lim)
(lj1) . . . (ljm)

.

P r o o f. This is a special case of Lemma 3 of [3].

Following [6], a finite subset S of Qn is said to be a Dantzig set if it has
the following property: if a vector in S is a linear combination of a set of
linearly independent vectors in S, then the coefficients in the combination
are 1, −1 or 0. Each subset of S is then also a Dantzig set. By the dimension
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of S we mean the maximal number of linearly independent vectors in S.
S is called maximal (for its dimension) if there is no Dantzig set of the
same dimension properly containing S. Obviously a maximal Dantzig set
must contain with each vector a also −a. Further, it should contain the null
vector.

Lemma 3. A Dantzig set of dimension m in Qn has at most m(m + 1)
elements (not counting the null vector).

P r o o f. This is a consequence of Theorem (4.2) of Heller [6].

R e m a r k 1. Lemma 3 implies that if a Dantzig set S of dimension m
in Qn consists of non-zero, pairwise non-proportional vectors, then its car-
dinality is at most

(
m+1

2

)
. We shall need this consequence of Lemma 3.

Lemma 4. If a Dantzig set S of dimension m in Qn contains m(m+ 1)
vectors (not counting the null vector), then there exist linearly independent
vectors a1, . . . ,am in S such that S = {ai − aj ; i 6= j, i, j = 0, 1, . . . ,m}
where a0 = 0.

In other words, S is the set of edges (that is, one-dimensional faces, taken
in both orientations and interpreted as vectors) of an m-simplex.

P r o o f. Lemma 4 is a special case of Theorem (4.6) of Heller [6].

Lemma 5. The set of edges of a simplex is a Dantzig set.

P r o o f. See the statement (2.3) of [6].

For a positive integer a, denote by (a) the ideal generated by a in Z, and
by Ω(a) the total number of prime factors of a. For a Z-ideal a = (a) put
Ω(a) = Ω(a).

Lemma 6. Let F ∈ Z[X1, . . . , Xn] be as above, and assume that F has
splitting field Q. Then

(6) r ≤
(
m+ 1

2

)
+

1
2
Ω(DF ) .

R e m a r k 2. Lemma 6 seems to be interesting in itself. This should be
compared with Theorem 4 of [3] on decomposable forms over number fields.
Our Lemma 6 is an improvement of Theorem 4 of [3] in the special case
when the ground ring is Z and the splitting field is Q.

P r o o f o f L e m m a 6. We shall need Lemmas 2 and 3 and some
arguments from the proof of Theorem 4 of [3].

We may assume without loss of generality that in the factorization (1)
of F , each linear factor li has relatively prime rational integer coefficients.
Then (li) = (1) for i = 1, . . . , r.
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First assume that D(L) is properly contained in (1) for each L ∈ I(F ).
We show that the cardinality of I(F ) is at least r−m+ 1. Indeed, suppose
that

L0 = {l1, . . . , lm} ∈ I(F ) .

Then we have

li =
m∑

j=1

cij lj , i = m+ 1, . . . , r

for some cij ∈ Q, at least one of which, say ci,j(i), is different from zero.
Putting Li = (L0∪{li})\{lj(i)} for i = m+1, . . . , r, the sets L0,Lm+1, . . . ,Lr
are contained in I(F ). Hence, by (2), we get

r −m+ 1 ≤ Ω(D(L0)) +Ω(D(Lm+1)) + . . .+Ω(D(Lr)) ≤ 1
2
Ω(DF ) ,

which implies (6).
Next assume that there are L ∈ I(F ) with D(L) = (1). Let S be a

maximal subset of {l1, . . . , lr} with the following property: for each subset
L′ of S of cardinality m which is contained in I(F ), we have D(L′) = (1).
We may assume without loss of generality that S = {l1, . . . , ls} where m ≤
s ≤ r. Then for each li with s + 1 ≤ i ≤ r there is an Li ∈ I(F ) with
D(Li) 6= (1) which contains li and m− 1 linear forms from S. This implies
that

(7) r − s ≤ Ω(D(Ls+1)) + . . .+Ω(D(Lr)) ≤ 1
2
Ω(DF ) .

Let now L be an arbitrary subset of S with L ∈ I(F ). Assume for
instance that L = {l1, . . . , lm}. Then D(L) = (1). Each li with m+1 ≤ i ≤ s
can be expressed uniquely in the form

li =
m∑

j=1

cij lj with cij ∈ Q .

For m+ 1 ≤ i ≤ s, 1 ≤ j ≤ m, put Lij = (L ∪ {li}) \ {lj}. By Lemma 2 we
have

D(Lij) =
D(Lij)
D(L)

= (cij) ,

whence cij = 0, 1 or −1. Hence S, the set of the coefficient vectors of the
linear forms in S, is a Dantzig set of dimension m in Qn. Further, the vectors
in S are pairwise non-proportional and the null vector is not contained in S.
Thus, by Lemma 3 and Remark 1, we have

s ≤
(
m+ 1

2

)
.

Together with (7) this implies (6).
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P r o o f o f t h e T h e o r e m. In our proof we shall use Lemmas 1, 4, 5
and 6 as well as some arguments from the proof of Theorem 1 of [3]. Let
F (X) ∈ Z[X1, . . . , Xn] be a squarefree decomposable form of rank m and
degree r. Then

F (X) =
r∏

k=1

(αk1X1 + . . .+ αknXn)

with some algebraic numbers αk1, . . . , αkn, k = 1, . . . , r. As is known (see
e.g. [1]), the Z-module generated by the vectors (α1j , . . . , αrj)T , j = 1, . . . , n,
in Qr has a basis. Further, it is easy to show that its rank is just m. Conse-
quently, F is integrally equivalent to a form in m variables. Hence we may
assume without loss of generality that in F we have m = n. Further, one
may assume that F (1, 0, . . . , 0) 6= 0 (see e.g. [1]) and that the coefficients of
F are relatively prime.

The form F can be factored as

F = F0F1 . . . Ft ,

where F0 is the product of linear forms with relatively prime coefficients
in Z, and Fi is an irreducible norm form in Z[X1, . . . , Xm] of degree ≥ 2, i.e.

Fi(X) = λiNKi/Q(X1 + β2iX2 + . . .+ βmiXm)

where Ki = Q(β2i, . . . , βmi) is an extension of Q of degree degFi and λi ∈
Z \ {0} for i = 1, . . . , t. Let

ri = degFi , mi = rankFi , Di = DFi for i = 0, 1, . . . , t .

We have

(8) Ω(a) ≤ log |a|
log 2

for every a ∈ Z with a 6= 0 .

By Lemma 6 and (8) we have

(9) r0 ≤
(
m0 + 1

2

)
+

m0

2 log 2
· logD0 ≤

(
m0 + 1

2

)
+

m0

log 3
· logD0 .

Hence, by m0 ≤ m and (9), we have

(10) r0 ≤
(
m+ 1

2

)
+

m

log 3
· logD0

where equality can occur only for D0 = 1. Further, as was proved in the
proof of Theorem 1 of [3],

(11) ri ≤ mi

log 3
· logDi for i = 1, . . . , t ,

whence, by mi ≤ m, we get

(12) r1 + . . .+ rt ≤ m

log 3
· logD1 . . . Dt .
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Finally, from Lemma 1 it follows that D0D1 . . . Dt divides DF in Z and so,
(10) and (12) give

(5) r ≤
(
m+ 1

2

)
+

m

log 3
· logDF .

Consider now the case when equality occurs in (5). Then equality must
also occur in (9)–(12). Therefore D0 = 1, mi = m for i = 0, . . . , t and
r0 =

(
m+1

2

)
. This means that in this case F must have linear factors with

rational coefficients.
First suppose that each linear factor of F has coefficients in Q, i.e. that

F = F0. Denote by S the set of the coefficient vectors of the linear factors
of F . Then it follows from DF = 1 and (2) that every determinant of or-
der m composed of the coordinates of vectors of S is equal to 1, −1 or 0.
This implies that S is a Dantzig set in Qm of dimension m. Denote by ±S
the set consisting of all vectors ±a for which a ∈ S. Then ±S is also a
Dantzig set in Qm with dimension m and cardinality m(m+ 1). Hence, by
Lemma 4, there are m linear forms among l1, . . . , lr, say l1, . . . , lm, such that
det(l1, . . . , lm) = ±1 and that

F (X) = ±l1(X) . . . lm(X)
∏

1≤i<j≤m
(li(X)− lj(X)) .

But then F is integrally equivalent to a multiple of the form

G(Y ) = Y1 . . . Ym
∏

1≤i<j≤m
(Yi − Yj) .

On the other hand, it follows from Lemma 5 that if S′ denotes the set of
the coefficient vectors of the linear factors of G then ±S′ has the Dantzig
property. Thus it is easy to show that DG = 1, i.e. that in (5) equality
occurs.

There remains the case when F has linear factors both with rational and
with non-rational coefficients. We recall that D0 = 1, r0 =

(
m+1

2

)
, mi = m

for i = 0, . . . , t and

(13) ri =
mi

log 3
· logDi for i = 1, . . . , t .

By Lemma 2 of [3], Dmi
i is divisible by D2

Ki/Q in Z where DKi/Q denotes
the discriminant of Ki/Q for i = 1, . . . , t. This gives

(14) 2 log |DKi/Q| ≤ mi logDi for i = 1, . . . , t .

On the other hand, for ri ≥ 3 we have (cf. [5], p. 130)

(15) ri = [Ki : Q] ≤ log |DKi/Q|
and hence, by (14) and (15),

2ri ≤ mi logDi .
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But this contradicts (13). Thus we have ri = 2 for i = 1, . . . , t. This implies
that mi = 2 for i = 1, . . . , t and so m = 2. In other words, F is a binary
form with relatively prime coefficients in Z. By the result of [5], quoted in
Section 2, F is integrally equivalent to the binary form

G(Y1, Y2) = Y1Y2(Y1 − Y2)(Y 2
1 + Y1Y2 + Y 2

2 ) .

It is easy to see that G has discriminant DG = 3 and, for G, equality occurs
in (5). This completes the proof of the Theorem.
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Added in proof (April 1994). Some results of Heller [6] were earlier obtained by
A. Korkine and G. Zolotarev (Math. Ann. 11 (1877), 242–292).
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Corrections to [3]

P. 53, line 7: for “Ω(L0)”, “Ω(Lm+1)”, “Ω(Lr)” read “Ω(D(L0))”, “Ω(D(Lm+1))”;
“Ω(D(Lr))”, respectively.

lines 7 and 9: for “Ω(D)” read “ 1
2Ω(D)”;

line 10: for “Theorem 2” read “Theorem 4”.

INSTITUTE OF MATHEMATICS

LAJOS KOSSUTH UNIVERSITY

H-4010 DEBRECEN, HUNGARY

Received on 30.8.1993 (2476)


