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1. Introduction. Let A = {a1, a2, . . .}, a1 < a2 < . . . denote a sequence
of positive integers. We consider the following four partition functions. Let
pA(m,n) denote the number of solutions of

n = x1 + x2 + . . .+ xm , x1 ≤ x2 ≤ . . . , xi ∈ A ,
and let pA(m,n) = pA(m, 1)+pA(m, 2)+. . .+pA(m,n). Let qA(m,n) denote
the number of solutions of

n = x1 + x2 + . . .+ xm , x1 < x2 < . . . , xi ∈ A ,
and let qA(m,n) = qA(m, 1) + qA(m, 2) + . . .+ qA(m,n).

For each of these functions P. Turán [15] proposed the problem of finding
a general class of sequences A and a suitable f(n,A) = f(n) so that for
almost all such partitions,

m = (1 + o(1))f(n) , n→∞ .

Here “almost all” means with at most o(pA(n)) exceptions where pA(n) =
pA(1, n) + pA(2, n) + . . .+ pA(n, n) for example.

When A is the sequence of all natural numbers Erdős and Lehner [3]
showed that for pA(m,n),

∣∣∣∣m−
√

6
2π

n1/2 logn
∣∣∣∣ < n1/2w(n)

holds for almost all partitions of n provided w(n) ↑ ∞ arbitrarily slowly,
hence for this function f(n) equals (2π)−1(6n)1/2 logn. Erdős and Lehner
(l.c.) show that when A is the sequence of natural numbers then f(n) =
2 · π−1 · 31/2 log 2 · n1/2 for qA(m,n). Erdős and Turán [4] treated qA(m,n)
and qA(m,n). They found a density requirement on A that allows the de-
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termination of f(n) for qA(m,n). They assumed that

A(x) =
∑

ai≤x
1

satisfies

(1.1) lim
x→∞

x−α logβ x ·A(x) = γ , 0 < α ≤ 1, β real, γ > 0 ,

and found that almost all of the partitions counted by qA(m,n) consist of

(1.2) (1 + o(1))γ1n
α/(α+1) log−β/(α+1) n

parts where γ1 is a complicated constant. They also found that if A(x)
satisfies the relation

A(x) = γ2x
α log−β x(1 +O((log x)−1)) , 0 < α ≤ 1 , β real, γ2 > 0 ,

and moreover if

(1.3) log qA(n) > γ3n
α/(α+1) log−β/(α+1) n

(
1− log−1/(2α+2) n

log log n

)

where

γ3 = α−α/(α+1)(1 + α)1+β/(α+1)(γ2(1− 2−α)ζ(α+ 1)Γ (α+ 1))1/(1+α) ,

then almost all of the partitions counted by qA(m,n) consist of

(1.4) γ1n
α/(α+1) log−β/(α+1) n(1 +O(log−1/(4α+4) n))

parts.
In this paper we determine the asymptotic behaviour of pA(m,n) and

pA(m,n) for those m near the values of m which maximize each function.
Our density requirements are weaker than those of Erdős and Turán. For
pA(m,n) and pA(m,n) instead of (1.1) we suppose that either

(1.5) lim
i→∞

log ai
log i

= s exists

or log ai = O(log i) and

(1.6) A(2x) = O(A(x)) as x→∞ .

(This is a W. Schwarz condition [12].) We impose no additional condition for
pA(m,n). Turán [15] describes the investigations of pA(m,n) and pA(m,n) as
incomplete. We find that for pA(m,n) when (1.5) or (1.6) holds a necessary
and sufficient condition for f(n) to exist is that

∑
a−1
i diverges. We shall

express our formulas in terms of the unique solution of a certain equation,
however, Mellin transform techniques [7] allow us to derive the formulas (1.2)
and (1.4). We shall see that pA(m,n) and pA(m,n) are strictly increasing
with m to a maximum achieved by at most two consecutive values of m and
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then strictly decreasing under quite weak conditions on A, at least for m
near the maximum.

For the sake of completeness and also to introduce some required notation
we sketch the results of Haselgrove and Temperley [5] concerning pA(m,n).
Let

G(u, t) =
∞∑
m=0

∞∑
n=0

pA(m,n)umtn =
∞∏
r=1

(1− utar )−1 .

We write u = exp(−v), t = exp(−w) and then v = αw. Then if G(u, t) =
g(α,w) we have

(1.7) g(α,w) =
∞∏
r=1

(1− exp{−(ar + α)w})−1 .

Note that if Rew > 0 the product for g(α,w) is absolutely convergent. Hence
g(α,w) is a regular function of α with poles at the points α = −ar+2kπiw−1

for any fixed value of w. If
∑
a−2
r converges we may define

(1.8) K(α) =
∞∏
r=1

(1 + α/ar)−1eα/ar .

K(α) is a regular function with poles at the points α = −ar. Note that
g(α,w)/K(α) is a regular function of α for |α| < Re(2π/w). Since both
g(α,w) and K(α) are nonzero the same holds for log(g(α,w)/K(α)).

Haselgrove and Temperley [5] assume that
∑
a−2
i converges and that

several conditions are satisfied by the function ψ(w) where

(1.9) ψ(w) =
∞∑
r=1

e−arw , w = ξ + iη , ξ > 0 .

For example, they suppose that

{ψ′(ξ)}2 < θψ(ξ)ψ′′(ξ) ((iii) in their paper)

for some fixed θ < 1 and for ξ sufficiently small. We replace the Haselgrove–
Temperley conditions (ii), (iii) and (iv) by either (1.5) or (1.6). They also
suppose ((v) in their paper) that for sufficiently small ξ, |ψ(w)| < θψ(ξ) in
the region ξ∆ ≤ |η| ≤ π for any fixed ∆ and some θ < 1 depending only
on ∆. This is a difficult condition to work with (they state that it does not
hold when A is the sequence of primes for example and must replace it in
this case by deep results of Vinogradov and Linnik concerning Goldbach’s
conjecture) so we replace this condition by the following arithmetical condi-
tion: Recall that Bateman and Erdős [2] say that a sequence A of integers,
not necessarily positive, has property Pk if there are more than k elements in
A and if we remove an arbitrary subset of k elements from A the remaining
elements have greatest common divisor unity. We say A has property Qk
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if it has more than k elements and if we remove an arbitrary subset of k
elements from A the remaining elements are not in the same residue class
modulo m for any m > 1.

Let us consider some examples. If ai = ik then A = {ai} will have
property Qk for all k ≥ 0. To check this we need only note that ik is
congruent to 0 and 1 infinitely often for every modulus m > 1. If ai = pi,
the ith prime, then A will have property Q0 but not Q1 since deleting 2
leaves us with a set of odd numbers. We shall obtain an asymptotic formula
for pA(m,n) when A is the set of primes, but we expect that pA(m,n) is not
uniformly increasing then decreasing near its maximum as a function of m.

Suppose A has property Qk but not Qk+1. Then there will be a set A of
k + 1 elements such that the elements of A − A all lie in one residue class.
Furthermore, for each a in A we can find a set, Aa, of k + 1 elements of A
such that if θ 6∈ Z then ϕ− aθ 6= ϕ − bθ + l, l ∈ Z, for any b ∈ Aa (see the
proof of (2.31)). Let

Ã = A ∪
⋃

a∈Ā
Aa .

We can also write every element, b, of A− Ã in the form b = md+ r. Let B
denote the sequence of m defined in this way, or

(1.10) B = (A− Ã− r)/d .
We let

(1.11) Ψ(ξ) = −
∑
r

log(1− e−ξar ) , m0(ξ) =
∑
r

(eξar − 1)−1 ,

and

F (y) =
1

2πi

i∞∫
−i∞

K(α)eαy dα .

Our first theorem, proved in Section 2, is

Theorem 1.1. Suppose A has property Qk, k ≥ 0, and satisfies either
(1.5) or (1.6). Suppose the B of (1.10) has property Ql, l ≥ 0. Then as
n→∞,

(1.12) ∆r
m∆

s
npA(m,n)

= ξr+s+1F (r)((m−m0)ξ)pA(n)

+O(ξr+s+1ψ−1/8(ξ)pA(n)) +O(ξk+l−1/2−εpA(n))

+O(ξk+3/2−εpA(n)) , ε > 0 ,

where ξ is a root of Ψ ′(ξ) + n = 0 and ∆m and ∆n denote the difference
operators, so that
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∆npA(m,n) = pA(m,n)− pA(m,n− 1) , etc.

Also, if A has property Pk of Bateman and Erdős [2], k ≥ 0, it is proved
in Richmond [9] that pA(n) satisfies

pA(n) =
1√
2π

(Ψ ′′(ξ))−1/2 exp{Ψ(ξ) + nξ}(1 +O(ξ)) .

In particular , if k ≥ 1,

pA(m,n) ∼ ξF ((m−m0)ξ)pA(n) + o(ξpA(n)) ,

and if k ≥ 2,

∆mpA(m,n) ∼ ξ2F ′((m−m0)ξ)pA(n) + o(ξ2pA(n)) .

We also prove

Theorem 1.2. The results in Theorem 1.1 hold for pA(m,n) with k
replaced by k + 1 in the error terms. The second last result of Theorem 1.1
holds for any A having property Q0 and satisfying either (1.5) or (1.6) with
pA(n) replaced by

∑
l≤n pA(l).

The distribution F (y) has many remarkable properties unknown to Hasel-
grove and Temperley when they wrote their paper. A beautiful description
of the theory of F (y) is given in the book of Hirschman and Widder [6].
There it will be found for example that I. J. Schoenberg in a series of papers
starting in 1947 showed that for n = 0, 1, . . . , F (n)(y) has exactly n changes
of sign and that − logF (y) is convex. Hence F (y) will have a unique max-
imum and if A satisfies property Q1 and (1.5) or (1.6) then pA(m,n) will
either have a unique maximum for large n as a function of m or the maxi-
mum will be achieved at exactly two consecutive values of m. This was first
conjectured by Auluck, Chowla and Gupta [1] when A is the sequence of all
natural numbers and first proved by Szekeres [13], [14] and Haselgrove and
Temperley [5]. (Szekeres proved a good deal more, namely that pA(m,n) is
unimodal in this case for large n.) Haselgrove and Temperley also prove the
analogous result when A is the sequence of squares and conjecture the same
for the sequence of kth powers. Theorem 1.2 establishes this result in rather
general circumstances. Hirschman and Widder [6] also discuss the behaviour
of F (y) as y → ±∞ in great detail, refining the results of Haselgrove and
Temperley in this direction.

Perhaps it is appropriate here to point out that ∆s
npA(n) is positive for

s ≤ k if A has property Pk as demonstrated by Bateman and Erdős [2].

We are greatly indebted to the referee who corrected many mistakes.

2. Estimates for pA(m,n) and pA(m,n). We follow the approach of
Haselgrove and Temperley very closely; however, the details are significantly
altered so much of their proof will be repeated. We write
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pA(m,n) =
1

(2πi)2

∫
|t|=e−ξ

∫
|u|=1

G(u, t)
um+1tn+1 du dt(2.1)

(let u = eiϕ = e−αw, t = e−w)

=
1

(2πi)2

ξ+iπ∫
ξ−iπ

iπw−1∫
−iπw−1

g(α,w) exp{(mα+ n)w}w dαdw

(let w = ξ + iθ)

=
1

4π2i

π∫
−π

iπw−1∫
−iπw−1

exp{log g(α, ξ + iθ)

+ (mα+ n)(ξ + iθ)}w dαdθ .
In Richmond [8] it is shown that if A satisfies (1.5) or (1.6) then A has
property II of [8], that is, with ψ defined by (1.9), A(x−1) > ψ2/3+η(x) as
x→ 0, 1/2 > η > 0 constant. We shall let η have this value throughout the
paper.

We shall divide the range of integration in (2.1) up as follows:

A: |θ| ≤ ξδµ, |α| ≤ µ, where δ = ψ−1/2(ξ), µ = ψ(1−2η)/12(ξ),
B: |θ| ≤ ξδµ, |α| > µ,
C: ξµδ ≤ |θ| ≤ π.

On range A we consider the double Taylor series expansion of the func-
tion log g(α, ξ + iθ) near (0, 0):

log g(α, ξ + iθ) = −
∑

log(1− e−(ar+α)(ξ+iθ))(2.2)

= −
∑

log(1− e−(ar+α)ξ)

− iθ
∑

(ar + α)(eξ(ar+α) − 1)−1

+
(iθ)2

2

∑
(ar + α)2(eξ(ar+α) − 1)−2 + . . .

Let us consider the expansion in powers of α of

(2.3)
∑

log(1− e−(ar+α)ξ)

=
∑
r

log(1− e−ξar ) + α
∑ ξ

eξar − 1
− α2

2

∑ ξ2eξar

(eξar − 1)2 + . . .

We write

(2.4)
∑ ξ2e−ξar

(1− e−ξar )2 =
∑ 1

a2
r

e−ξar

(1− e−ξar )2(ξar)−2
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=
∑

ar≤ξ−3/4

a−2
r (1 +O(ξ1/4))

+O

( ∑

ar≥ξ−3/4

ξ2

a2
rξ

2(1− e−ξar )2

)

(using exp(−x) = O(x−2))

=
∞∑
r=1

a−2
r +O(ξ1/4) +O

( ∑

ar≥ξ−3/4

a−2
r ξ−1/2

)

=
∑
r

a−2
r +O(ξ1/4) .

Furthermore,

(2.5) logK(α) = −
∑
r

(
log
(

1 +
α

ar

)
− α

ar

)
=
α2

2

∑
r

a−2
r +O(α3) .

We will use the following lemma proved by Haselgrove and Temperley [5]:

Lemma 2.1. If w → 0 in a fixed Stolz angle ∆ (i.e., w → 0 in such a
way that |Imw| ≤ ∆Rew), and if |α| ≤ 3π

2 /(|w|
√

1 +∆2), then

log(K(α)/g(α,w)) = o(|w|−2) .

Also from Richmond [8], if A satisfies (1.5) or (1.6) (so A has properties
(I) and (II) of [8]) then

∑
akr (eξar − 1)−l = O(ξ−kψ1+ε(ξ)) , ∀ε > 0 , k ≥ l ≥ 1 ,

hence the coefficient of θiαm is O(ξ−iψ1+ε(ξ)). It follows from this estimate,
(2.2) and Lemma 2.1 that

log g(α, ξ + iθ) = −
∑

log(1− e−ξar )− αξ
∑

(eξar − 1)−1 + logK(α)

− iθ
∑

ar(eξar − 1)−1 − θ2

2

∑
a2
re
ξar (eξar − 1)−2

+O(ψ−1/4+ε)

over region A (note w = ξ + o(ξ) over A).
If we pick ξ so that

n =
∑

ar(eξar − 1)−1 = −Ψ ′(ξ)
and define m0(ξ) as in Theorem 1.1 we have the integral

(2.6)
∫∫
A

exp
{
−
∑

log(1− e−ξar ) + logK(α) + (m−m0)αw + nξ

−θ
2

2

∑ a2
re
ξar

(eξar − 1)2

}
(1 +O(ψ−1/4+ε(ξ)))w dαdθ .
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Note the α and θ variables are separated, so we consider

i|w|µ/w∫
−i|w|µ/w

exp{αw(m−m0(ξ))}K(α) dα

(recall that αw = −iϕ so that |α| ≤ µ implies |ϕ| ≤ µ|w|).
Haselgrove and Temperley [5] also prove that

(2.7) |K(α)| = O(|α|−N ) , ∀N > 0

as |α| → ∞ with |Reα| < 1/2.
Consider now the cases:

(i) |m−m0(ξ)|ξδ1/2 ≤ 1,
(ii) |m−m0(ξ)|ξδ1/2 > 1.

In case (i) we note that

|m−m0|ξδµ2 ≤ δ1/2µ2 = ψ−(1+4η)/12 ,

hence

(m−m0)wα = (m−m0)ξα+O((m−m0)ξµ2δ)(2.8)

= (m−m0)ξα+O(ψ−(1+2η)/12) .

Thus we can replace w by ξ in our integral. Also w = ξ + iθ = ξ + o(ξ) so

(2.9) Re
(
iµ|w|
w

)
= O

(
ξδµµ

|w|
)

= O(ψ−(1+η)/3) .

From (2.7) and (2.9),

i|w|µ/w∫
−i|w|µ/w

exp{(m−m0)ξα}K(α) dα = O(1) .

Now as α goes from iµ|w|w−1 to iµ the Reα goes from Re(iµ|w|/w) to 0. By
(2.9), Re((m−m0)ξα) = O((m−m0)ξψ−(1+2η)/3(ξ)) = o((m−m0)ξδ1/2) =
o(1) in case (i) so by (2.7),

iµ∫
i|w|µ/w

K(α) exp{(m−m0)ξα} dα = O(µ−N ) , ∀N > 0 .

Again by (2.7) ,

i∞∫
i|w|µ/w

K(α) exp{(m−m0)ξα} dα = O(µ−N ) , ∀N > 0 .
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Hence in case (i),

(2.10)
iµ|w|/w∫

−iµ|w|/w
K(α) exp{(m−m0)ξα} dα

=
i∞∫

−i∞
K(α) exp{(m−m0)ξα} dα+O(µ−N ) , ∀N > 0 .

In case (ii) we have |m−m0||w| ∼ |m−m0|ξ > δ−1/2. Furthermore, one
can deduce from Cauchy’s integral formula (or by differentiating logK(α))
that K ′(α) = O(|α|−N ), ∀N > 0 in the strip |Reα| < 1/4. It now follows
upon integrating by parts that

(2.11)
iµ|w|/w∫

−iµ|w|/w
K(α) exp{(m−m0)αw} dα = O(δ1/2) .

Furthermore, from our estimate for K ′(α) we have
∫ i∞
−i∞K ′(α) dα = O(1)

and integration by parts again shows that

(2.12)
i∞∫

−i∞
K(α) exp{(m−m0)ξα} dα = O(δ1/2) +O(ψ−(1+2η)/12) .

Thus we can replace the finite limits in (2.11) by the limits in (2.12) and we
conclude that in both cases (i) and (ii) we have, from (2.10),

(2.13)
iµ|w|/w∫

−iµ|w|/w
K(α) exp{(m−m0)αw} dα

=
i∞∫

−i∞
K(α) exp{(m−m0)αξ} dα+O(δ1/2) +O(ψ−(1+2η)/12) .

Also

(2.14)
1

2π

µδξ∫
−µδξ

exp{Ψ(ξ) + nξ − 1
2θ

2Ψ ′′(ξ)}w dθ

=
1√
2π
ξ(Ψ ′′(ξ))−1/2 exp{Ψ(ξ) + nξ}(1 + o(ψ−N )) .

Thus, for the A part of range of integration in (2.1),

(2.15)
∫∫
A

=
1√
2π
ξ(Ψ ′′(ξ))−1/2 exp{Ψ(ξ) + nξ}
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×
{

1
2πi

i∞∫
−i∞

K(α) exp{(m−m0)ξα} dα+O(ψ(−1−2η)/12(ξ))+O(ψ−1/4(ξ))
}
.

We now consider the integral in (2.1) over the area B. Note that

(2.16)
|G(u, t)|
G(1, e−ξ)

=
∏
r

1− e−ξar
|1− e−(ar+α)w| .

We write
β = arg(−(ar + α)w) = iαw − arθ

since αw = −iϕ. Also Re(−arw) = −arξ and hence

(2.17)
∏
r

1− e−ξar
|1− e−arξ+iβ |

= exp
{
− 1

2

∑
log
(

1 +
2eξar

(eξar − 1)2 (1− cosβ)
)}

.

Since β = iαw − arθ = ϕ − arθ we suppose |arθ| ≤ 2, so |β| ≤ π + 2 and
hence

(2.18) 1− cosβ ≥ Kβ2 , K > 0 a constant .

Furthermore, for |θ| ≤ ξµδ, w = ξ+O(ξµδ) so |ϕ| = |α|ξ(1 +O(µδ)). Hence
unless |arθ| ≤ ξ|α|/2 we have |β| ≥ ξ|α|/2. Let

∑′ denote summation over
ar such that |arθ| ≤ ξ|α|/2 ≤ π/2, arξ ≤ 1. Then by (2.18),

|G(u, t)|
G(1, e−ξ)

≤ exp
{
− 1

2

∑′
log
(

1 +
eξar

2(eξar − 1)2K(ξ|α|)2
)}

since each term in (2.16) is ≤ 1 in absolute value. Also since x ≤ 1 implies
exp(−x)/2(1− exp(−x))2 ≥ cx−2 this is

≤ exp
{
− 1

2

∑′
log(1 +Kc|α|2a−2

r )
}
.

If ar ≤ (Kc)1/2|α|1/2 then arθ = O(ξµδ|α|1/2) = o(ξ|α|1/2). Hence

(2.19)
|G(u, t)|
G(1, e−ξ)

≤ exp
{
− 1

2
A(|α|1/2(Kc)1/2) log |α|

}
< |α|−N , ∀N > 0 .

Now |θ| ≤ µξδ and w = ξ(1 + o(µδ)) so from (2.19),

(2.20)
∫∫
B

= O(µξ2δ|t|−nG(1, e−ξ)µ−N ) , ∀N > 0 .

Now
Ψ ′′(ξ) =

∑
a2
re
ξar (eξar − 1)−2 = O(ξ−2ψ1+ε(ξ))
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since A satisfies (1.5) or (1.6). Hence (Ψ ′′(ξ))−1/2 ≥ cξψ−1/2−ε(ξ) = cξδψ−ε

and from (2.20) we obtain

(2.21)
∫∫
B

= O(ξ(Ψ ′′(ξ))−1/2 exp{Ψ(ξ) + nξ}µ−N ) , ∀N > 0 .

Finally, we consider the integral in (2.1) over area C. Following Richmond
[8] we suppose that the range ξµδ ≤ θ ≤ π is divided into three ranges,
I ′ = [ξµδ, ξ], I ′′ = [ξ, ξψc(ξ)] and I ′′′ = [ξψc(ξ), π]. We use (2.17) and recall
that β = ϕ − arθ. Note that if ar ≤ |α|1/2 then arθ ≤ ξ|α|1/2 and so
|β| ≥ ξ|α|/2. There will be at least A(|α|1/2) such ar and the arguments
leading to (2.19) give

|G(u, t)|
G(1, e−ξ)

≤ exp
{
− 1

2
A(|α|1/2) log

(
1 +

K|α|2
|α|

)}
≤ |α|−N , N > 0 ,

and hence the arguments leading to (2.21) now give

(2.22)
∫
I′

∫
|α|≥µ1/2

dα dθ

= O(ξ(Ψ ′′(ξ))−1/2 exp{Ψ(ξ) + nξ}µ−N ) , ∀N > 0 .

If |α| ≤ µ1/2 we consider those ar such that arξ ≤ 1. If |arθ| ≥ 2|ϕ| then
|ϕ− arθ| ≥ ar|θ|/2. Hence from (2.17),

|G(u, t)|
G(1, e−ξ)

≤ exp
{
− 1

2

∑

ar≥2|ϕ||θ|−1

ξ−1 log
(

1 +
Kca2

rθ
2

ξ2a2
r

)}

≤ exp
{
− 1

4

∑

ar≥2|ϕ||θ|−1

ξ−1Kcµ2δ2
}
.

Since |ϕ| = |α||w| ≤ 2|α|ξ ≤ 2µ1/2ξ and θ ≥ ξµδ this is

≤ exp
{
− Kc

4
(A(ξ−1)−A(4δ−1µ−1/2))µ2δ2

}
.

Now by the discussion following (2.1), we have A(ξ−1) ≥ ψ2/3+η(ξ) and
A(4δ−1µ−1/2) < δ−1 = ψ1/2(ξ) so this is

≤ exp{−c′ψ2/3+ηψ−5/6−η/3} = exp{−c′ψ(4η−1)/6(ξ)} .
If A satisfies (1.5) or (1.6) then Lemma 2.5 of [8] and the proof of Lemma
3.3 of [8] yield that η > 1/4.

Thus∫
|α|≤µ1/2

∫
I′

dθ dα = O(ξµ1/2ξ exp{Ψ(ξ) + nξ} exp{−c′ψ(4η−1)/6(ξ)} .
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Now from this and (2.22) it follows that

(2.23)
∫
I′

iπw−1∫
−iπw−1

dα dθ

= O(ξ(Ψ ′′(ξ))−1/2 exp{Ψ(ξ) + nξ}µ−N ) , ∀N > 0 .

We now consider the integration in (2.1) over C with θ ∈ I ′′. Again
we consider the cases |α| ≥ ξµ1/2 and |α| ≤ µ1/2. If ar ≤ |α|1/2 and c <
(1−2η)/48 then arθ ≤ O(ξ|α|1/2ψc(ξ)) on I ′′ so arθ = o(ξ|α|) if |α| ≥ µ1/2.
Now |ϕ| = |α||w| ≥ ξ|α| so the derivation of (2.21) gives

(2.24)
∫
I′′

∫
|α|≥µ1/2

dα dθ

= O(ξ(Ψ ′′(ξ))−1/2 exp{Ψ(ξ) + nξ}µ−N ) , ∀N > 0 .

If |α| ≤ µ1/2 we follow the derivation after (2.22) and obtain

|G(u, t)|
G(1, e−ξ)

≤ exp
{
− 1

2

ξ−1ψ−c∑

ar≥2|ϕ|θ−1

log(1 + c)
}

< exp{−K(A(ξ−1ψ−c(ξ)−A(3µ1/2)))} .
An examination of the proof of Lemma 3.3 of [8] shows that when A satisfies
(1.5) or (1.6) we can find a c such that A(ξ−1ψ−c(ξ)) > ψ1/2+ε(ξ). Since
A(3µ1/2) ≤ 3µ1/2 we get ≤ µ−N , ∀N > 0. The argument leading to (2.23)
now gives

(2.25)
∫
I′′

∫
|α|≤µ1/2

dα dθ

= O(ξ(Ψ ′′(ξ))−1/2 exp{Ψ(ξ) + nξ}µ−N ) , ∀N > 0 .

Equations (2.24) and (2.25) now give

(2.26)
∫
I′′

iπw−1∫
−iπw−1

dα dθ

= O(ξ(Ψ ′′(ξ))−1/2 exp{Ψ(ξ) + nξ}µ−N ) , ∀N > 0 .

We now use the following lemma from Richmond [8]. We write 2πϕ resp.
2πθ instead of ϕ resp. θ.

Lemma 2.2. Let c be any constant with 0 < c < 1/2. If ϕ−arθ ∈ [c, 1−c]
then

1− e−ξar
|1− e−ξar+2πi(ϕ−arθ)| ≤ (1− cos c)−1/2(1− e−ξar )(1 + e−2ξar )−1/2 .
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Lemma 2.3. Let N be an arbitrary integer. Let c be any constant with
0 < c < 1. There is a constant θ0 = θ0(N) > 0 such that if θ ∈ [ξψc(ξ), θ0]
then

|G(u, t)|
G(1, e−ξ)

= O(ψ−N (ξ)) .

P r o o f. If

θ 6∈
[
ϕ+ l

ar
− ξψc(ξ), ϕ+ l

ar
+ ξψc(ξ)

]
, l = 0, 1, . . . , ar − 1 ,

then from Lemma 2.2,

1− e−ξar
|1− e−ξar+2πi(ϕ−arθ)| = O(ψ−c(ξ)) .

Suppose
ϕ+ l

a1
=
ϕ+m

a2
or ϕ =

a1m− a2l

a2 − a1
.

If ϕ 6= 0 then |ϕ| ≥ (a2 − 1)−1. We find that if 0 < |ϕ| < (a2 − 1)−1 then,
for |θ| ≤ (3a2)−1,

(1− e−ξa1)(1− e−ξa2)
|(1− e−ξa1+2πi(ϕ−a1θ))||1− e−ξa2+2πi(ϕ−a2θ)| = O(ψ−c(ξ)) .

We can repeat this argument for the pair a3 and a4 and so on. We conclude
that if 0 < |ϕ| < (aI − 1)−1, I = 2[N/c] + 2, |θ| ≤ (3aI)−1

(2.27)
|G(u, t)|
G(1, e−ξ)

= O(ψ−N (ξ)) .

Furthermore, if |ϕ| ≥ (aI − 1)−1, I = 2[N/c] + 2 and arθ ≤ (aI − 1)−1/2
then |ϕ− arθ| ≥ (aI − 1)−1/2.

Clearly we can choose a θ1 so that if |θ| ≤ θ1 then |arθ| ≤ (aI − 1)−1/2
for r = 1, . . . , [N/c] + 1. Again from Lemma 2.2 such a choice of θ1 gives

(2.28)
|G(u, t)|
G(1, e−ξ)

= O(ψ−N (ξ)) .

Finally, if ϕ = 0 we can choose a θ2 so that |θ| ≤ θ2 implies |arθ| ≤ 1/2 for
r = 1, . . . , [N/c] + 1 and again Lemma 2.2 implies

(2.29)
|G(u, t)|
G(1, e−ξ)

= O(ψ−N (ξ)) .

Lemma 2.3 follows from (2.27), (2.28) and (2.29) with θ0 = min(θ1, θ2).

We now follow Richmond [10] to estimate G(u, t) for θ0 ≤ |θ| ≤ 1/2.

Lemma 2.4. If θ0 ≤ |θ| ≤ 1/2 then

|G(u, t)|
G(1, e−ξ)

= O(ξk+l+2) +O(ξ3+kµ2δ) .
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P r o o f. Recall the definition of A preceding (1.10). If

θ 6∈ [−δ, δ] ∪
⋃

a∈Ā

a⋃

|l|=0

[
ϕ+ l

a
− δ, ϕ+ l

a
+ δ

]
,

then from Lemma 2.2,

(2.30)
∏

a∈Ā

1− exp(−ξa)
1− exp{−ξa+ 2πi(ϕ− aθ)} = O(ξk+1) .

Suppose now θ ∈ [−δ+(ϕ+l)/a, δ+(ϕ+l)/a]. Suppose ϕ−bθ = ϕ−aθ−l,
l ∈ Z, or (b−a)θ = l. Since |θ| ≤ 1/2 we may suppose |l| ≤ |b−a|/2. Suppose
this relation holds for all b ∈ A. Then l(b1 − a) = l1(b− a) so

l1
gcd(l1, b1 − a)

(b− a) =
l(b1 − a)

gcd(l1, b1 − a)
.

Hence if ∆ = (b1 − a)/gcd(l1, b1 − a) then ∆ > 1 and ∆ | b − a for each
b ∈ A. Thus A does not have property Q0. Hence we can find a b so that
ϕ − bθ 6= ϕ − aθ + l, l ∈ Z. If A has property Qk then deleting an element
leaves us with a set having property Qk−1. Hence we can find a set Aa
consisting of k + 1 such b’s. Hence

(2.31)
∏

a∈Aa

1− exp(−ξa)
1− exp{−ξa+ 2πi(ϕ− aθ)} = O(ξk+1)

for these θ.
From (2.30) and (2.31), with Ã = A∪⋃a∈ĀAa, and θ 6∈ [−δ, δ], we have

(2.32)
∏

a∈Ã

1− exp(−ξa)
1− exp{−ξa+ 2πi(ϕ− aθ)} = O(ξk+1) .

Now every element of A − Ã is congruent to r modulo d (as defined in
(1.10)), i.e., a = md + r for a ∈ A − Ã. Let B denote the sequence of m’s
defined in this way and let B̃ be defined as Ã. The argument giving (2.32)
gives

(2.33)
∏

m∈B̃

1− exp{−ξ(md+ r)}
1− exp{−ξ(md+ r) + 2πi((ϕ− rθ)−mdθ)} = O(ξl+1)

provided ‖dθ‖ ≥ c where ‖x‖ = the distance of x from the nearest integer
and c is a positive constant. Equations (2.32) and (2.33) show the existence
of a δ such that

(2.34)
|G(u, t)|
G(1, e−ξ)

= O(ξk+l+2)



Number of parts in partitions 311

unless

θ ∈ [−δ, δ] ∪
d−1⋃

|l|=1

[l/d− δ, l/d+ δ] .

Let

I1 = [l/d− δ, l/d+ δ] and I1
1 = [l/d− ξµδ, l/d+ ξµδ] .

The proofs of (2.23) and (2.26) and of Lemma 2.3 give

(2.35)
∫

θ∈I1−I1
1

iπ/w∫
−iπ/w

dα dθ = O(ξ(Ψ ′′(ξ))−1/2 exp{Ψ(ξ) + nξ}ψ−N ) .

If θ ∈ I1
1 , however, the proof of (2.21) shows that

(2.36)∫
θ∈I1

1

∫
|ϕ−rl/d|≥ξµ

dα dθ = O(ξ(Ψ ′′(ξ))−1/2 exp{Ψ(ξ) + nξ}ψ−N (ξ)) .

However, from (2.32),

(2.37)
∫

θ∈I1
1

∫
|ϕ−rl/d|≤ξµ

dϕdθ = O(ξk+3µ2δ) .

This proves Lemma 2.4.
Now from Richmond [8] we have Ψ ′′(ξ) = O(ξ−2ψ1+ε(ξ)). Also ψ(ξ) ≤∑
r exp(−ξr) = O(ξ−1). Hence

(2.38) ξ(Ψ ′′(ξ))−1/2 ≥ ξ5/2+ε .

Now Theorem 1.1 follows when r = s = 0 from (2.14), (2.15), (2.21), (2.23),
(2.26), Lemmas 2.3 and 2.4, and (2.38). If A has property Qk for all k
then we get the result for all r and s by considering, as do Haselgrove and
Temperley [5],

1
2πi

∫∫ G(x, z)
xm+1zn+1 (1− z)s(1− x)r dx dz .

Note finally that Theorem 1.2 now follows easily since the generating
function for pA(m,n) is (1− z)−1G(x, z).

3. Examples and further discussion. The moment generating func-
tion of F (y) is, as we have seen,

K(α) =
∞∏
r=1

(
1 +

α

ar

)−1

eα/ar .

Hence the mean of F (y) is at y = 0 or equivalently m = m0(ξ).
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Since

m0(ξ) =
∑
r

(eξar − 1)−1 =
∑
r

1
ξar
· e−ξar

(1− e−ξar )(ξar)−1 > cξ−1
∑

ar≤ξ−1

a−1
r ,

we see that if
∑
a−1
r diverges then for almost all of the partitions counted

by pA(n) we have

(3.1) m ∼ m0(ξ)

when either (1.5) or (1.6) holds and k + l ≥ 1 in Theorem 1.1. We also
conclude from Theorem 1.2 that (3.1) holds for almost all of the partitions
counted by pA(n) when

∑
a−1
r diverges, Q0 and either (1.5) or (1.6) holds.

It is interesting that (3.1) answers the question posed by Turán [15] for
questions I and III. Note also that Erdős and Turán [4] did not need an
arithmetical condition in their solution for qA(n).

If
∑
a−1
r <∞ then we can say that the number of partitions with m in

the range m0 + y1ξ
−1 ≤ m ≤ m0 + y2ξ

−1 is

(3.2) ∼ pA(n)
y2∫

y1

F (y)

when the assumptions of Theorem 1.1 hold and k+ l ≥ 1. We can say in this
case that almost all of the partitions counted by pA(n) have m ≤ m0(ξ) +
w(n)ξ−1 where w(n) is any function such that w(n) → ∞ as n → ∞. It is
well known that (see Hirschman and Widder [6]) F (y) = 0 for y ≤ −∑ a−1

r .
While we have a rather complete understanding of the case

∑
a−1
r <∞ by

using Theorems 1.1 and 1.2 we will not have (3.1) holding.
We now consider the case when A is the set of primes, i.e., ar = the

rth prime. It is easily verified from the prime number theorem that both
(1.5) and (1.6) hold. A has property Q0 and deleting 2 leaves us with a
sequence of odd numbers, deleting any other prime does not leave us with
an arithmetic progression. Thus r = 1 and d = 2 in (1.10) and the sequence
B has property Ql for all l ≥ 0. Hence Theorem 1.1 applies to give us the
asymptotic formula for pA(m,n) found by Haselgrove and Temperley [5].
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