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1. Introduction. Let X denote an indeterminate. For each vector m €
72" with components satisfying 0 < m; < h define

r 2r
AX) =][X+m:) and  fo(X)= J] (X +mi).
=1 1=r+1

In [1] Burgess showed that, for any prime p > 3 and primitive character y
(mod p®), the estimate

N+H
> x(m)| = O el
n=N+1
holds in the case r = 3. This inequality was obtained by estimating

|5 (5)

m 'zcA;

where

Ay ={z:0<z<p ptfi(z)fo(x)}.
In order to do this, Burgess found estimates for the inner summation over
various subsets of A; and then counted the number of m for which these
subsets were non-empty. The counting process was carried out using different
methods, one of which concerned the estimation of the cardinality of

§={m:0<mi<h, fi(X)=fa(X) (mod p")}.

The estimation of such character sums in the case r = 2 is contained in [2].
The case r = 4 has yet to be proved. This paper estimates #S when r = 4,
as a step in the direction of a proof. The result obtained is given by the
following theorem.

The contents of this paper formed part of the author’s PhD thesis (Nottingham Uni-
versity, 1991) which was supported by Science and Engineering Research Council.
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THEOREM 1. Suppose p is a prime greater than 5 and p is a positive
integer. If

H={m:0<m; <h fori=1,...,8 and f1(X) = fo(X) (mod p")}
then

; B8 h® h® 4
#H < p <p3u+[u/2}[u/4] + prtln/2]=[u/4] + pr—In/2] th > '

In [4] Hua and Min obtain an asymptotic formula for the number of
solutions of the system

e et =yt Y (modpt) (1<h<E)

where s, k, h,l are integers such that s > k > 4,1 > k? and p is a prime
greater than k. Assuming that p # 5 and letting s, (x) = Z?Zl xl, in the
particular case s = k = 4, [ = 16 the number of solutions of the system

s1(x) = s1(y)

So (X) =852 (Y) mo 16
0 o ZE Y mod )
s4(x) = sa(y)

is p™®(1 4 O(p~1/*)). Writing

o1(x) =z + 22+ 23+ 24,

JQ(X) = X1%2 + T1L3 + T1T4 + T2X3 + LTy + T324,
03(X) = 12223 + T1X2T4 + T1X3T4 + T2X3T4 ,
O'4(X) = T1X2T3%4 ,

it follows that

o1(x) = o1(y)

UQ(X) = UQ(Y) mo 16
) s mod )

o4(x) = ou(y)
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are equivalent. But (2) holds if and only if
4 4
H(X +x;) = H(X +yi) (mod p'°)
i=1 i=1
for indeterminate X, which, by Theorem 1, has < p’® solutions in one
complete system of residues. A comparison with the result of Min and Hua
shows that, in this case, Theorem 1 is essentially best possible.

2. Basic estimates. The basic tools used in proving Theorem 1 are
the well-known estimate in Lemma 2 and Proposition 3 which is reproduced
from [3]. The notation [x] denotes the least integer greater than or equal to
x and p® ||z means p* |z, p*titz.

LEMMA 2. Suppose p is an odd prime and v is a positive integer. If
0 < & < h then the number of solutions of the congruence x> + Az + B =0
(mod p¥) is < h/plTD/2] 4 1.

ProprosITION 3. Let f be a polynomial of degree n having integer co-
efficients. Let p be a prime, d be a positive integer, and «, B and v be
non-negative integers satisfying v = [a/d|. If T = {x € a complete set of
residues (mod p?) : p*+P | f(x), p? || f{9(x)} then #T < n.

If g(z) is a polynomial with integer coefficients such that p° || (¥ (x)
then it follows from Proposition 3 that the number of x satisfying 0 < z < h
and g(z) =0 (mod p#) is < h/p*~0 +1if d =1 and < h/plr=0+1/2 1
if d = 2. The proof of Theorem 1 will be given by a series of lemmas.
Throughout we shall use the fact that the conditions A; + ...+ A4, =0
(mod p®) and p% || A; for j = 1,...,n imply that a; > min(min;j»; a;, a)
fork=1,...,n.

3. Initial transformations. Making the substitution M; = m; — my
for i = 2,...,8 we see that f1(X) = f2(X) (mod p*) if and only if the
following congruences hold simultaneously:

(3) M + M3 + My = Ms + Mg + M7 + Mg (mod p*),
MoMs + MoMy + MMy
= MsMe + MsM7 + MsMg + MgM7 + MgMg + M7 Mg (mod p*),
MyM3zMy = MsMeMy7 + MsMe Mg + Ms M7 Mg + Mg M7 Mg (mod p*),
(4) 0 = MsMgM;Mg (mod p").

Eliminating M from the second and third congruences of the above system
produces the pair of congruences

(5) (M3 + My)(Ms + Mg + M7 + Mg — My) — M3



326 L. Dodd

= MsMg + Ms M7 + MsMg + MgMy; + MgMs + M7 Mg (mod p*)
and
MsMy(Ms + Mg + M7 + Mg — M3 — My)
= MsMeMy7 + MsMeMg + Ms M7 Mg + MgM7 Mg (mod p*) ,
which together imply that
(6) (Mg — Mg)(MsMgs + MsMy; + MgM; + M7 — My(Ms + Mg + My))
= MsMgM7 (mod pH).
Define 75, 76,77, 78 by

- P || (Ms,p*),  p" ™7 || (M5 Mg, p*)
7

Pl (Ms Mg M7, p*), 5 + 76 + 77 + 98 = it
It may be assumed that v5 > 76 > 77 > 8 > 0, by re-ordering Ms, Mg, Mz,
Mg if necessary, and that for ¢ = 5,6, 7 any power of p dividing M, also
divides M;. Let e, k, m be given by

(8) p5 ” (M5M6 + M5M7 + M6M7 + M42 — M4(M5 + MG + M7),pu) y

9) PPl (2M3 + My — M5 — Mg — Mz, p*)

and

(10) p™ || (2My — Ms — Mg — My, p").

Writing M; = my it follows that the number of m = (my, ..., mg) satisfying

f1(X) = f2(X) (mod p*) is less than or equal to the number of solutions
in My, ..., Ms of (3)—(6) with |M;| < hfori=1,...,8. We now present the
lemmas which together provide the proof of Theorem 1. In all cases there
are h possible values for m;. Given Mg, ..., Mg there are < h/pt*+1 choices
for My from (3). We have < h/p™ax(#=F-k) 4 1 choices for M3 from (5) and
(9), given My, ..., Ms. The following notation will be used:
h® h® h?
TR MY e Y R Y R 2 TR Y

+ ht

and
S =“M,...,Mg:|M;| <hfori=1,...,8 and (3)-(10) hold”.

4. Extending the conditions S. In this section we obtain the required
estimate except for the set {S: 0 <m < p—[p/4], e < p, [p/4] < k < [u/2],
vs >0 and p| My}.

LEMMA 4. If H; = {S : m = 0} then #H; < p’A.

Proof. Given My, M5, Mg, M; there are < h/p"~¢ + 1 choices for Mg
from (6) and (8). Since m = 0 there are only non-singular solutions for My
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from (8) and so we have < h/p® + 1 choices for My given M5, Mg, M7. By
(7) it follows that

h h
R -

2 )G G 26 ()

V5,76,77 €
< pPA. m

LEMMA 5. If Hy = {S :m > 0 and pt My} then #Hy < p*A.

Proof. Given My, Ms, Mg, M7 there are < h/p'~¢ + 1 choices for
Mg from (6) and (8). By (8) and (10) there are < h/pmax(e=mm) 4 |
choices for My given My, Mg, M7. Since p{f My, (7) and (10) imply that
pf My and so v7 = 0 and 5 + 76 = p. From (10) it can be seen that
2My = M5 + Mg + M7 + Rp™ for some R € Z. Substituting for M, in (8)
produces

4(M5M6 + M5M7 + M6M7) = (M5 -+ M6 + M7)2 (mOd pmin(Zm,s)) ’

from which we have < h/p™in(m:[(e+1)/2]) 11 choices for My, given Ms, M.
Therefore

h h
#Hy < h<pu + 1) zk: (pmax(u_k’k) + 1)
h h
X Z <pmax(€—m,m) + 1) <pmin(m,[(5+1)/2]) + 1)

()T () (e

5

< ptA. m
Multiplying (5) by 4 and then rearranging yields
(2M3 -2+ M4)2 = 4M4(21 — M4) — 435 + (21 — M4)2 (mod p“)

where Y| = My + Mg + M7 + Mg and Yy = MsMg + MsM7; + MsMg +
M6M7 + MﬁMg + M7M8. Hence it follows from (9) that

PpRRCRI) AN () — My) — 455 + (21 — My)?
and so

(11) (Mg + Mg — M5 — Mg — My)?
= 4(M5Msg +M5M7+M6M7+Mf — My (Ms+ Mg+ M7)) (mod pmin(QkHu))'
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LEMMA 6. If H3 ={S :m >0, p| My and ¢ = u} then #Hs; < pA.

Proof. From (6) and (8) we know that MsMgM; =0 (mod p*) and so,
by (7), vs + V6 + vz = p. Using (8) and (11) we obtain

My + Mg — My — Mg — M7 =0 (mod p™nt[(n+1)/2D)y

from which we have <« h/pmi“(k’[(“+1)/2]) + 1 choices for Mg given My, M5,
Mg, M. There are < h/pl(#+1/2 11 choices for M from (8), given Ms, Mg,
M7. Thus

h h

h h h
2 (=) 6E) =)

V5,76
h h
x Zk: (pmaxmk,k) T 1) <pmin<k,[(u+1>/2n + 1)
< ,U3A. ]

LEMMA 7. If Hy = {S : k > [p/2], m > 0, ¢ < p and p| My} then
#H, <<,M5A.

Proof. As e < p it follows from (8) that p° || RHS and thus p® || LHS
of (11). Hence € must be even and p/? || My + Mg — Ms — Mg — M. Together
with (11) this gives < h/p“*‘S/2 + 1 choices for Mg given My, Ms, Mg, M.
There are < h/p?/? + 1 choices for My from (8), given Ms, Mg, M. There-

fore
#H4<<h<;+1>z<;;+l> > (p};’5+1)<pg6+1)

k V5576577

h h h
() Z () )

g
< pPA. m

LEMMA 8. If Hs = {S: 0 < k < [u/4], m > 0, e < p and p| My} then
#Hs <<,IL5A.

Proof. There are < h/p*~¢ 4 1 choices for Mg from (6) and (8), given
My, Ms, Mg, My, and < h/p™*(e=mm) ] choices for My from (8) and (10),
given My, Mg, M. As in Lemma 5 we have < h/pmi“(m’[(5+1)/2]) + 1 choices
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for M7, given M5, Mg, and thus

#Hs < h( h +1> > (puhk +1>

k

h
X Z < max(a oy T 1) (pmin(m7[(e+1)/2]) + 1>

() 2 () ()

5,76

< pPA. =

LEMMA 9. If Hs = {S : [p/4] < k < [u/2], m > 0, ¢ < p, v = 0 and
p| My} then #Hg < p*A.

Proof. Given My, Ms, Mg, M7 we have < h/p™a<(#=2%) 4 ] choices for
Mg from (6), (8) and (11). From (8) there are < h/pl(e+1)/2] 41 choices for
My given My, Mg, M7. Hence, using (7),

#Hs < h( h + 1> > (p:: + 1) (pgﬁ + 1) <pu_55_% + 1)

5,76

h h
% Z <p[(a+1>/2 > ( i 1) (pmm,ﬁ,k) + 1)

<<H4A.I

LEMMA 10. If H; = {S : [p/4] < k < [u/2], m > p—[p/4],e < p, 75 >0
and p| My} then #H; < pSA.

Proof. Given Ms, Mg, M7, Mg there are < h/p™ + 1 choices for My
from (10). By (7) it follows that

h h h h h
#il < h(w“) 2 (WH) (w“) (w“) <p “)

V5,76,77

) 2 )

< pPA. m
The conditions S have now been extended as follows:

§'= 5:0<m < p=[p/4], e <p, [n/4] <k <[u/2], ys > 0 and p| My” .

This notation will be used in the next section.
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5. Extending the conditions S’. In all the remaining cases we obtain
an expression of the form

h L
#Hi<<h<p/£+1>z<pDa+pr+p’%+h>’

where the sum is over a maximum of six variables. It is sufficient to show
that Dy > 2+ (/2] — /4], Dy > p+ (/2] — [1/4] and De > p— [1/2]
since

b h ] h® h? h* B3 A
o D)\ g T et T e ) <A
We now continue with further steps in the proof of Theorem 1.
LEMMA 11. If Hg = {5 : 2k < ¢} then #Hgs < u®A.

Proof. From (8) and (11) we know that p* | My + Mg — Ms — Mg — My.
By (10), this implies that p™(™#*) | M, — Mg. Hence, by (6) and (7), it
follows that

(12) e+min(m, k) <vs+v% +77 < p.

There are < h/p*—¢+1 choices for Mg from (6) and (8), given My, M5, Mg,
Mz, and < h/p™ax(e=mm) 4 1 choices for My from (8) and (10), given Ms,
Mg, M. Therefore

h h h h
(5 ) 32 () 1) )

k,e,m

h h h
x Yy <5+1)<6+1><7+1>
Y5,76,Y7 pfy pﬂy pﬂy
h S N
<<h<pu+1> > (leerDerpDBJrh),

k,e,m
V5,76,77

where
Dy =2u—k—¢e+max(e —m,m)+ v + v + 7,
Dy =min(2u — k — e+ max(e —m,m),2u —k —e+ v + v + 77,
p— € + max(e —m,m) + 5 + 6 + V7) 5
D3 =min(p — e + max(e —m,m),u—e+v5 +v + 7,20 —k —¢,
Y5 + Y6 + v7 + max(e —m,m)).
It can be seen from (12) that Dy > 2 — k + max(e — m, m) + min(m, k) >
2u+[p/2]—[1/4]. By (7) we know that vs+v6+7v7 > p—[u/4] > p—k. Also,

if max(e—m, m) > v5+76+77 then e—m > v5+v6+77. This is possible only
if m < [p/4], in which case (12) implies that e + m < v5 +v6 + 77 < € —m,
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a contradiction. We conclude that max(e — m,m) < ~5 + 76 + 7. Hence
D3 = min(p — e + max(e —m,m), 2u—k —¢) > p—[e/2] > p— [p/2] and
Dy =2pu—k—e+max(e —m,m). If e > [u/2] 4 [1/4] then (12) implies that
m < (/4] and 0 Dy = 2 —k—m > 2 [1/2) — [u/A]. Tt € < [1/2) + (/4]
then, as k < max(e — m,m), we have Dy > 2u—e > 2u — [p/2] — [n/4]. =

It may now be assumed that pu > 2k > e. Consequently, it follows
from (8) and (11) that ¢ is even and

(13) p/? || My + Mg — Ms — Mg — M.

Denote by @ the expression

(14) Q= MsMg + MsMy7 + MMy + M7 — My(Ms + Mg + M) .
LEMMA 12. If Hy = {5 : 2k > €,2m > ¢} then #Hg < u°A.

Proof. Given My, My, Mg, My there are < h/pmax(n—e2k=c/2) 4 1
choices for Mg from (6), (8), (11) and (13). By (10), p*™ || (2My — M5 —
Mg — M7)2 and so

4Q = 2(Ms Mg + MsMy 4+ MgMy) — M2 — M2 — M? (mod p*™).
As p® || Q we deduce that
(15) p° || ME + MG + M? — 2(Ms Mg + Ms M + Mg M) .
It follows from (10) and (13) that p*/2 | My — Mg, which, together with (6)
and (7), implies that
(16) 3/2< 5+ 6+ < p-
Thus from (6) we obtain

Q My — Mg My Mg M~ —
pe ) pa/2 - pgg/z (HlOd pM 35/2)
and fI'OHl (11) and (13) we have

Q My+ Mg — M;— Mg — M\ _ 4Q°

E ’ pe/2 = p3€
Since M4+M8—M5—M6—M7 :2M4—M5—M6—M7—(M4—M8),
combining the above two congruences produces

2 3
(Q(2M4 — Ms5 — Mg /—2M7) - M5M6M7) _ 4632 (mod pmin(n=32/2,2k—<))
p° c

(mod p*+~9).

Y

which simplifies to

(17)  Q*(MZ + Mg + M7 — 2(MsMs + Ms My + MgMy))
= MsMeM7(2Q(2My—Ms—Me—M7)—Ms Mg M7) (mod pmin(“+3€/2’2k+2€)).



332 L. Dodd
From (15) it can be seen that p* || LHS of (17). By (16) we must have
min(u + 3¢/2, 2k + 2¢) > 3¢ and thus p3¢ || RHS of (17), or
PP T || 2Q(2My — My — Mg — My) — MsMgM; .
This together with (10) implies that
3e =5 — Y6 — 7 = min(e +m, 5 + 6 + 77) -

Ife+m <5+ + 7 then 26 — m > v5 + v + v7 > € + m, contradicting
2m > €. Hence, from (7), (16) and the above we conclude that

W 3e
(18) p=gl S5 =mte b <p

2
It follows from (8), (10) and (18) that
p°/? || 2Q(2My— My — M —My) (M3 +Mg +M7—2(Ms Mo +Ms M7+ Mg Mr))
—2Ms MeM7(2Q + (2My — Ms — Mg — M7)?).

This is the derivative of (17) with respect to M, and so there are <
h/p™in(i=e,2k=2/2) 4 1 choices for My given Ms, Mg, M. By (7) and (18) it
follows that

h h h
#Hg < h(pu + 1) Z <pmin(pe,2ka/2) + 1> (pmax(,us,ka/Q) + 1)

k.e
h h h h
() (o) e ) G o)
h h® h? ht
3 3
< h<zﬂ‘+1)kz;<pl’4+pl’5+pm +h>,
where
Dy=2p+k>2u+ [g] - [Z]
. 3e €
D5:m1n<2u+kz—2,2u—k+2,u—l—k‘—|—€>
> min(2p — &, p+ k) > p+ [g] - [/ﬂ
3 3
Dgzmin<,u+2k:—28,2,u—k—€,,u+k—;,u—k+25>

>,u—k:2,u—[g}l

LEMMA 13. If Hig = {S" : 2k > ¢ > 2m} then #Hyo < uSA.
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Proof. Given My, M5, Mg, M7 there are < h/pmax(n—e2k=e/2) 4 1
choices for Mg from (6), (8), (11) and (13). Since p # 2, from (8) and (14)
we know that p® || 4Q. This can be rewritten as

(2My — M5 — Mg — M7)?

= MZ + M¢ + M7 — 2(MsMg + M5 M7 + MgM7) (mod p°),
which, together with (10), implies that
(19) P2 || M2+ ME + M2 — 2(Ms Mg + MsM; + MgMy) .

From (10) and (13) we see that p™ | My — Mg and so from (6) and (7) we
have

(20) e+m<ys+7+77 < .
Using (6), (11), (13) and (20) we deduce that
Q My — Mg _ M5;MeMy

= H—e—m
ps pm - pa—i-m (mOd p )

and

C}m+m—m—m—myz4@

2k—2m)
pa pm p2e+2m :

(mod p

Combining these two congruences as in the previous lemma, we obtain

(21)  Q*(M2 + MZ + M2 — 2(MsMg + MsMy; + MgMy))
= M5 Mg M7 (2Q(2My—Ms—Mg—My)—MsMgM7) (mod pmin(ptetm2k+2e))

By (8) and (19), p**T2™ || LHS of (21). But from (20) we know that min(u+
€ +m, 2k + 2¢) > 2e + 2m and so p?**2™ || RHS of (21), or

p2 M= =67 || 2Q(2My — My — Mg — M7) — MsMgM; .

Hence, by (10), we see that 2 +2m —v5 — v —y7 > min(e +m, 5 +v6 +v7),
which, together with (7) and (20), implies that

(22) u—[ﬂé€+m:%+%+w<ﬂ-

Also, from (10), (19) and (22) it can be seen that

P (1 (2(2My — M5 — Mg — Mr)? +4Q) (Mg + Mg + M?
—2(MsMeg + MsMy + MgMz)) — 12M5MeM7(2My — M5 — Mg — M7) .

This expression is the second derivative of (21) with respect to My and
so there are < h/plimin(ute=3m.2k+2e—4m)+1)/2] 4 | choices for My, given



334 L. Dodd
M5, Mg, M;. Hence, by (22),

h
HH,o < h( + 1)
pﬂ

h
x Z ( max(u—e,2k— a/2)+1> <pmin([(u+a3m+1)/2]7k+a2m)+1>

k,e,m
h h h h
x( _k+1> Z <5+1><6+1><+1>
p“ Y5,76,Y7 p'Y p’Y p’Y
h S RS h4
< 3h<+1> (+ >
o k;n pP7 ~ pPs ~ pP

where

— 1
max(zu ku+k+2)+min([w],k+5_m)

2
3 7 7
> 92 — LA IR
> 2+ 5 = 2M+[2} LJ,

-3 1
Dg = p—k+min <max <,u—;,2k:> +min <['u;n+],k+;—2m>,

max(u—i—m,%—i-;—i-m),
Hmm([ﬂ“;ml},m_m))

% 1%

k> Lol I

> p+ _u+[2} [4},

Dy = min (M—k+min <€+m,max<u—s,2k—;>,

min({u+5_23m+l],k+€—2m>>,

— 1
min([ug.;n_‘_],k—}-;—Qm) + max <,u—§,2k:>)

>u—k2,u—[”]-

2

It may now be assumed that € = 2m. There are < h/pmax(“*Qm’%*m)—l—l

choices for My from (6), (8), (11) and (13) given My, M5, Mg, M.

LEMMA 14. If Hiy = {S" : 2k > ¢ = 2m and 75 + v6 + 77 > 2k + m}
then #H1 < p’A.
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Proof. From (10) there are < h/p™+1 choices for My given M5, Mg, M7
and it follows that

h h h i
#Hll < h<p# + 1> Z <pmaX(#—2m72k_m) + 1> (pl‘_k * 1> <pm - 1)

k,m
h h h

x Yy (+1)(+1)(+1)

Mool p’75 p’YG p’Y7
h ho h® ht
3 3
<<Mh<p'u+1>kyzm(pl)10+pDu+pD12+h>7
where
Dy = p+k+2m+max(p —2m, 2k —m) > 2u+k > 2u+ [g] - [/ﬂ ,

Dy1 = min(p+ k+2m, min(p — k+m, 2k + 2m) + max(pu — 2m, 2k —m))

I 0
>tk > Loy QR o
>z 4] - |4

D15 = min(max(p — m, 2k), u — k + m, 2k + 2m)
> min(pu — k,2k) > p— [g] . m
By (10) and (13) we know that p™ | My — Mg and so, by (6), (7) and (8),
(23) 3m <5+ + 7 < W
Also, with @ given by (14), from (6), (11) and (13) we obtain
Q My— Mg _ Ms;MeMy

— -3
g g = e (wed s

and

2k:—2m) .

Q My+ Mg — Ms — Mg — M;\> _ 4Q?
o . o = (mod p

- p6m
Proceeding as in Lemma 12, these two congruences combine to produce

(24)  Q*(MZ + Mg + MZ — 2(M5Ms + M5 My + MgMy))
= M5 Mg M7 (2Q(2My—Ms—Mg—M7)—MsMgMy;) (mod p™in(Zktampu+im)y

Define = by
(25)  p" || (M + M§ + M7 — 2(M5 Mg + Ms My + MgMz),p").

LEMMA 15. If Hio = {S’ : (25) holds, © > 2k > € = 2m and 2k +m >
Y5 + Y6 + 7} then #Hyp < pPA.
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Proof. Since p?™ || Q (25) implies that pmin(2k+4m.pt3m) | RUS of (24)
or, by (7),
4Q(2My— M5 — Mg — My) = 2M5MgM; (mod p™in(Zhtamputim)=ns =397

We know that min(2k +4m, u+ 3m) — v5 — 6 — Y7 > 3m. Since p*>™ || LHS
and p75 7677 || RHS of the above we conclude that

(26) u—[ﬂ<3m=75+76+77<u-
As 4Q = (2My—Ms—Mg—M7)? = Mz — Mg — M3 +2(Ms Me+Ms Mr+Meg My)
we can rewrite the above as
(2My — M5 — Mg — M7)((2My — My — Mg — My)?
— M2 — MZ — M2 + 2(MsMg + MsMy7 + MgMy))
= 2M5;MgM; (mod pmin(%””’“)) .
By (10) and (25) it follows that
p2'rn H 6(2M4 — M5 — M6 — M7)2
—2(M2 + MZ + M2 — 2(MsMg + Ms My + MgMy)) .

This is the derivative of the above expression with respect to M, and so there
are < h/pmln(?k_m’#_2m) + 1 choices for M, given My, Mg, My. Therefore

h h
#Hip < h(p“ + 1) Z <pmin(2k—m,u—2m) + 1)

k,m

h 1 7h 1
X pmaX(Qk—m,u—2m) + p,u—k: +

h h h
P> <p75 " 1) (p% " 1) (pW " 1) '

V5,76,Y7

As (26) holds, the result follows by comparison with Lemma 12. =

LEMMA 16. If Hi3 = {5’ : (25) holds, 2k > z > p—m, 2k > ¢ = 2m
and 2k +m > v5 + Y6 + Y7} then #Hy3 < pPA.

Proof. There are < h/p™+1 choices for My from (10) given Ms, Mg, M7
and < h/pl*+D/2 4 1 choices for M; from (25) given Ms, Mg. By (7)
and (23),

h
HH5 < h< + 1>
pﬂ

h h h h
< Z () ) (1) (oo 1)

k,m.,x
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where

-—m+1
Dis=p+Fk+v+7 + [M}

2

— 1
o3 o 1]

p—m+1
2

S o a RAN I R

1
] + min(2k,v5 +v6 + m,u — k +m)>

Dyy = { ] + min(u + k, 75 +v6 + min(p — k +m, 2k))

If m > [p/4] then Dy3 > 2p+m > 2p+ (/2] — (/4] and if m < [p/4] then
Diz > 3p—m — (/2] > 3pu — [1/2] — [p/4]. =

It remains to consider min(2k, u —m) > x. From (8), (14) and (25) we
see that p”+4™ || LHS of (24) and thus

P || My Mg M7 (2Q(2My — Ms — Mg — My) — MsMgMy).
This together with (23) implies that « + 4m > v5 + 6 + 7 + 3m, or
(27) T>y5+ Y%+ —m.

We now look at the derivatives of (24) with respect to M. Define 7', U and
V by

(28)  p" || (Q(2My — M5 — Mg — My)
x (M2 + MZ + M2 — 2(MsMg + Ms My + MgMy))

— MsMgM7(2Q + (2My — My — Mg — My)?), pmin(Gktamputim)y
(29) pU | ((2Q + (2My4 — M5 — Mg — M7)2)
X (Mg + Mg + M72 — 2(M5M6 + MsM- + M6M7))
— 6MsMgM7(2My — Ms — Mg — M7)7pmin(2k+4m,u+3m))
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and

(30)  p" || ((2My — M5 — Mg — M)
x (M2 + MZ + M2 — 2(MsMg + MsM; + MgMs))
— 9 M;5 Mg My, prin(@h+4m.ut3m))

By (7), (10), (25) and (27) it can be seen that

T>v+v%+v+2m, U=+ +y7+m,
(31)
V> +7 + 7.

The conditions S’ have now been extended. In the final section the following
notation will be used:

S" =«8":(25),(28),(29),(30) hold,
min(2k, u —m) > x > v5 + v + 7 — m and 2k > ¢ = 2m”.
6. Completion of the proof. The following five lemmas conclude the
proof of Theorem 1.
LEMMA 17. If Hyy = {S" : T = v5 + 6 + 7 + 2m} then #Hy, < p’A.

Proof. Given Ms, Mg, My there are < h/p™in(2k+4m,u+3m)=ys =75 =57 —2m
+ 1 choices for My from (24) and (28). Hence

h
#Hyy <<h< + 1)
p.u

h h
X Z (pmax(,u—Qm,Qk—m) + 1) (pmin(2k+2m,u+m)—'y5—76—'y7 + 1>
k,m

() 2 GGG

V5,76,Y7

By (23) we know that min(2k +2m, u+m) —v5 —v6 —y7 < min(2k —m, pu—
2m) < max(2k — m, u — 2m) and so the above becomes

h hS h h* 3
#Hi, < h(pﬂ + 1) Z <pD16 + pD17 + les th > ’

k,m
Y5576,Y7
where
Die =2u+k > 2p + [g} - [ﬂ ;

Dy7 =min(2u+k —v5 —v6 — 7. o + k +2m, 2+ m — k)

W W
k> —| ==
> w4+ _u—i—[Z] [4],
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D1s = min(p — k + 5 + 76 + 77,
min(p + 2k, p+k +2m,2u — k+m) —v5 —v6 — 77)
W

LEMMA 18. If Hi5 = {S" : T > vs+v6+y7+2m and U = v5+~v6+7y7+m}
then #Hy5 < pPA.

Proof. From (24) and (29) there are
< h/p[(min(2k+4m,u+3m)*757767777m+1)/2] +1

choices for My given My, Mg, M7. Therefore

h
#Hs < h( + 1)
pl’«

h
% kz <p[<min<2k+3m,u+2m>—%—va—wﬂ)/z] + 1>

h ] h 1
X pmax(uf2m72k77n) + pu—k +
h h h
< 2 ()Gt ) G t):

Y5,76,Y7

By (23) we see that

min(2k + 3m, pu+2m) —v5 —v6 — 7 + 1 < min(2k, u —m) + 1
2 - 2
< max(pu — 2m, 2k —m)

and so

n ho ho h4 5
s < h<p“ * 1) Z (PD“’ * pD2o0 * pP= h > ’

k,m
V5,76,Y7

where
[min(2k + 3m, pu+2m) +v5 +v6 + 77 + 1]
| 2

+ max(2u — 2m — k,u + k —m),

D9 =

[min(2k + 3m, p+2m) — 95 — 6 — 7 + 1]
L 2 .
+min(p — k + 5 + v + 7, max(u + k —m,2u — k — 2m))

. 7 7 7
_ — M — > M — M
>m+mln<2,u k [4],u+k m>_u+[2] [4],

Doy =
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) <[min(2k+3m,u+2m) — Y — Y6 — V7 + 1}
Dy = min 5

+ min(p — k, max(p — 2m, 2k —m)),

M_k+75+'76+77> >p—k=>p— [g]
From (7) and (23) it follows that if 2k < 1 — m then
— 1
D1922M+|:'75+76+;7 m+ }
T [maX(Sm,/,L—[Qu/Al]) —m—i—l] o [g] B [Z]

and if 2k > g — m then
pw—m+ 1] N [u+max(3m,u — [u/4]) + 1}

2 2

22 [5] -[3)-

It may now be assumed that
(32) T>v+v%+v+2m, U>vy+v+y+m.
From (30) it follows that (2My — My — Mg — M) (M2 + M3+ M2 —2(Ms Mg+
MsMy7 + MgMyz)) = HpY + 2MsMgMy for some H € 7Z with p{ H. Substi-
tuting this into (28) gives

QHpY = MsMgM7(2M, — M5 — Mg — M7)? (mod pT).

By (7) and (10) we know that p¥s+76+77+2m | RHS of the above and thus,
by (32), p¥stretir+2m || QHpY | from which we conclude

(33) Vi=2+7+7-

It can be seen from (29) that

(M2 + Mg + Mz —2(Ms Mg+ Ms M7+ Mg Mz)) ((2My — M5 — Mg — M7)* +2Q)

= 6M5MgM7(2My — M5 — Mg — M) (mod pY).

By (7) and (10) p*»tety7tm || RHS and so, by (32), p¥styetrr+m || LHS.

Thus, using (10), (25) and (27), we deduce that p*>™ || (2My — My — Mg —

M7)? 4+ 2Q and

(34) z=7+7 +y7 —m.

From (28) we have

4Q(2My — M5 — Mg — M7)(MZ + Mg + M7 — 2(MsMg + M5 My + MgMy))
—2Ms Mg M7(4Q + 2(2My — My — Mg — M7)?) =0 (mod pT).

D192M+[
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As
4Q = (2My— Ms— Mg —M7)* — (M2 +MZ + M3z —2( Ms Mg+ Ms M7+ Mg My))
this can be rewritten as
((2My — M5 — Mg — M7)* + 2M5 Mg M)
x (M2 + MZ + M2 — 2(MsMg + Ms My + MgMy))
—(2My — M5 — Mg — My)(M2 + MZ + M2 — 2(MsMg + MsM; + MgM))
—6M5 Mg M7 (2My — Ms — Mg — M7)> =0 (mod pT).
It follows from (7), (10), (25) and (34) that
(2My — M5 — Mg — M7)3 (M2 + MZ + M2 — 2(MsMg + MsMy + MgMy))
—6M5M6M7(2M4 — M5 — MG — M7)2 =0 (mod pmin(T,2(’y5+'76+'y7)fm)) N
which, together with (10), implies that
(35)  (2My— M5 — Mg — M7) (M2 4 M + M3 —2(Ms Mg+ Ms My + Mg M)
—6M5MgM7 =0 (mod pm™(T—2m20t7e+yr)=3m))
By (29),
(2(2My — M5 — Mg — M7)* +4Q) (M2 + M+ M7 —2(Ms Mg+ Ms M7+ Mg M)
—12M;sMgM7(2My — Ms — Mg — M7) =0 (mod pY).
Substituting for 4¢) this becomes
3(2My — M5 — Mg — My7)* (M2 4+ MG + M2 — 2(MsMg + MsM; + MgMy))
— (M2 + MZ + M? — 2(MsMg + MsMy + MgMy))?
—12MsMgM7(2My — Ms — Mg — M7) =0 (mod pY),
which, by (10), (25) and (34), reduces to
(2My — M5 — Mg — My)(M2 + MZ + M2 — 2(MsMg + MsM; + MgMy))
—4AMsMgM7 =0 (mod pmi“(U_m’z(%‘*'%*'W)_gm)) .

Subtracting (35) from the above congruence we obtain 2M;MgM; = 0
(mod pmin(U=m.T=2m.2(vs+76+97)=3m)) and so, by (7), 5 +76+7y7 > min(U —
m, T — 2m,2(v5 + 76 + v7) — 3m). This, together with (7), (23) and (32),
implies that

(36) M—[Z]S3m=75+’76+77<ﬂ-

It follows from (36) that

[ emerel m
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LEMMA 19. If Hig = {S” : (32) holds and 2U > min(u + 5m, 2k + 6m)}
then #Hyg < pPA.

Proof. Given Ms, Mg, M7 there are < h/pY~3™ + 1 choices for M,
from (29), (30), (33) and (36). As

UZmin([’lﬁLZerl},k—i-?)m)

we may take the number of My to be <« h/p™in(kl(k=m+1)/2) 4 1 Using
(36) it follows that

h
#Hig < h( + 1)
p/i

h h
X kz <pmin([(um+1)/2],k) + 1> <pmax(u2m,2km) + 1)

() 5 () () ()

V5,76,Y7

h h® h? h*
3 3
< K h(p,u 1) kz (pD22 pD23 pD24 h ) ’

where

p—m-+1

Dzzzy—k+3m+min<k,[ 2

[) + it — 2,2k —

>2u+m>2u+ [g} - V]

4
— 1
Dy = min (1| “=51] )
2
+ min(p — k + 3m, max(2u — k — 2m, u+ k — m))
— 1
e (1[5 ]) e [5] - [3]

— 1
D54 = min <,u — k + 3m, min <k‘, [W])

+ min(p — k, max(2k — m, pu — 2m))>

> min(p — k,2k) > p— [g] ..



System of congruences 343

For the final two cases it may be assumed that

(37) 2U < min(2k + 6m, u + 5m) .
We rewrite (24) as
(38) AyMj + AsM3 + AoM? + Ay My + Ag = 0 (mod pin(Zk+am.p+3m)y.
Hence (28) and (29) now become
(39)  pT || (4A4MS 4+ 3A3MZ + 245 My + Ay, pmin(Zhtamptim))
and
(40) PY || (1244 M7 + 6 A5 My + 2A,, p™inGhtamutdm))
where

Ay = 0? — 4oy = M2 + MZ + M2 — 2(MsMg + MsM; + MgMy),

Az = 80109 — 20? — AMsMeM- ,
(41) Ay = o — 20205 — 802 + 6 M5 Mg Mo,

Ay = 80103 — 20309 — 4MsMg Moo — 2MsMgMro?

Ag = oi0s — 403 + 2MsMgMqo109 + MZMGMZ
and

01 = Ms+ Mg+ M; and o9 = MgMg+ MsM;+ MgM-.
From (39) we see that for some R € Z, pt R,
RpT — 3A3M? — 245 My — A4

4A, '
This, in conjunction with (38), implies that
T T 2
~or g (o - ) (7 - )
— 0 (mod pmin(k+dmpit3m)y.
But from (25), (34) and (36) we know that p?>™ || A4 and thus
(42)  16AgA4 — A1 Az + AzRp” + My(4A4Rp™ + 1241 A4 — 2A5A3)
+M?(8A3A4 — 342) =0 (mod pmin(k+6mputom)y.

Clearly from (40), p¥ || 64, M2 + 3A3M4 + Ay and so
36 A M +36A3 AaMj+M7(9A5+12A Ag)+6 A3 Az My+A3 =0 (mod p?Y).
Also, by (38),
36 A4(Ag My + AsM3 + Ay M2 + A; My + Ag) = 0 (mod pmin(k+6mptom)y
These two congruences and (37) imply that
MZ(24A5A4 —9A2) + My (36 A1 Ay —6A3A3) +36A404, — A2 =0 (mod p?Y).

M =

Ag
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Substituting this into (42) produces
12A0A, — 3A1 A5 + A2 + 3Rp™ (A3 + 4A4 M) =0 (mod p*Y).
From (41) we know that
Ay + 4A, My = 2A,(2My — Ms — Mg — My) — 4Ms Mg M; .
Thus
12A0 A4 — 3A 1 Az + A2 4+ 6Rp™ (A4(2My — M — Mg — My) — 2Ms Mg My)
=0 (mod p*Y)

which, taken with (7), (10) and (36), implies that p™»(T+3m.2U) | 124 A, —
3A1A43 + A2. By (41) we can rewrite this as

AL 424 M2ZMEM2 A, =0 (mod p™in(T+3m20))
or
(43) A3 4+ 24M2M2M2 = 0 (mod pmin(T+m.2U—2m))

It is now necessary to examine the derivatives of A3 + 24M2MZM?2? with
respect to My. Define

Pt || 3A2(2M7 — 2M5 — 2Mg) + A8M2ZMZE M
p%2 || 6A2 + 6A,(2M7 — 2M5 — 2Mg)? + A8M2EMZ
(44)  p% || 36A4(2M7 — 2M5 — 2Mg) + 6(2My7 — 2M5 — 2Mg)? |
p% || T2A4 + T2(2M7 — 2Ms5 — 2Mg)?,
p% || 720(M7 — My — M) .
By assumption v5 > ¢ > 77 and so from (36) we have
(45) Y5 + Y6 > 2m.

Therefore, as p*™ || Ay = (My — M5 — Mg)? — 4M5Ms, it follows that
p™ | M7 — Ms — Mg and from (44) we deduce that

(46) 05 >m, d04>2m, 0d3>3m.

LEMMA 20. If Hyi7 = {S” : (32), (37)—(41) and (44) hold and 6, = 2m}
then #Hy7 < uSA.

Proof. The proof is split into two cases according to the value of
min(2U — 2m, T + m).

Case 1: 2U — 2m < T + m. Given M5, Mg, M~ there are
< h/pmax(min(u+3m,2k+4m)—T,T—U) +1
choices for M, from (38), (39) and (40). Since

min(p + 3m, 2k +4m) — U + 1
2

max(min(p+3m, 2k+4m)—-T,T-U) >
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we may take the number of M to be < h/plmin(u+3m 2k+dm)=U+1)/2] 4 1
Given Mjs, Mg there are < h/p" + 1 choices for M; from (43) and (44),
where

W:max(2U—2m—51,(51 —(52,(52 —(53,53—27‘”) Z |:(];_1:| —m.
Thus

h
#Hi7 < h< + 1>
pﬂ

h h
X (p[(min(u+3m,2k+4m)—U+1)/2} + 1) (p[(U+1)/z]_m + 1)
k,m,U

h h h h
X (puk + 1) (pmax(u—Qm,Qk—m) + 1) Z (p’Ys T 1) (p’YG + 1) )

V5,76
By (37),

2 2
and so, using (45), we obtain

h
#H17 < M2h< + 1)
pl/f

[mln(u+3m,2k—l—4m)—U+1] > [U—i—l] o

h? h
x Z <pmin([(u+m+1)/2],k+m) + plU+1)/2]-m + 1>
k,m,U

h4 3 2
X <pmax(2,u,—k:,,u+k:+m) + ﬁ + p7 + h>

h h® h® h*
2 3
< p h<pu+1> E <pD25 +pD26 —i—po +h ),

k,m,U
where
1
D25:min<{’u+7:+],k+m>+max(2u—k,u+k+m)
[ p
> 2 > 2 —| ==
>2u+m 2 ,u+[2] [4],
1
D26:min<u—|—min<[u+;n+],k‘+m>,
1
{U;]—m—i—max@u—k,,u,—i—k—i—m))

2 2
k Lkl R Wt
> U+ >u+[2} LJ,
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1 1
Dy7 = min <u+ [U;L] —m,k+min<[u+r2n+},k+m>,

maX(Q,u—k‘,u—{—k:—km)) > — [g}

Case 2: T+ M < 2U — 2m. There are
< h/pmax(min(u+3m,2k+4m)7T,U73m) +1
choices for My from (29), (30), (33), (36), (38) and (39), given M5, Mg, M.
Since

max(min(p + 3m, 2k +4m) —T,U — 3m)
S [min(u+3m,2k+4m) —-T+U-3m+1
- 2

we may take the number of My to be < h/pltmin(u2ktm)=T+U+1)/2] 4 1,
Given Mj, Mg, there are < h/pY + 1 choices for My from (43) and (44),
where Y = max(T +m — 01,1 — 02, 62 — 93,03 —2m) > [(T'—m + 3) /4] and
SO

h
HH ., < h< + 1>
pﬂ

h h
x kZ <p[(min(y,2k+m)—T+U+1)/2} + 1) <p[(:r—m+3)/4} + 1)
UT

h h
X pﬂ_k +1 pmax(uf2m72k7m) +1

x Y <p};+1><pz6+1>.

V5,76

From (37),

min(p,2k+m) —T +U + 1 T—m+3
+
2 4
- [min(2u—m,4k+m)+2U—T]
- 4

> min <k: +m, [M‘;m]>

min(p,2k+m) —T +U + 1 . E+m]| [p+m
5 > min 5 , 1 .

and
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Also, (32) and (36) imply that T > 5m and consequently [(T—m+3)/4] > m.
Hence, by (45), it follows that

h h2 h
4
#Hyr < p h(pu + 1> > <pmin([(u+m)/2}’k+m) + o + 1)

k,m

h4 h3 h2 L
N\ s e T T

h hS h® Rt
4 3
<L h(p#—kl) g <pD28+pD29+pD30+h>’

k,m

where

Dog = min({ﬂ—;m],k—l—m) + max(2u — k,u+ k 4+ m)

f p
> 2 > 9 Bl |E

Doy = min(lu—l—min<['u—;m},k‘—l—m>,

max(2u — k +m, u+ k‘+2m)>

% %
k 2o E
> u+ >,u+{2} [4},

D3y = min<u+m,k+min<[ﬂzm}k+m>,

max(2,u—k:,,u—|—k:+m)> > - [g] . m

LEMMA 21. If His = {S" : (32), (37)—(41) and (44) hold and 64 # 2m}
then #His < ,u6A.

Proof. By (46) we must have d4 > 2m. Using (44) it follows that A4 +
(2M7 — 2Ms5 — 2Mg)%? = 0 (mod p*) and so we deduce that

(47) p™ || Mg — Ms — Mg .
This together with (44) implies that 65 = m and

6A4 + (2M7; — 2M5 — 2Mg)? =0 (mod p% ™).
It can also be seen from (44) that

6A4 + 6(2M7 — 2M5 — 2Mg)? = 0 (mod p®1).
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Combining these two congruences gives
5(2M7 — 2Ms — 2Mg)? = 0 (mod pmin(s—m.d4)y
which, by (47), implies that 2m > min(d3 — m, d4) and thus d3 = 3m.
Case 1: 2U — 2m < T + m. Given M5, Mg, M~ there are
& hplminut3m,2k-+4m)~U+1)/2] | ¢

choices for M, as in Lemma 20, Case 1. From (43) and (44) we have <
h/p? + 1 choices for My, given My, Mg, where

Z = max(2U — 2m — 61,01 — 62,02 —3m) > {W] '

Therefore

h
H#Hig < h( + 1>

h h
X Z <p[(min(#+3m,2k+4m)—U+1)/2} + 1><p[(2U—5m+2)/3] + 1)
k,m,U

h h h h
X (puk + 1><pmax(,u—2m,2k—m) + 1> Z (p’ys - 1)(])76 T 1) )

V5,76

It can be seen from (32) and (36) that U > 4m, which in turn implies that
[(2U — 5m +2)/3] > m and

min(p + 3m, 2k +4m) — U + 1 2U —5m + 2
+ -
2 3
[min(&u—m 6k‘+2m)+U]

([ o)
; (1

k+m| [p+m
4
by (37). Using (45) it follows that

h h h
, o
#His < pi h<p# + 1> 2 <pmin<[<u+m>/2w+m> Tt 1)
k,m

h* h?  h? L
X pmax(Zlu,—k“u—&-k—&-m) + ﬁ + ]? +

v

Also,
{min(u +3m,2k+4m) - U + 1]

< utA
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by comparison with Case 2 of the previous lemma.
Case 2: T+ m < 2U — 2m. Given M5, Mg, M7 we have
< h/p[(min(p,2k+m)—T+U+1)/2] +1

choices for M, as in Case 2 of Lemma 20. By (43) and (44) we have
< h/p" +1 choices for My given My, Mg, where

L:maX(T+m—51,61 — 03, 02 —3m) > |:,T—2377’L-f—2:|

and so

h
#His < h( + 1>
pN

h h
x> <p[(min(u,2k+m)T+U+1)/2] T 1) (p[(T2m+2)/3] t 1)
k.,m

U,T

h h h h
(5 )+ ) 2 (1) G +1)

5,76

By (32) and (36), T' > 5m and U > 4m. Consequently, [(T'—2m+2)/3] > m
and

[T—2m+2] N [min(u,Qk%—m)—T—i—U—i—l}

3 2

> [mln(Su—m,gk-l-Qm)—l—U] 2min<[u—;m],k’+m>.

As in Lemma 20, Case 2 we have

h h h
e e
#Hig < p h(p/‘ * 1) Z (pmin([(Wrm)/?LHm) - pm " 1)

k,m

h* h3  h? L
X pmax(Zufk,u+k+m) + ﬁ + F +
< A, m

Since #H < #{U;il H;}, Theorem 1 follows immediately from Lemmas 4
to 21.
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