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1. Throughout this paper we shall use the following notations: The set
of positive integers is denoted by N. If f(x) = O(g(x)), then we write
f(z) < g(x). p; denotes the ith prime. w(n) denotes the number of dis-
tinct prime divisors of n, while £2(n) denotes the number of prime divisors
of n counted with multiplicity. d(n) and o(n) denote the number, resp. sum
of positive divisors of n. p(n) is the Mébius function and ¢(n) denotes Eu-
ler’s function. The smallest and greatest prime factors of n are denoted by
p(n) and P(n), respectively. If f(n) is an arithmetic function and = > 1,
then we write

M(f, ) =max f(n),  T(f,x)=max(f(n 1)+ f(n))
and G(f,z) will denote the greatest integer G such that there is a number
n € N with n < z and

f)> > fn+i).

0<|i|<G

In the first half of this paper (Sections 2-7) we will study isolated large
values of the arithmetic functions w(n), £2(n), d(n) and o(n), i.e., the func-
tion G(f, x) with these four functions in place of f; see [1] and [5] for related
results. (Since the first author studied a problem closely related to the es-
timate of M (p,x) in [4], we do not discuss the case f(n) = ¢(n) here.) In
the second half of the paper we will study the converse of this problem by
studying consecutive large values of these four functions, i.e., the function
T(f,z) with w, £2,d and o in place of f. Note that T'(£2, z) and T'(o, x) were
studied by Erdds and Nicolas in [6]; here we will extend and sharpen their
results.

Research partially supported by Hungarian National Foundation for Scientific Re-
search, Grant No. 1901.
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2. First we will prove
THEOREM 1. There exist effectively computable positive constants c¢1 and
co such that

log x log z

(2.1) cl( < G(w,x)

_ < .
loglog z)? 2 log log x log log log x

Note that almost certainly the lower bound gives the right order of mag-
nitude of G(w,z) but, unfortunately, we have not been able to show this;
this is an interesting but, possibly, deep problem.

Proof. First we will prove the lower bound in (2.1). Define the positive
integer m = m(x) by

m—1

Hpi<%‘1/2§ﬁpi

i=1 i=1
and write P = [[:", p;. Then by the prime number theorem we have
1 log
2.2 == 1) | ——
(22) " <2+0( )>loglog:r

and
m—1

(2.3) 2 <P=p, H pi < z'?logx.

i=1
To prove the lower bound in (2.1), it suffices to show that writing
log
G=|cp———"— 1

[ Togteee )
for ¢; small enough there is a j € N such that
(2.4) j<xz/P  and  w(iP)> > w(jP+1i).

o<lil<@

By (2.2) we have

(2.5) w(P) > w(P)=m
1 log x )
== 1) )]———— forall .
<2+0( )>logloga: oralljeN

On the other hand, if Py, Po, P3 denote the sets of primes p with p < G,
G < p < x'/3, resp. 2'/3 < p < 22, then by (2.2), (2.3) and

(2.6) Z; zloglogy+0+0<11>

p<y o8y
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we have

]<§/PO<Z|<G “ur
=2 2 2

j<w/P 0<[i|<G p|jP+i

=2 2 2 1> ) >

j<z/P pEP1 0<|i|<G 0<|i|<G pEPs j<z/P
pliP+i pliP+i

22 2!

j<z/P 0<|i|<G p€Ps3

ijP+i
. a
Y YOy Y Ly
j<z/P p<G i=1 G<p<zl/3 j<z/Pi=1
1 x
<<GP< Z +1><<Gploglog:1:,
p<zl/3
whence
1 logz

2.7 i P Glogl - e
(2.7) jg}lp[)}:@w(.y +1) < Gloglogw < 5 =7

if ¢1 is small enough. If the minimum in (2.7) is assumed for, say, j = jo,
then it follows from (2.5) and (2.7) that (2.4) holds with jg in place of j and
this completes the proof of the lower bound in (2.1).

To prove the upper bound in (2.1), it suffices to show that writing

- |e log
~ |Ploglogzlogloglogz |’

for ¢ large enough we have

(2.8) win) < Y wn+i)
0<|i|<H

for all n < z. Indeed, for n < z we have

log x

(2.9) w(n) < M(w,z) = (1+ 0(1))@

and, on the other hand, by (2.6) we have

(2.10) Z w(n +1) Z Z 1> Hloglog H .

0<|i|<H p<H 0<|i|<H
pln+i
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If ¢o is large enough, then (2.8) follows from (2.9) and (2.10), and this
completes the proof of Theorem 1.

3. G(f2,x) can be estimated similarly:

THEOREM 2. There exist effectively computable positive constants c3, ¢4
such that

log x log

(3.1) <G(,z) <

“ loglog x c logloglogx

Again, we think that the lower bound gives the right order of magnitude.

Proof. The proof is similar to the proof of Theorem 1, thus we will only

sketch it. Write
1
G = C3ﬂ + 1
loglog x
and define v = u(x) € N by
2u S 331/2 < 2u+1

so that u = [21‘1)5;2]. Then for j € N, 1 < j < x/2" we have

(3.2) Q20 -2%) > 2(2%) = u> log

and, on the other hand, it can be shown by an argument similar to the one
in the proof of Theorem 1 that

. . x
Z Z _(2(]-2“+2)<<2—UGloglogx
j<= /2% 0<[i| <G
so that
(3.3) min Z 22" 4+1i) < Gloglogz.

<z /2w
ise/2 o di<e

If ¢5 is small enough, then it follows from (3.2) and (3.3) that
min 2(j-2%) > min Q-2+
j<z /2% (j j<z/2v Z '7 )
0<lil<@

which proves the lower bound in (3.1).
To prove the upper bound in (3.1), observe that for n <z we have

(3.4) Q2n) < M(2,z) = “Zi‘;]

and, writing

1
H = Cq 70g * y
log log log x
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we have
(3.5) Y 2(n+i)> HloglogH,
0<|i|<H

which can be proved in the same way as (2.10). If ¢4 is large enough, then
it follows from (3.4) and (3.5) that

M) < > Qn+i)
0<|i|<H

(for all n < z), which implies the upper bound in (3.1).

4. The function d(n) gives the most interesting and most difficult prob-
lem. In this case, we will prove

THEOREM 3. There are effectively computable absolute constants xo and
cs such that for x > xg we have

log log log x
4.1) M(d 11— G(d M(d .
(41) My (-~ 11 B ) < Gl < o (da) 7 2
Note that it follows from the results of Ramanujan [9] that
log log
4.2 M(d,x) = log 2 Ol ——= | | -
(42) (d,2) eXp( °8 log log © + <(loglog:c)2>)

It follows from (4.1) and (4.2) that
log x log
G(d,x) = log 2 Ol —————=1 ).
() = exp 1o +0( ey
We expect the upper bound to be closer to the truth and perhaps we have
G(d,z) > M(d,z)(logz)™“ .

5. The proof of the lower bound in (4.1) will be based on the following
lemma:

LEMMA 1. There is an effectively computable number xo such that if
x>x9,a €N, Q €N,

(5.1) a@) < x,

log
5.2 g o
52 2> (Vigrog )
beZ and
(5.3) bl <a,

then there is a set S(a,b, Q) such that
(5.4) S(a,0,Q) C {1,2,...,Q},
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log
(55) S(a.bQ) < Qe (-2 %2 )
and
. log
. d b) < d(b Y/ e
>0 z;z i+ 0 < db)Qew < (10g10g93)3/2)
i#S(a,b,Q)

Proof of Lemma 1. Clearly, for all m,n € N we have

(5.7) d(mn) < d(m)d(n) .
Thus writing a = (a,b)a1, b = (a,b)by, for all i € N we have
(5.8) d(ai+b) < d((a,b))d(ari+by) < d(b)d(ari+by).
Set
log 3
K=—°"_ L= log1 /2
(].Og log x)2 Y eXp(( Og Og [B) ) Y

and for n € N define u = u(n), v =wv(n), w = w(n) by
(5.9) n=uww, Pu) <K <pv)<Pw) <L<pw).

(If there is no prime p with p|n and p < K, K <p < L or L < p, then we
put u =1, v =1 and w = 1, respectively.) Then for large  and n < 2x, by
the prime number theorem clearly we have

(5.10) dw) = J] dep*)= ] (a+1)
p<K,p*|In p<K,p|n

<11 (lf(f;; n 1) — exp((1 + o(1))m(K) log log 2)

p<K

log log
= 1 1)——— 2————— ).
o (14 o) i) <o (2o o)

Moreover, it follows from the definition of w that for n < 2z we have
20 >n>w= H p > H Lo = 9w
p>L,p*|n p>L,p*|n
whence

log 2x log
log L (loglog x)3/2 "

For all m € N we have d(m) < 2°0™). Thus from (5.11) we obtain

(5.11) 2(w) <

log x
12 d(w) < exp (2log2——2L )
12 () < o (21062700
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By (5.1), (5.3) and (5.7), it follows from (5.8), (5.9), (5.10) and (5.12) that
for all 2 < ) we have

(5.13)  d(ai +b) < d(b)d(ari + by)
< d(b)d(u(ari + by))d(v(ari + by))d(w(ari + by))

< d(b)d(v(a1i + b1)) exp (3(10g11(())gga;)3/2> (for i < Q).
Now write
_ log
. [ <1ogloga:>2] ’
and let S(a,b, Q) denote the set of the positive integers ¢ such that i < Q
and
(5.14) Q(ayi+by)) > z.

Then (5.4) holds trivially. Write v(a1i + b1) as the product of a square and
a square-free number:

(5.15) v(ayi +b1) =7%¢ (r,q €N, |u(q)|=1).
It follows from (5.14) and (5.15) that either

(5.16) Q2r)>z/3

or

(5.17) 2(q) =w(q) > 2/3.

Let 7; denote the set of the integers ¢t with t € N, K < p(t) < P(t) < L,
2(t) = [z/3], and let 73 denote the set of square-free elements of 77 so that
for t € 7T, we have K < p(t) < P(t) < L, £2(t) = w(t) = [2/3]. Then for
i € S(n,b, Q) either there is an integer t such that t € 773 and t? | a1i + by, or
there is an integer ¢ such that ¢t € 73 and t | a2i + be (in fact, if (5.16) holds,
then t can be chosen as any divisor of r with §2(¢) = [2/3], while if (5.17)
holds, then ¢ can be any divisor of ¢ with 2(t) = w(t) = [2/3]). It follows
that

(5.18) S(a,b,Q) < Y [i:i<Q, t*|ayi+ by}
teTy
+ > i i < Q. tlavi+ b},
teTs

Clearly, if t € 7T, U 75, then we have

(5.19) t= ] p*> K" = KBS = exp ((1 + 0(1))§ log K>

pe||t

= exp ((1 +o(1))L 1082

310glogx> (for t € LUT:)
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and
(5.20) t= H p* < L2W = [B/8] = exp <(1 + o(l))% log L)
pelt
7 log
= 1 )7
exp {1+ 0l foaroe 5 )

log =

By (a1,b1) =1, for all d € {1,2,...,Q} we have

(5.21) \{i:ng,d\ali—l—blH§%+1§2% (for d < Q).

It follows from (5.18), (5.20) and (5.21) that

Q 1 1
(5.22)  |S(a,b,Q)| < Z%Qﬁ > o? —2@(2 Y t).

teTy teTs teTy teT,
By (5.19) we have

1 1 7 logx
2 — < — = —(1 1))= .
(5:23) 3 55 < > g exp (= (1+o(n) )
teTh t>exp((1+0(1))  rogiogw)
Moreover, by (2.6) and Stirling’s formula we have
1 1
(5:24) > 5= 2 e —
teTo K <piy <pig <<piy, 5 <L DirPiy - - - Dif. s
[2/3]
1 1 7 logx
< - - —(1+0(1): .
([Z/3D!<I)E<:LP> exp( (4o ))310gloga:>

(5.5) follows from (5.22), (5.23) and (5.24).
It remains to show that (5.6) also holds. By (5.13) we have

(5.25) > d(ai+D)

i<Q,i¢S(a,b,Q)

<d(b)exp<310gx> S d(w(ari+ b))

3/2
(loglogz)* /', iestan.)
Here the last sum is
> {d : d|v(ayi+b1)}|.
1<Q,iZS(a,b,Q)

If d|v(ayi 4 by) for some i < Q, i ¢ S(a,b,Q), then, by the definitions of
v(n) and S(a,b,Q), for all p|d we have p < L; moreover, 2(d) < z. Thus
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by (5.2), for such a d we have

log
d= @< 9D <7 = 1+0(1))7T————
ILpms 10 < 7= e (4 ooy ) < @

so that for this fixed d, by (5.21) we have

105 Q, i ¢ S(@hQ), dlait+h} <22,

whence, by Mertens’ formula,

(5.26) Y. dw(ai+ b))

1<Q,i¢S(a,b,Q)
< > 2% <2Q > %

P(d)<L.2(d)<= P(d)<L
) 1 1 -1

IS (O

p<La=0P p<L p

< Qlog L = Q(loglog x)%/? .

(5.6) follows from (5.25) and (5.26), and this completes the proof of the
lemma.

6. Completion of the proof of Theorem 3. First we will prove the
lower bound in (4.1). Set

log
6.1 = 88— = 1
& o= oo (o) |
and
log
6.2 G=|M(d -1l 1.
02 prmen (-1 )|+
Define the positive integer m by
m x m+1
(6.3) [Iri<=<]I»
i=1 i=1
so that, by the prime number theorem, we have
log(x/Q) .
4 =—>"""(1 log 1
(6.4) s et (1 O((loglog(x/2) )
log

= loglogw(l — 8(loglog z) /2 + O((loglog z)™1)).
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Write

m
(6.5) P=]]p:-

i=1

In order to prove the lower bound in (4.1), it suffices to show that for large
x there is a j € N such that

(6.6) j<x/P and d(jP)> Y d(jP+i).
o<i|<@G

By (4.2) and (6.4), for large x we have

(6.7)  d(GP)
> d(P) = 2™
— log _ ~1/2 1
= exp <log210g T x(l 8(log log x) + O((loglogx)™))

log =
=M(d —(1 1))8log2————
(d.yexp (= (1 of1)slogz 2T )

(for all j < x/P).
On the other hand, let S = UO<|b|§G S(P,b, Q) where G, P, Q are defined

by (6.2), (6.5) and (6.1), respectively, and the set S(P,b, Q) is defined in
Lemma 1. Then by Lemma 1 and (4.2), for large x we have

log x Q
. < < — &
68 lsls X ISReQ)I<26Qen (2 ) <
0<bl<Q
Let J ={1,2,...,Q}\ S so that by (6.8) we have
(6.9) TI=Q—IS|>Q/2.
Then by Lemma 1 and the definition of J we have
(6.10) > D dPi+b)< Y > d(Pi+b)
1€J 0<|b|<G 0<[b|<G i<Q,igS(P,b,Q)
log
< Z d(b)Q exp <432>
ot (log log )3/
log
:Qexp< 73 2) Z d(b
(loglog z)*/ 0<|b|<G
log z
4—=—— |GlogG.
<o (s )61

It follows from (6.9) and (6.10) that there is a j € N with
(6.11) j<Q<a/P
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such that
. log
6.12 d(Pj+b 4— 2> |GlogG
(6.12) > d(Pj+ )<<exp< (logloga:)3/2) og
0<|b|<G
log
M(d -6 .
<artaen (610 )

(6.6) follows from (6.7), (6.11) and (6.12), and this completes the proof
of the lower bound in (4.1).
To prove the upper bound in (4.1), write

log 1
H= [cﬁog OgmM(d, x)] :
log

Then for sufficiently large ¢ and all n < x, by (4.2) we have

Yoodn+iy= > Y1x= Y Y

0<|i|<H 0<|i|<H d|n+i 0<|i|<H d|n+i

d<H
H H H
=> Z 1>)° =
d=1 0<|i|<H d=1
d|n+i

> Hlog H > M(d,z) > d(n)
which proves the upper bound in (4.1).

7. The sharpest estimate can be given for G(o, z):

THEOREM 4. We have
(7.1) G(o,z) = (1+o0(1))37~2%¢" loglog =
where v = 0.57722 ... is Euler’s constant.

Proof. First we will show that
(7.2) G(o,2) > (1+0(1))37 2 loglog z .
Let 0 < € < 1, and write

G =[(1—-¢)3n" 2" loglog ] .

Moreover, for p < %logx define o), by

(7.3) pr~l < (log 31:)1/2 < pr

and let
R = H pr .

p<slogz
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Then by the prime number theorem we have
R= II »" Il p< II (ogx)” ]I »
p<(logx)t/2 p<3logz p<(logx)t/2 p<3logz

— exp(} loglog am((log 2)"/2) + (4 + o(1)) log 2) = exp(( + o(1)) log ),
whence
(7.4) R<uz.
To prove (7.2), it suffices to show that for all € and = > z¢(e) there is a
j € N such that
(7.5) j<z/R and o(jR)> Z o(jR+1).

0<|i|<G
For all m,n € N we have

o(mn) - o(m) .

(7.6) 2
mn m
Thus by Mertens’ formula, for all 5 € N we have
o(jR)
7.7 —
R
o(R) Cp\p—p
> R H a(p®)p
p<glogz
ap 1 -1
- I (Xe®)- IO (1-3) a-pem)
pS%logm a=0 pS%lng P
-1
1
> H <1 — > H (1 — (logz)~/?) H (1 —p2>
PS% log x P p<(logz)1/4 (log z)1/4<p

= (1+o(1))e" loglogz (1 — (log z)~1/2)™(es®) /) (1 1 o(1))
=(140(1))e” loglogz .
On the other hand, uniformly for j € N, j < /R we have

1 . o(jR+1i) jR+i

, — R+i)= ) :

(7.8) R 2 o(jR+1) : jR+i JR
0<|i|<G 0<]i|<G

(ol9) 3, 2

o(jR +1)
JR+1i

=(1+o0(1) >

0<|i|<G
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Now consider
jR+ ?
(7.9) PORED D DD
i<z/R 0<|i|<G ji<z/R 0<|i |<Gd|]R+z

We split this sum into two parts according to the magnitude of d. First we
have

GUNEED S DD DEEED SEID SIS

d<G j<z/R 0<|i|<G d<G = j<z/R 0<|i|<G
d|jR+i d|jR+1

SZ% > 2<5+1>

d<G = j<z/R

[y (641

d<G

< [;] (7;26} + O(log G)) :

Moreover, for G < d < 2z, 0 < |i]| < G we have
. R n i
TR T (R

d
> jij<z/R, .
]<J}/Rd ‘{ (d7(R77’))
2(d, (R,1)) 1 (2(d,)
_ < — .
( Rd )= d\ Rd 1
Thus writing (d,i) =r, d = rs, i = rt, we have

d|jR+i
G .
1 2G x d,?
GUED DD DD SIF D D CFEE) SRy
G<d<L2z 0<|i|<G j<z/R G<d<L2zx
d|jR+i

<

SH

G
< Glogx + % Z Z Z T‘2T52

r=1t<G/r G/r<s<2z/r

G
<<Glogm+%z Z é

r=1¢t<G/r

< Glogm—i—%log(}' < %logG.

By (7.9), (7.10) and (7.11), we have
> oy e avnTe.

j<z/R 0<|i|<G
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It follows that there is a j < z/R with

0<lil<G
Combining this with (7.7), we obtain

(7.12) 1 Y o(R+i)<(1+ (1))7T2G

. — o i o(1))—

jR e TS 3

0<|i|<G
=(14+o0(1))(1 —¢)e”loglogx.
(7.5) follows from (7.7) and (7.12), which completes the proof of (7.2).
To prove that

G(o,z) < (14 0(1))37 %" loglog
we have to show that if ¢ > 0 and we write
H =[(1+¢)3n2%¢" loglog z],
then for > z¢(e), H < n < x we have
o(n) < Y o(n+i)
0<|i|<H
or, in equivalent form,
a(n)

(7.13) — <

n

> o(n+i).

0<|i|<H

S|

Since (7.13) is nearly trivial for n/H = O(1), we may assume that n/H —
oo. It is well-known (and, by using Mertens’ formula, it can be shown easily)
that for n < x we have

(7.14) "Ef) < (1+0(1))e" loglog .
On the other hand, for n/H — oo we have
1 N o(n+1)
(T.15) — Z o(n+i) = (14 0(1)) Z i
0<|i|<H 0<|i|<H

—(+o)) YN

0<|i|<H d|n+i

a9
2(1+0(1))Zg >

d=1 " 0<[i|<H
d|n+1
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i;<2+0 ))

zHi;JrO(Zd))

H+0O( logH)>

(1

+o(1 < 3

=(1+o0(1))(1+¢)e”loglogz.
14

If x > x0(e), then (7.13) follows from (7.14) and (7.15), which completes
the proof of the theorem.

8. Our results and methods presented above are of different nature for
each of the four functions w(n), £2(n), d(n) and o(n). The following facts
explain some of these differences:

If f(n) is an arithmetic funcion and n € N, then let g(f,n) denote the
smallest integer g such that

n)<2f(n+i)~

If f(n) =w(n),2(n),d(n) or o(n), then the density of the integers n with
f(n) < f(n+1) is 1/2. Moreover, if f(n) = w(n) or £2(n), then for almost
all n we have f(n) = (1 + o(1))loglogn. It follows that for almost all n we
have g(w,n) <2 and ¢g(£2,n) < 2 and, indeed, the density of the integers n
with g(w,n) =1, g(w,n) = 2, g(£2,n) = 1, resp. g(2,n) =2 is 1/2.

This is not so for the functions o(n) and d(n). Indeed, considering the
function d(n), for every t € N the density of the integers n with g(d,n) =1t
is 1/2!, and for almost all n we have d(n + g(d,n)) > d(n). If we consider
the function o(n), then again, the density of the integers n with g(o,n) =t
is positive for all n € N but, on the other hand, the density of the integers
n with o(n + g(o,n)) > o(n) is < 1 (and > 0).

One might like to study the analogous questions for f(n) = P(n). We
can show that

zlingo G(P,x) = o0;

it would be interesting to estimate g(P,x).

9. In the rest of this paper we will study consecutive large values of
arithmetic functions. Erdés and Nicolas [6] proved that
log x
(9.1) T(2,z) = (1+o(1)) 2

log 2
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where the error term is ineffective and
(9.2) T(o,z) < (1+o0(1))e"zloglogx
where v is Euler’s constant. In this paper our goal is to extend and sharpen
these results. Note that the estimate of T'(w,z) seems to be very difficult,
in particular, we have not been able to show that
zlin;o sup(T'(w,z) — M(w,x)) = o0

(which is certainly true), and the study of T'(d,x) seems to be even more
difficult.

In Sections 9 and 10, we will study T'({2, z), while in Sections 11 and 12
we will estimate T'(o, z). First we give a lower bound for T'(£2, x):

THEOREM 5. For all € > 0 there are infinitely many numbers x € N such
that

log log x
. T2 M2 log2 —¢g)——=———=—
03 T(0)> M(@) +exp (g2 - o) E L)
log loglog x
= log2 —eg)———=——=— | .
[log2} +exp <( o8 6)logloglogac>

Proof. The proof will be based on the following result of A. S. Bang [2]
(see also [3, p. 385]):

LEMMA 2. If n € N and n # 1,6, then there is a prime p such that
p|2" —1 but pt2™ —1 form=1,2,...,n— 1.

To prove (9.3), consider a highly composite number n, i.e., assume that

d(n) = M(d,n) ( = exp <(1 +0(1)) log 210g")> .
Write © = 2™. Then by Lemma 2 we have
T(2,2) > 2 —-1)+2(x)=022"-1)+n
> |{i: (28 =1)|(2" —1),i # 1,6} + M(£2, )
> (d(n) —2) + M(£2,x)

logn
= 1 1) log2—2— M($2
exp (1 o{1) log 2 22 ) 4 M (2,2)
loglog x
log2 —¢g)—2—32— M2
> exp ((log2 - o) BT 4 ai(0,2)

for = large enough, which proves (9.3).

10. In this section we will give upper bounds for consecutive values of
the 2 function.

Erdds and Nicolas proved (9.1) by using a result of Ridout. Next we will
show by using a result of Mahler that (9.1) can be extended to k consecutive
values of the {2 function.
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THEOREM 6. For every € > 0 and k € N there is an (ineffective) number
xo = xo(g, k) such that for © > xo we have

(10.1) <[1°g””] <> max(2(n — k+1) + 2n —k+2)+ ...+ 2(n))

10g2 - n<x
< 71 + 1
g ogxr.
log 2 &

Proof. If S = {q1,q2,...,¢} is a finite set of prime numbers and a € N,
then denote the largest divisor of a composed solely of powers of primes
form S by [a]s so that a can be represented in the form

(10.2) a=lasv, wveEN, <v, Hp) =1.
peES
The proof of (10.1) will be based on the following result of Mahler [8,
p. 159, Theorem 5, I1]:

LEMMA 3. If S is a finite set of prime numbers, k € N and € > 0, then
there is an (ineffective) number ng = no(S,k,€) such that for n > ng we
have

[(m—k+1)(n—k+2)...n]s <n'te.

In order to prove (10.1), clearly it suffices to show that for n > nq(k,¢)
we have

1
(103) 2n—k+1)+02n—k+2)+...+2(n) < <log2+€> logn.
Define t by
k k
log pi41 log py

and let S = {p1,p2,...,pt}. Write u = [(n —k+1)(n —k +2)...n]s and
define v by

(10.4)

<6<
-2

(10.5) m—k+1)(n—k+2)...n=uv
so that v € N,
t
(10.6) (v IIpi) =1
i=1
and

(10.7) Qn—k+1)+02n—k+2)+ ...+ 2(n) = 2(u) + 2(v).
By Lemma 3 (with ¢/4 in place of ), for n > na(k, ) we have

u< n1+€/4 7
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whence
logn!te/4 1 €
10.8 RQu) < | —=——| < — )1 .
( ) (u) < [ log 2 log2+2 o8
Moreover, by (10.5) and (10.6) we have
nk>uv >0 = HpaZthJr(qf),

p|lv
whence

klogn
(10.9) Qv) < ———.

log pe+1

(10.3) follows from (10.4), (10.7), (10.8) and (10.9), and this completes the
proof of Theorem 6.

Since both (9.1) and Theorem 6 are ineffective, one might like to give
an effective upper bound for consecutive values of the {2 function. Here
we restrict ourselves to the case k = 2 (the case k > 2 could be handled
similarly).

THEOREM 7. There are effectively computable positive numbers ns and
c7 such that for n > n3, n € N we have
1
log 2 * log 3

(10.10) 2(n—1)+2(n) < ( — C7> logn .

Proof. The proof will be based on the following result of Stewart [10,
Theorem 2]:

LEMMA 4. If S ={q1,q2,...,q-} is a finite set of distinct prime numbers
and k € N, then there are positive numbers cg and co which are effectively
computable in terms of q1,q2,...,q- and k such that for all n € N, n > k
we have

[(n—k+1(n—k+2)...n]s < cgn’™®
where t = min(k,r).

Note that

(10.11) meN, z>1, (m, Hp) =1 imply £2(m)< Tog. 2

logm

p<z
since by (m,[],.,p) =1 we have
m = H p& > H 2% = %M
p|m pe|lm
For n € N, define the non-negative integers a, b and the positive integers
u, v, z2 by
(10.12) (n—1)n=2"3"v=uv, 2%|(n—1n, 3°|(n—1n, =z=2°,
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so that clearly we have

(10.13) 2n—1)+ 2(n) = 2(u) + 2(v)
and
(10.14) z<n.

By (10.11) and (10.12) we have

logv  log(n?/u)
. < .
(10.15) Q) < log 5 log 5

Finally, by using Lemma 4 with S = {2,3}, we see that there are effectively

computable positive numbers cg and cg such that
u=[(n—1)n]s < cgn?~

so that there are effectively computable positive numbers c1g9 and n4 such
that

(10.16) u<n?  forn >ny.
By (10.12) and (10.14), we have
logz = log(u/z)

10.1 (u) = N2 N =
(10.17) (1) = ) + Quf2) = 57 + M
1 1 log u
= — ] =t
<log2 log3> 8%+ log 3
1 1 log u
< - 1 .
- <log2 logS) ogT+ log 3

It follows from (10.13), (10.15), (10.16) and (10.17) that for n > n4 we have

1 1 1 log(n?
3 logn &+ 28 4 og(n”/u)
log2 log3 log 3 log 5
1 1 1 1
logn — - log(n?
(logQ * log3> oen (log?) log5> og(n”/u)

< = —i—i—c BLEN logn
log2 ' logd  “\log3 logh S

which proves (10.10).

2(n—1)+ 2(n)

11. Finally, we will sharpen (9.2) by proving

THEOREM 8. For  — oo we have

(11.1) T(o,x) gx<M<J$j>x> +1+O((loglogx)_1)).
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Note that it is well-known [7, §22.9] that
(11.2) M(U(n),w> =(140(1))e” loglog x .
n

Moreover, note that (11.1) is the best possible apart from the error term,
as the following example shows: since

lim M(m,x) =00,
r—00 n

there are infinitely many integers x such that

iy T (1) e,

If 2 satisfies (11.3), then

T(o,z) > o(r—1)+o(x)= Y d+xM<U§ln),x)

dlz—1

(70 <o (ar(22.0) 1),

To prove Theorem 8, we need the following lemma:

LEMMA 5. For all w > 0 there exist numbers ¢ = e(w) > 0 and xo =
xo(w) such that for x > x¢ we have

T (-2) () -

Proof of Lemma 5. Clearly, it suffices to show that there is a num-
ber R € N with

(11.4) R<uz
and
o(R) 1\ !
(11.5) —=> ]I (1 — ) +w.
R p<elogx p

Indeed, define R in the same way as in the proof of Theorem 4. Then
(11.4) holds by (7.4). Moreover, by (2.6) and Mertens’ formula we have

e I e I () e

p<slogz p<3logz P
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> 1 (1—1>_1 1 <1—1>_1<1—<logm>-1/2>“<“°gz>“>

p<elogzx p elogz<p<ilogz p

()

(log z)1/2<p

- H <1—;>_16XP((1+0(1))< Z ;_logfogx>>

p<elogz €log r<p§% log x
_ C1\ T ((+0(1)log(1/(22)) + O(1)
a pggm <1 p> P ( log log z )
_ A N Tow log o 108(1/(22) + 0(1)
_p<££gx <1 p) + (14 0(1))e” loglog Toglog &
= H (1 — ]1))_ + (1 +0(1))e”(log(1/(2)) + O(1)),
p<elogx

which implies (11.5) if € is small enough in terms of w, and this completes
the proof of the lemma.

12. Completion of the proof of Theorem 8. We have to show that
for all m < z we have

(12.1)  o(m—1)+a(m)
< 33<M<J(nn>:r) +1+ O((loglogx)_1)> for all m < .

For all m < z we have

U(m_1)+a(m)<m<0(m—1) +U(m)> <x<0(m—1) +U(m)>‘

m—1 m m—1 m

Thus in order to prove (12.1), it suffices to show that

(12.2) olm—1) + o(m) < M(dn),x> + 1+ O((loglogz)™').
m—1 m n

If

(12.3) max (057:1__11), U(T;T)) < %logloga:,

then for x large enough, (12.2) follows from (11.2) and (12.3). Thus we may
assume that

(12.4) max <J(m — 1), a(m)> > 1logloga:.
m—1 m 2
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Now we will define a finite sequence (ug,vo), (u1,v1),..., (uz,v,) of pairs
of positive integers by the following recursion: Define ug, vy so that one of
them is equal to n — 1 and the other is n, and

o (vo) > o (u) '
Vo Ug
Then by (12.4) we have
o(vo)

1
(12.5) > §loglogx.

Vo
On the other hand, by (m — 1,m) =1 and (11.2) we have
(12.6) 2Wo) o) _ oluovo) _ ollm = Lm)

ug 0 UgVo (m—1)m

o(n)

< M(,x2> =(14+o0(1))e” loglogx.
n

It follows from (12.5) and (12.6) that for x large enough we have

(12.7) olu) .
Uo
Assume now that i is a non-negative integer and (ug,vo), ..., (ui,v;) have
been defined so that
(12.8) (uj,v;) =1 for j=0,1,...,4,
(129) ’U,j’l)j ‘uj—lvj—l forj = 1,2,...,2.,
(12.10) vj < Vi1 for j=1,2,...,1,
(12.11) P(v;) < Plvj_1)  forj=1,2,....i,
(12.12) p(u;) > pluj_1) forj=1,2,...,1,
(12.13) o) S o) e
Vj Vj—1
and
(12.14) o) o) o olun) L o) g e
Uyj Uy Uj—1 Vj—1

(note that (12.8) holds trivially for j = 0). If P(v;) < p(u;), then the

construction terminates, i.e., we put z = ¢ so that we have

(12.15) P(v,) < p(uy).

(Note that (12.11) ensures that the construction terminates in finitely many

steps.) If P(v;) > p(u;), then write v; and w; as the product of prime powers:
Uizq?l...qsas, g <...<gs,

uizrfl...rf‘, ry <...<TmTy
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where
(12.16) P(v;) = qs > p(u;) =11 .
(Note that P(v;) # p(u;) by (12.8).) Then define u;11 and v;+1 by
Vigr = ¢ qey
Uig1 = qg° T ...rft .
Then by (12.16), each of (12.8)—(12.12) holds trivially with i+ 1 in place
of j.
Moreover, if p is a prime number and a € N, then

1 1

o 1 1 1 1
U(p):1++...+<<1> §<1> =2
P P P P 2

and thus it follows from (12.5) and (12.13) that

(12.17) w(v;) — 0.
By (12.16) and (12.17) we have
(12.18) qs > 11+ 2.

It follows that
Vit1 v, o(gst) T

Qs _1 1
( E q;’“) <1 + )
(% ™
k=0

> G(l:i) <1 - ql) (1 + i)

_o(w) <1 Lo 1> _ o)

o(v;)

)
Vg gsT1 (%

which proves (12.13) with ¢ 4+ 1 in place of j.
Finally, by (12.18) we have

(12.20) o(uir) _olw) ' o(gg)

Uit1 U a(r’fl) qs*
/81 Qg
o(u;) A _
=S (t) ()
¢ k=0 k=0

V

Q
g
VR
—_

| I
Z e
N———
VRS
—

_l_
8-
N———"
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_ o(w) <1_ (gs —m1 1)+2>

Usj r14s
- o(u;) <1 ~3(gs =1 — 1)) .
- Uy T14s
Combining (12.19) and (12.20) we obtain
i1 Vi+1
> U(uz) (1 _ 3((15 - Tl)) + U(Ui> (1 + s —T1— 1)
U; qsT1 Vi qsT1
(U(“z) i U(Uz)) n gs —r1—1 <U(U1) B 30(u1)>
U; (% gsT1 V; Us;
By (7.6), (12.5), (12.7), (12.9) and (12.13) we have
W) e, T o),
V; (7
whence
(12.22) o) _golu)
V; (173

if « is large enough. (12.14) (with ¢ + 1 in place of j) follows from (12.21)
and (12.22), and this completes the proof of the existence of a sequence
(ug,vo), (u1,v1), ..., (uz,v,) with the desired properties.

It follows from (12.5) and (12.13) that

P 1
(12.23) olv:) > o(v0) > —loglogx
Vy Vo 2

where, by (12.10), we have
(12.24) v, <vg <M.
Moreover, by (11.2), (12.8), (12.9) and ugvg = (m — 1)m < 22 we have
(1225) U(uz) . O-(/Uz) — U(UZUZ) < M(U(n),ﬂl‘2>

Uy Vz UV, n

= (14 o(1))e” loglog z .
It follows from (12.23) and (12.25) that

(12.26) o) .

It
(12.27) olv:) _ M(U(n)x) —5,
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then (12.2) follows from (12.14), (12.26) and (12.27). Thus we may assume
that

(12.28) os) M(U(n)x) —5,
v, n
whence, by (11.2),
(12.29) o(ve) > (1+o0(1))e” loglogz .
Uz

Write v, and u, as a product of prime powers:

v, =4q7t ¢, @ <...<gs,
uzzrfl...rft, < ... <71y

By (12.15) we have
(12.30) qs = P(v:) <p(uz) =r1.

By Mertens’ formula, clearly we have

(12.31) ‘71”2) _ H Ug%ii) _ H (iqi_k)
- =1 * i=1 k=0
<g<l_;)lgg<l_;)LPQPS@_;){

By using Lemma 5 with w = 5, we deduce from (12.28) and (12.31) that
there is a positive number £ > 0 such that

(12.32) gs > ps > clogz.
It follows from
ugvo = (m — )m < 2
and (12.9) that

(12.33) u, < 2.
This implies that
(12.34) t=w(u,) <3logz

since by the prime number theorem, otherwise we had

uz:r’fl...rft >ry..are > H ;i
i<3logx

> H p=exp((1+0(1))3logz) > 22,
p<3logz

which contradicts (12.33).
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It follows from (12.30), (12.32) and (12.34) that

o(u Lo (rf t &
(12.35) ;Z) =11 (é ) _ II(> )
z i=1 i i=1 k=0

i<3logx
1 —1
<AL ()
elogrx<p<4logx p
1
= exp ((1 +0(1)) Z >
elogx<p<dlogz p

= exp(O((loglogz)™")) = 14+ O((loglogz) ™).
It follows from (12.10), (12.14) and (12.35) that

o(m—1) n o(m)  o(uo) n o(vg) < o(uy) n o(vy)

m—1 m Ug Vo Uy Vz
a(n)

< (1+ O((loglogx)™")) 4+ max

nlzx N
a(n)

- M(nx> +1+0((loglogz)™),

which proves (12.2), and this completes the proof of the theorem.
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