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1. Introduction. In our paper [5] a sharp upper bound was given for
the degree of an arbitrary squarefree binary form F' € Z[X,Y] in terms of
the absolute value of the discriminant of F. Further, all the binary forms
were listed for which this bound cannot be improved. This upper estimate
has been extended by Evertse and the author [3] to decomposable forms in
n > 2 variables. The bound obtained in [3] depends also on n and is best
possible only for n = 2. The purpose of the present paper is to establish
an improvement of the bound of [3] which is already best possible for every
n > 2. Moreover, all the squarefree decomposable forms in n variables over
Z will be determined for which our bound cannot be further sharpened. In
the proof we shall use some results and arguments of [5] and [3] and two
theorems of Heller [6] on linear systems with integral valued solutions.

2. Results. Let F(X) = F(Xq,...,X,) € Z[X4,...,X,] be a decom-
posable form of degree r with splitting field K over Q. Then F' can be written
as

(1) F(X) = 1(X)...1,(X)

where [q,...,[, are linear forms with coefficients in K. Suppose that F' is
squarefree, i.e. that it is not divisible by the square of a linear form over K.
Put

rank(F) = rankg{l1,...,l,}.

Assume that F' has rank m. Obviously m < n. Let Z(F') denote the collection
of linearly independent subsets of {ly,...,l.} of cardinality m. Denote by
O the ring of integers of K, and by (I;) the (possibly fractional) Ox-ideal
generated by the coefficients of ;. For any subset £ = {l;,,...,l;  }in Z(F),
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denote by l;; A ... Al;, the exterior product of the coeflicient vectors of
liys-.., 0, , and by (l;; A...Al;, ) the Og-ideal generated by the coordi-
nates of this exterior product. The Og-ideal
(liy Ao N

(i) - (L)
is integral. As was proved in [3], there is a positive rational integer Dp,
called the discriminant (*) of F, such that

(2) ) = [I 27

LET(F)

D(L) =

where (Dp) denotes the Og-ideal generated by Dp. The integer Dp does
not depend on the choice of l1,...,l. and Dyr = D for all non-zero A € Q.
If in particular F' is a primitive squarefree binary form of degree > 2 (i.e.
the coefficients of F' are relatively prime) then Dp is just the absolute value
of the usual discriminant D(F’) of F' (cf. [3]).

Two decomposable forms F(Xi,...,X,) and G(Y1,...,Y,,) with coef-
ficients in Z are called integrally equivalent if each can be obtained from
the other by a linear transformation of variables with rational integer co-
efficients. It is easy to see that integrally equivalent decomposable forms
over Z have the same degree, same rank and same discriminant. For further
properties of discriminants, we refer to [2] and [3].

In [5] we proved that if F' € Z[X, Y] is a squarefree binary form of degree
r > 2 then

2
(3) r§3+@‘log|D(F)|.
Further, we showed that up to equivalence, the forms XY (X —Y) and
XY (X —Y)(X? + XY + Y?) are the only binary forms for which equal-
ity occurs in (3). Recently Evertse and the author [3] proved that if F' €

Z[X4,...,X,]is asquarefree decomposable form of degree r and rank m then
m

4 <2™—14 ——-logDp.

(4) LS + log 3 og Dp

For primitive and squarefree binary forms F' with integer coefficients this
implies (3).
We shall prove the following.

THEOREM. Let F € Z[X1,...,X,] be a squarefree decomposable form of
degree r and rank m. Then
m+1 m
< — 1 .
(5) 7“_( 9 )+log3 og Dp

(1) For polynomials in several variables there exists also another concept of discrimi-
nant; see e.g. [4].
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Further, equality holds if and only if F' is integrally equivalent to a multiple
of one of the forms

GY,...Yn)=Y1...Yn ][] -V
1<i<j<m
(when Dp = 1) and
G(Y1,Y2) = V1Ya(Y1 — Vo) (Y] + V1Yo + Y5)
(when m =2 and D = 3).
For n = 2, this gives the above-quoted result of the author [5]. Further,

for m > 2, (5) is an improvement of the estimate (4) of Evertse and the
author [3].

3. Proof. To prove our Theorem, we need several lemmas. We shall keep
the notation of Section 2.

LEMMA 1. Let F € Z[X1,...,X,] be a squarefree decomposable form
such that F = F\Fy where I\ and Fy have their coefficients in Z. Then
Dpg, - Dp, divides D in Z.

Proof. This is an immediate consequence of Lemma 1 of [3]. m

In what follows, let F' € Z[X,...,X,] be a squarefree decomposable
form of degree r and rank m, let K be the splitting field of F' over Q, and
let

(1) F=1..1,
be a factorization of F into linear factors over K. Let again Z(F') denote the
collection of linearly independent subsets of {l1,...,[,.} of cardinality m.

LEMMA 2. Let
£1 = {lil, . 7lim}7 [:2 = {lju .. .,ljm} c I(F)
and suppose that

ljk:chplip fork=1,....,m.

Then i
D(L2) _ yon i) (l,)
DLy - e g Ty

Proof. This is a special case of Lemma 3 of [3]. m

Following [6], a finite subset S of Q" is said to be a Dantzig set if it has
the following property: if a vector in S is a linear combination of a set of
linearly independent vectors in .S, then the coefficients in the combination
are 1, —1 or 0. Each subset of S is then also a Dantzig set. By the dimension
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of S we mean the maximal number of linearly independent vectors in S.
S is called maximal (for its dimension) if there is no Dantzig set of the
same dimension properly containing S. Obviously a maximal Dantzig set
must contain with each vector a also —a. Further, it should contain the null
vector.

LEMMA 3. A Dantzig set of dimension m in Q™ has at most m(m + 1)
elements (not counting the null vector).

Proof. This is a consequence of Theorem (4.2) of Heller [6]. m

Remark 1. Lemma 3 implies that if a Dantzig set S of dimension m
in Q" consists of non-zero, pairwise non-proportional vectors, then its car-
dinality is at most (m; 1). We shall need this consequence of Lemma 3.

LEMMA 4. If a Dantzig set S of dimension m in Q™ contains m(m + 1)
vectors (not counting the null vector), then there exist linearly independent
vectors azi,...,Qy in S such that S = {a; — a;;i # j, i,7 =0,1,...,m}
where ag = 0.

In other words, S is the set of edges (that is, one-dimensional faces, taken
in both orientations and interpreted as vectors) of an m-simplex.

Proof. Lemma 4 is a special case of Theorem (4.6) of Heller [6]. m
LEMMA 5. The set of edges of a simplex is a Dantzig set.
Proof. See the statement (2.3) of [6]. m

For a positive integer a, denote by (a) the ideal generated by a in Z, and
by £2(a) the total number of prime factors of a. For a Z-ideal a = (a) put
2(a) = 2(a).

LEMMA 6. Let F € Z[X1,...,X,] be as above, and assume that F has
splitting field Q. Then

(6) r< (m; 1) + D).

Remark 2. Lemma 6 seems to be interesting in itself. This should be
compared with Theorem 4 of [3] on decomposable forms over number fields.
Our Lemma 6 is an improvement of Theorem 4 of [3] in the special case
when the ground ring is Z and the splitting field is Q.

Proof of Lemma 6. We shall need Lemmas 2 and 3 and some
arguments from the proof of Theorem 4 of [3].

We may assume without loss of generality that in the factorization (1)
of F', each linear factor [; has relatively prime rational integer coefficients.
Then (I;) = (1) fori=1,...,r.
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First assume that ©(L) is properly contained in (1) for each £ € Z(F).
We show that the cardinality of Z(F') is at least 7 —m + 1. Indeed, suppose
that

Lo :{ll,...,lm} EI(F)
Then we have

m
li:ZCijlj7 t=m-+1,...,r
j=1

for some ¢;; € Q, at least one of which, say ¢; ;(;), is different from zero.
Putting £; = (LoU{li})\{lj(;)} fori = m+1,...,r, thesets Lo, Lpt1,..., Ly
are contained in Z(F). Hence, by (2), we get

r—m+1<20(Lo)) + 2D (Lons1)) + ... + 2D(L,)) <

which implies (6).

Next assume that there are £ € Z(F') with ©(L) = (1). Let S be a
maximal subset of {l1,...,[l,} with the following property: for each subset
L' of § of cardinality m which is contained in Z(F'), we have ©(L') = (1).
We may assume without loss of generality that S = {l1,...,ls} where m <
s < r. Then for each I; with s + 1 < ¢ < r there is an £; € Z(F) with
D(L;) # (1) which contains [; and m — 1 linear forms from S. This implies
that

(7) P s S QD(Lay)) +. .+ 2D(L)) < S2ADr).

Let now £ be an arbitrary subset of S with £ € Z(F). Assume for
instance that £ = {l1,...,l}. Then ®(L) = (1). Each ; withm+1 <i <s
can be expressed uniquely in the form

m
l; = Z Cijlj with Cij € Q
j=1

Form+1<i<s,1<j<m,put L;; =(LU{li})\{l;}. By Lemma 2 we
have

Q(EZJ) _ (C' )

@(E) 1] )

whence ¢;; = 0, 1 or —1. Hence S, the set of the coefficient vectors of the
linear forms in S, is a Dantzig set of dimension m in Q™. Further, the vectors
in S are pairwise non-proportional and the null vector is not contained in S.
Thus, by Lemma 3 and Remark 1, we have

m—+ 1
< .
= (")

Together with (7) this implies (6). m

D(Lij) =
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Proof of the Theorem. In our proof we shall use Lemmas 1, 4, 5
and 6 as well as some arguments from the proof of Theorem 1 of [3]. Let
F(X) € Z[X4,...,X,] be a squarefree decomposable form of rank m and
degree r. Then

T
F(X)=[J(ea X1 + ... + g X)
k=1
with some algebraic numbers agy,...,ar,, kK = 1,...,7. As is known (see
e.g. [1]), the Z-module generated by the vectors (aij,...,a.5)%,j=1,...,n,
in Q" has a basis. Further, it is easy to show that its rank is just m. Conse-
quently, F' is integrally equivalent to a form in m variables. Hence we may
assume without loss of generality that in /' we have m = n. Further, one
may assume that F'(1,0,...,0) # 0 (see e.g. [1]) and that the coefficients of
F' are relatively prime.
The form F' can be factored as

F=FF .. F,

where Fj is the product of linear forms with relatively prime coefficients
in Z, and F; is an irreducible norm form in Z[X7, ..., X,,] of degree > 2, i.e.

Fi(X) = MiNg, jo(X1 + B2iXo + ... 4 BrniXom)

where K; = Q(f2i, ..., Fm:) is an extension of Q of degree deg F; and \; €
Z\ {0} for i =1,...,t. Let

r; =degF;, m;=rankt;, D;=Dp fori=0,1,...,¢.
We have

1
(8) 2(a) < (l)g ’;| for every a € Z with a # 0.
0g

By Lemma 6 and (8) we have

1 1
9) 7’0§<m0+ >+ o 'IOgD0§<mO+ >+mO'IOgD0~

2 2log2 2 log 3
Hence, by mg < m and (9), we have
m+1 m
10 < —— -log D
(10) ro = < 9 ) + log 3 og Dy

where equality can occur only for Dy = 1. Further, as was proved in the
proof of Theorem 1 of [3],
m;
11 i <
(11) = log 3

logD;  fori=1,...,t,

whence, by m; < m, we get
m

12 <
(12) 1+ +rt_10g3

‘logD1...Dy.
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Finally, from Lemma 1 it follows that DyD; ... D; divides Dg in Z and so,
(10) and (12) give
m+1

m
< — .log Dp.
(5) T_< 2 >+log3 el

Consider now the case when equality occurs in (5). Then equality must
also occur in (9)-(12). Therefore Dy = 1, m; = m for i = 0,...,¢ and
rog = (m; 1). This means that in this case F' must have linear factors with
rational coefficients.

First suppose that each linear factor of F' has coefficients in Q, i.e. that
F = Fy. Denote by S the set of the coefficient vectors of the linear factors
of F. Then it follows from Dpr = 1 and (2) that every determinant of or-
der m composed of the coordinates of vectors of S is equal to 1, —1 or 0.
This implies that S is a Dantzig set in Q™ of dimension m. Denote by +5
the set consisting of all vectors +a for which @ € S. Then £S5 is also a
Dantzig set in Q" with dimension m and cardinality m(m + 1). Hence, by
Lemma 4, there are m linear forms among l4,...,l., say l1,...,n, such that
det(ly,...,l,) = %1 and that

F(X)=+L(X)...ln(X) [] @G(X)-1;(X)).

1<i<j<m
But then F' is integrally equivalent to a multiple of the form

GY)=%1...Y,, J] (vi-Y)).
1<i<j<m

On the other hand, it follows from Lemma 5 that if S’ denotes the set of
the coefficient vectors of the linear factors of G' then +S’ has the Dantzig
property. Thus it is easy to show that Dg = 1, i.e. that in (5) equality
occurs.

There remains the case when F' has linear factors both with rational and
with non-rational coefficients. We recall that Dy = 1, rg = (m; 1), m; =m
fori=0,...,t and

m;

zlogg-logDi fori=1,...,t.

By Lemma 2 of [3], D;"" is divisible by D% /o iIn Z where Dy, g denotes
the discriminant of K;/Q for i = 1,...,t. This gives
(14) 2log |Dk, ol <milogD;  fori=1,...,t.
On the other hand, for r; > 3 we have (cf. [5], p. 130)
(15) ri = [K; : Q] <log|Dg, /g
and hence, by (14) and (15),
2r; <m;logD; .
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But this contradicts (13). Thus we have r; = 2 for ¢ = 1,...,t. This implies
that m; = 2 for i = 1,...,¢t and so m = 2. In other words, F' is a binary
form with relatively prime coefficients in Z. By the result of [5], quoted in
Section 2, F' is integrally equivalent to the binary form

G(Y1,Y2) = V1Yo (Y1 — Vo) (Y2 + V1Y, + V).

It is easy to see that G has discriminant Dg = 3 and, for GG, equality occurs
in (5). This completes the proof of the Theorem. m
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Added in proof (April 1994). Some results of Heller [6] were earlier obtained by
A. Korkine and G. Zolotarev (Math. Ann. 11 (1877), 242-292).
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Corrections to [3]

P. 53, line 7: for “02(Ly)”, “0R(Lm+1)", “R(Lr)” read “02(D(Ly))”, “RD(Lm+1))”;
“02(D(Lr))”, respectively.
lines 7 and 9: for “2(D)” read “302(D)”;
line 10: for “Theorem 2” read “Theorem 4”.
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