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1. Introduction. Let X denote an indeterminate. For each vector m ∈
Z2r with components satisfying 0 < mi ≤ h define

f1(X) =
r∏

i=1

(X +mi) and f2(X) =
2r∏

i=r+1

(X +mi) .

In [1] Burgess showed that, for any prime p > 3 and primitive character χ
(mod pα), the estimate

∣∣∣
N+H∑

n=N+1

χ(n)
∣∣∣ = O(H1−1/rpα(r+1)/4r2+ε)

holds in the case r = 3. This inequality was obtained by estimating
∑
m

∣∣∣∣
∑

x∈A1

χ

(
f1

f2
(x)
)∣∣∣∣

where
A1 = {x : 0 ≤ x < pα, p - f1(x)f2(x)} .

In order to do this, Burgess found estimates for the inner summation over
various subsets of A1 and then counted the number of m for which these
subsets were non-empty. The counting process was carried out using different
methods, one of which concerned the estimation of the cardinality of

S = {m : 0 < mi ≤ h, f1(X) ≡ f2(X) (mod pµ)} .
The estimation of such character sums in the case r = 2 is contained in [2].
The case r = 4 has yet to be proved. This paper estimates #S when r = 4,
as a step in the direction of a proof. The result obtained is given by the
following theorem.

The contents of this paper formed part of the author’s PhD thesis (Nottingham Uni-
versity, 1991) which was supported by Science and Engineering Research Council.
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Theorem 1. Suppose p is a prime greater than 5 and µ is a positive
integer. If

H = {m : 0 < mi ≤ h for i = 1, . . . , 8 and f1(X) ≡ f2(X) (mod pµ)}
then

#H � µ6
(

h8

p3µ+[µ/2]−[µ/4]
‘ +

h6

pµ+[µ/2]−[µ/4]
+

h5

pµ−[µ/2]
+ h4

)
.

In [4] Hua and Min obtain an asymptotic formula for the number of
solutions of the system

xh1 + . . .+ xhs ≡ yh1 + . . .+ yhs (mod pl) (1 ≤ h ≤ k)

where s, k, h, l are integers such that s ≥ k ≥ 4, l ≥ k2 and p is a prime
greater than k. Assuming that p 6= 5 and letting sr(x) =

∑4
i=1 x

r
i , in the

particular case s = k = 4, l = 16 the number of solutions of the system

(1)

s1(x) ≡ s1(y)

s2(x) ≡ s2(y)

s3(x) ≡ s3(y)

s4(x) ≡ s4(y)





(mod p16)

is p76(1 +O(p−1/4)). Writing

σ1(x) = x1 + x2 + x3 + x4 ,

σ2(x) = x1x2 + x1x3 + x1x4 + x2x3 + x2x4 + x3x4 ,

σ3(x) = x1x2x3 + x1x2x4 + x1x3x4 + x2x3x4 ,

σ4(x) = x1x2x3x4 ,

it follows that

s1(x) = σ1(x) ,

s2(x) = (σ1(x))2 − 2σ2(x) ,

s3(x) = (σ1(x))3 − 3σ1(x)σ2(x) + 3σ3(x) ,

s4(x) = (σ1(x))4 − 4(σ1(x))2σ2(x)

+ 4σ1(x)σ3(x) + 2(σ2(x))2 − 4σ4(x) .

Since p > 5 the systems (1) and

(2)

σ1(x) ≡ σ1(y)

σ2(x) ≡ σ2(y)

σ3(x) ≡ σ3(y)

σ4(x) ≡ σ4(y)





(mod p16)
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are equivalent. But (2) holds if and only if
4∏

i=1

(X + xi) ≡
4∏

i=1

(X + yi) (mod p16)

for indeterminate X, which, by Theorem 1, has � p76 solutions in one
complete system of residues. A comparison with the result of Min and Hua
shows that, in this case, Theorem 1 is essentially best possible.

2. Basic estimates. The basic tools used in proving Theorem 1 are
the well-known estimate in Lemma 2 and Proposition 3 which is reproduced
from [3]. The notation dxe denotes the least integer greater than or equal to
x and pα ‖x means pα |x, pα+1 -x.

Lemma 2. Suppose p is an odd prime and ν is a positive integer. If
0 < x ≤ h then the number of solutions of the congruence x2 +Ax+B ≡ 0
(mod pν) is � h/p[(ν+1)/2] + 1.

Proposition 3. Let f be a polynomial of degree n having integer co-
efficients. Let p be a prime, d be a positive integer , and α, β and γ be
non-negative integers satisfying γ = dα/de. If T = {x ∈ a complete set of
residues (mod pγ) : pα+β | f(x), pβ ‖ f (d)(x)} then #T � n.

If g(x) is a polynomial with integer coefficients such that pδ ‖ g(d)(x)
then it follows from Proposition 3 that the number of x satisfying 0 < x ≤ h
and g(x) ≡ 0 (mod pµ) is � h/pµ−δ + 1 if d = 1 and � h/p[(µ−δ+1)/2] + 1
if d = 2. The proof of Theorem 1 will be given by a series of lemmas.
Throughout we shall use the fact that the conditions A1 + . . . + An ≡ 0
(mod pα) and paj ‖Aj for j = 1, . . . , n imply that ak ≥ min(minj 6=k aj , α)
for k = 1, . . . , n.

3. Initial transformations. Making the substitution Mi = mi − m1

for i = 2, . . . , 8 we see that f1(X) ≡ f2(X) (mod pµ) if and only if the
following congruences hold simultaneously:

(3) M2 +M3 +M4 ≡M5 +M6 +M7 +M8 (mod pµ) ,

M2M3 +M2M4 +M3M4

≡M5M6 +M5M7 +M5M8 +M6M7 +M6M8 +M7M8 (mod pµ) ,

M2M3M4 ≡M5M6M7 +M5M6M8 +M5M7M8 +M6M7M8 (mod pµ) ,

(4) 0 ≡M5M6M7M8 (mod pµ) .

Eliminating M2 from the second and third congruences of the above system
produces the pair of congruences

(5) (M3 +M4)(M5 +M6 +M7 +M8 −M4)−M2
3
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≡M5M6 +M5M7 +M5M8 +M6M7 +M6M8 +M7M8 (mod pµ)

and

M3M4(M5 +M6 +M7 +M8 −M3 −M4)

≡M5M6M7 +M5M6M8 +M5M7M8 +M6M7M8 (mod pµ) ,

which together imply that

(6) (M4 −M8)(M5M6 +M5M7 +M6M7 +M2
4 −M4(M5 +M6 +M7))

≡M5M6M7 (mod pµ) .

Define γ5, γ6, γ7, γ8 by

pγ5 ‖ (M5, p
µ), pγ5+γ6 ‖ (M5M6, p

µ) ,
(7)

pγ5+γ6+γ7 ‖ (M5M6M7, p
µ), γ5 + γ6 + γ7 + γ8 = µ .

It may be assumed that γ5 ≥ γ6 ≥ γ7 ≥ γ8 ≥ 0, by re-ordering M5,M6,M7,
M8 if necessary, and that for i = 5, 6, 7 any power of p dividing Mi+1 also
divides Mi. Let ε, k,m be given by

pε ‖ (M5M6 +M5M7 +M6M7 +M2
4 −M4(M5 +M6 +M7), pµ) ,(8)

pk ‖ (2M3 +M4 −M5 −M6 −M7, p
µ)(9)

and

(10) pm ‖ (2M4 −M5 −M6 −M7, p
µ) .

Writing M1 = m1 it follows that the number of m = (m1, . . . ,m8) satisfying
f1(X) ≡ f2(X) (mod pµ) is less than or equal to the number of solutions
in M1, . . . ,M8 of (3)–(6) with |Mi| < h for i = 1, . . . , 8. We now present the
lemmas which together provide the proof of Theorem 1. In all cases there
are h possible values for m1. Given M3, . . . ,M8 there are� h/pµ+1 choices
for M2 from (3). We have � h/pmax(µ−k,k) + 1 choices for M3 from (5) and
(9), given M4, . . . ,M8. The following notation will be used:

A =
h8

p3µ+[µ/2]−[µ/4]
+

h6

pµ+[µ/2]−[µ/4]
+

h5

pµ−[µ/2]
+ h4

and

S = “M1, . . . ,M8 : |Mi| < h for i = 1, . . . , 8 and (3)–(10) hold”.

4. Extending the conditions S. In this section we obtain the required
estimate except for the set {S : 0 < m < µ− [µ/4], ε < µ, [µ/4] < k ≤ [µ/2],
γ8 > 0 and p |M4}.

Lemma 4. If H1 = {S : m = 0} then #H1 � µ5A.

P r o o f. Given M4,M5,M6,M7 there are � h/pµ−ε + 1 choices for M8

from (6) and (8). Since m = 0 there are only non-singular solutions for M4
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from (8) and so we have � h/pε + 1 choices for M4 given M5,M6,M7. By
(7) it follows that

#H1 � h

(
h

pµ
+ 1
)∑

k

(
h

pmax(µ−k,k)
+ 1
)

×
∑

γ5,γ6,γ7

(
h

pγ5
+1
)(

h

pγ6
+1
)(

h

pγ7
+1
)∑

ε

(
h

pε
+1
)(

h

pµ−ε
+1
)

� µ5A .

Lemma 5. If H2 = {S : m > 0 and p -M4} then #H2 � µ4A.

P r o o f. Given M4,M5,M6,M7 there are � h/pµ−ε + 1 choices for
M8 from (6) and (8). By (8) and (10) there are � h/pmax(ε−m,m) + 1
choices for M4 given M5,M6,M7. Since p -M4, (7) and (10) imply that
p -M7 and so γ7 = 0 and γ5 + γ6 = µ. From (10) it can be seen that
2M4 = M5 + M6 + M7 + Rpm for some R ∈ Z. Substituting for M4 in (8)
produces

4(M5M6 +M5M7 +M6M7) ≡ (M5 +M6 +M7)2 (mod pmin(2m,ε)) ,

from which we have � h/pmin(m,[(ε+1)/2]) + 1 choices for M7, given M5,M6.
Therefore

#H2 � h

(
h

pµ
+ 1
)∑

k

(
h

pmax(µ−k,k)
+ 1
)

×
∑
ε,m

(
h

pmax(ε−m,m)
+ 1
)(

h

pmin(m,[(ε+1)/2])
+ 1
)

×
(

h

pµ−ε
+ 1
)∑

γ5

(
h

pγ5
+ 1
)(

h

pµ−γ5
+ 1
)

� µ4A .

Multiplying (5) by 4 and then rearranging yields

(2M3 −Σ1 +M4)2 ≡ 4M4(Σ1 −M4)− 4Σ2 + (Σ1 −M4)2 (mod pµ)

where Σ1 = M5 + M6 + M7 + M8 and Σ2 = M5M6 + M5M7 + M5M8 +
M6M7 +M6M8 +M7M8. Hence it follows from (9) that

pmin(2k,µ) | 4M4(Σ1 −M4)− 4Σ2 + (Σ1 −M4)2

and so

(11) (M4 +M8 −M5 −M6 −M7)2

≡ 4(M5M6 +M5M7 +M6M7 +M2
4 −M4(M5 +M6 +M7)) (mod pmin(2k,µ)).
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Lemma 6. If H3 = {S : m > 0, p |M4 and ε = µ} then #H3 � µ3A.

P r o o f. From (6) and (8) we know that M5M6M7 ≡ 0 (mod pµ) and so,
by (7), γ5 + γ6 + γ7 = µ. Using (8) and (11) we obtain

M4 +M8 −M5 −M6 −M7 ≡ 0 (mod pmin(k,[(µ+1)/2])) ,

from which we have � h/pmin(k,[(µ+1)/2]) + 1 choices for M8 given M4,M5,
M6,M7. There are � h/p[(µ+1)/2]+1 choices for M4 from (8), given M5,M6,
M7. Thus

#H3 � h

(
h

pµ
+ 1
)(

h

pµ−[µ/2]
+ 1
)

×
∑
γ5,γ6

(
h

pγ5
+ 1
)(

h

pγ6
+ 1
)(

h

pµ−γ5−γ6
+ 1
)

×
∑

k

(
h

pmax(µ−k,k)
+ 1
)(

h

pmin(k,[(µ+1)/2])
+ 1
)

� µ3A .

Lemma 7. If H4 = {S : k > [µ/2], m > 0, ε < µ and p |M4} then
#H4 � µ5A.

P r o o f. As ε < µ it follows from (8) that pε ‖RHS and thus pε ‖LHS
of (11). Hence ε must be even and pε/2 ‖M4 +M8−M5−M6−M7. Together
with (11) this gives � h/pµ−ε/2 + 1 choices for M8 given M4,M5,M6,M7.
There are � h/pε/2 + 1 choices for M4 from (8), given M5,M6,M7. There-
fore

#H4 � h

(
h

pµ
+ 1
)∑

k

(
h

pk
+ 1
) ∑
γ5,γ6,γ7

(
h

pγ5
+ 1
)(

h

pγ6
+ 1
)

×
(
h

pγ7
+ 1
)∑

ε

(
h

pε/2
+ 1
)(

h

pµ−ε/2
+ 1
)

� µ5A .

Lemma 8. If H5 = {S : 0 ≤ k ≤ [µ/4], m > 0, ε < µ and p |M4} then
#H5 � µ5A.

P r o o f. There are � h/pµ−ε + 1 choices for M8 from (6) and (8), given
M4,M5,M6,M7, and� h/pmax(ε−m,m)+1 choices for M4 from (8) and (10),
given M5,M6,M7. As in Lemma 5 we have� h/pmin(m,[(ε+1)/2]) + 1 choices



System of congruences 329

for M7, given M5,M6, and thus

#H5 � h

(
h

pµ
+ 1
)∑

k

(
h

pµ−k
+ 1
)

×
∑
ε,m

(
h

pmax(ε−m,m)
+ 1
)(

h

pmin(m,[(ε+1)/2])
+ 1
)

×
(

h

pµ−ε
+ 1
) ∑
γ5,γ6

(
h

pγ5
+ 1
)(

h

pγ6
+ 1
)

� µ5A .

Lemma 9. If H6 = {S : [µ/4] < k ≤ [µ/2], m > 0, ε < µ, γ8 = 0 and
p |M4} then #H6 � µ4A.

P r o o f. Given M4,M5,M6,M7 we have � h/pmax(µ−ε,k) + 1 choices for
M8 from (6), (8) and (11). From (8) there are � h/p[(ε+1)/2] + 1 choices for
M4 given M5,M6,M7. Hence, using (7),

#H6 � h

(
h

pµ
+ 1
) ∑
γ5,γ6

(
h

pγ5
+ 1
)(

h

pγ6
+ 1
)(

h

pµ−γ5−γ6
+ 1
)

×
∑

ε,k

(
h

p[(ε+1)/2]
+ 1
)(

h

pµ−k
+ 1
)(

h

pmax(µ−ε,k)
+ 1
)

� µ4A .

Lemma 10. If H7 = {S : [µ/4] < k ≤ [µ/2], m ≥ µ− [µ/4], ε < µ, γ8 > 0
and p |M4} then #H7 � µ5A.

P r o o f. Given M5,M6,M7,M8 there are � h/pm + 1 choices for M4

from (10). By (7) it follows that

#H7 � h

(
h

pµ
+1
) ∑
γ5,γ6,γ7

(
h

pγ5
+1
)(

h

pγ6
+1
)(

h

pγ7
+1
)(

h

pµ−γ5−γ6−γ7
+1
)

×
∑

k

(
h

pµ−k
+ 1
)∑

m

(
h

pm
+ 1
)

� µ5A .

The conditions S have now been extended as follows:

S′ = “S : 0 < m < µ−[µ/4], ε < µ, [µ/4] < k ≤ [µ/2], γ8 > 0 and p |M4” .

This notation will be used in the next section.
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5. Extending the conditions S′. In all the remaining cases we obtain
an expression of the form

#Hi � h

(
h

pµ
+ 1
)∑(

h6

pDa
+

h5

pDb
+

h4

pDc
+ h3

)
,

where the sum is over a maximum of six variables. It is sufficient to show
that Da ≥ 2µ + [µ/2] − [µ/4], Db ≥ µ + [µ/2] − [µ/4] and Dc ≥ µ − [µ/2]
since

h

(
h

pµ
+ 1
)(

h6

p2µ+[µ/2]−[µ/4]
+

h5

pµ+[µ/2]−[µ/4]
+

h4

pµ−[µ/2]
+ h3

)
� A .

We now continue with further steps in the proof of Theorem 1.

Lemma 11. If H8 = {S′ : 2k ≤ ε} then #H8 � µ6A.

P r o o f. From (8) and (11) we know that pk |M4 +M8−M5−M6−M7.
By (10), this implies that pmin(m,k) |M4 − M8. Hence, by (6) and (7), it
follows that

(12) ε+ min(m, k) ≤ γ5 + γ6 + γ7 < µ .

There are � h/pµ−ε+1 choices for M8 from (6) and (8), given M4,M5,M6,
M7, and � h/pmax(ε−m,m) + 1 choices for M4 from (8) and (10), given M5,
M6,M7. Therefore

#H8 � h

(
h

pµ
+ 1
) ∑

k,ε,m

(
h

pµ−k
+ 1
)(

h

pµ−ε
+ 1
)(

h

pmax(ε−m,m)
+ 1
)

×
∑

γ5,γ6,γ7

(
h

pγ5
+ 1
)(

h

pγ6
+ 1
)(

h

pγ7
+ 1
)

�h
(
h

pµ
+ 1
) ∑

k,ε,m
γ5,γ6,γ7

(
h6

pD1
+

h5

pD2
+

h4

pD3
+ h3

)
,

where

D1 = 2µ− k − ε+ max(ε−m,m) + γ5 + γ6 + γ7 ,

D2 = min(2µ− k − ε+ max(ε−m,m), 2µ− k − ε+ γ5 + γ6 + γ7 ,

µ− ε+ max(ε−m,m) + γ5 + γ6 + γ7) ,

D3 = min(µ− ε+ max(ε−m,m), µ− ε+ γ5 + γ6 + γ7, 2µ− k − ε ,
γ5 + γ6 + γ7 + max(ε−m,m)) .

It can be seen from (12) that D1 ≥ 2µ− k + max(ε−m,m) + min(m, k) ≥
2µ+[µ/2]−[µ/4]. By (7) we know that γ5 +γ6 +γ7 ≥ µ−[µ/4] > µ−k. Also,
if max(ε−m,m) > γ5+γ6+γ7 then ε−m > γ5+γ6+γ7. This is possible only
if m < [µ/4], in which case (12) implies that ε+m ≤ γ5 + γ6 + γ7 < ε−m,
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a contradiction. We conclude that max(ε − m,m) ≤ γ5 + γ6 + γ7. Hence
D3 = min(µ− ε+ max(ε−m,m), 2µ− k − ε) ≥ µ− [ε/2] ≥ µ− [µ/2] and
D2 = 2µ−k− ε+ max(ε−m,m). If ε > [µ/2] + [µ/4] then (12) implies that
m ≤ [µ/4] and so D2 = 2µ− k−m ≥ 2µ− [µ/2]− [µ/4]. If ε ≤ [µ/2] + [µ/4]
then, as k ≤ max(ε−m,m), we have D2 ≥ 2µ− ε ≥ 2µ− [µ/2]− [µ/4].

It may now be assumed that µ ≥ 2k > ε. Consequently, it follows
from (8) and (11) that ε is even and

(13) pε/2 ‖M4 +M8 −M5 −M6 −M7 .

Denote by Q the expression

(14) Q = M5M6 +M5M7 +M6M7 +M2
4 −M4(M5 +M6 +M7) .

Lemma 12. If H9 = {S′ : 2k > ε, 2m > ε} then #H9 � µ5A.

P r o o f. Given M4,M5,M6,M7 there are � h/pmax(µ−ε,2k−ε/2) + 1
choices for M8 from (6), (8), (11) and (13). By (10), p2m ‖ (2M4 −M5 −
M6 −M7)2 and so

4Q ≡ 2(M5M6 +M5M7 +M6M7)−M2
5 −M2

6 −M2
7 (mod p2m) .

As pε ‖Q we deduce that

(15) pε ‖M2
5 +M2

6 +M2
7 − 2(M5M6 +M5M7 +M6M7) .

It follows from (10) and (13) that pε/2 |M4 −M8, which, together with (6)
and (7), implies that

(16) 3ε/2 ≤ γ5 + γ6 + γ7 < µ .

Thus from (6) we obtain

Q

pε
· M4 −M8

pε/2
≡ M5M6M7

p3ε/2
(mod pµ−3ε/2)

and from (11) and (13) we have
(
Q

pε
· M4 +M8 −M5 −M6 −M7

pε/2

)2

≡ 4Q3

p3ε (mod p2k−ε) .

Since M4 + M8 −M5 −M6 −M7 = 2M4 −M5 −M6 −M7 − (M4 −M8),
combining the above two congruences produces
(
Q(2M4 −M5 −M6 −M7)−M5M6M7

p3ε/2

)2

≡ 4Q3

p3ε (mod pmin(µ−3ε/2, 2k−ε)),

which simplifies to

(17) Q2(M2
5 +M2

6 +M2
7 − 2(M5M6 +M5M7 +M6M7))

≡M5M6M7(2Q(2M4−M5−M6−M7)−M5M6M7) (mod pmin(µ+3ε/2, 2k+2ε)).
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From (15) it can be seen that p3ε ‖LHS of (17). By (16) we must have
min(µ+ 3ε/2, 2k + 2ε) > 3ε and thus p3ε ‖RHS of (17), or

p3ε−γ5−γ6−γ7 ‖ 2Q(2M4 −M5 −M6 −M7)−M5M6M7 .

This together with (10) implies that

3ε− γ5 − γ6 − γ7 ≥ min(ε+m, γ5 + γ6 + γ7) .

If ε+m ≤ γ5 + γ6 + γ7 then 2ε−m ≥ γ5 + γ6 + γ7 ≥ ε+m, contradicting
2m > ε. Hence, from (7), (16) and the above we conclude that

(18) µ−
[
µ

4

]
≤ 3ε

2
= γ5 + γ6 + γ7 < µ .

It follows from (8), (10) and (18) that

p5ε/2 ‖ 2Q(2M4−M5−M6−M7)(M2
5 +M2

6 +M2
7−2(M5M6+M5M7+M6M7))

−2M5M6M7(2Q+ (2M4 −M5 −M6 −M7)2) .

This is the derivative of (17) with respect to M4 and so there are �
h/pmin(µ−ε, 2k−ε/2) + 1 choices for M4 given M5,M6,M7. By (7) and (18) it
follows that

#H9 � h

(
h

pµ
+ 1
)∑

k,ε

(
h

pmin(µ−ε,2k−ε/2)
+ 1
)(

h

pmax(µ−ε,2k−ε/2)
+ 1
)

×
(

h

pµ−k
+ 1
) ∑
γ5,γ6,γ7

(
h

pγ5
+ 1
)(

h

pγ6
+ 1
)(

h

pγ7
+ 1
)

� µ3h

(
h

pµ
+ 1
)∑

k,ε

(
h6

pD4
+

h5

pD5
+

h4

pD6 + h3
)
,

where

D4 = 2µ+ k ≥ 2µ+
[
µ

2

]
−
[
µ

4

]
,

D5 = min
(

2µ+ k − 3ε
2
, 2µ− k +

ε

2
, µ+ k + ε

)

> min(2µ− ε, µ+ k) ≥ µ+
[
µ

2

]
−
[
µ

4

]
,

D6 = min
(
µ+ 2k − 3ε

2
, 2µ− k − ε, µ+ k − ε

2
, µ− k +

3ε
2

)

> µ− k ≥ µ−
[
µ

2

]
.

Lemma 13. If H10 = {S′ : 2k > ε > 2m} then #H10 � µ6A.
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P r o o f. Given M4,M5,M6,M7 there are � h/pmax(µ−ε,2k−ε/2) + 1
choices for M8 from (6), (8), (11) and (13). Since p 6= 2, from (8) and (14)
we know that pε ‖ 4Q. This can be rewritten as

(2M4 −M5 −M6 −M7)2

≡M2
5 +M2

6 +M2
7 − 2(M5M6 +M5M7 +M6M7) (mod pε) ,

which, together with (10), implies that

(19) p2m ‖ M2
5 +M2

6 +M2
7 − 2(M5M6 +M5M7 +M6M7) .

From (10) and (13) we see that pm |M4 −M8 and so from (6) and (7) we
have

(20) ε+m ≤ γ5 + γ6 + γ7 < µ .

Using (6), (11), (13) and (20) we deduce that

Q

pε
· M4 −M8

pm
≡ M5M6M7

pε+m
(mod pµ−ε−m)

and
(
Q

pε
· M4 +M8 −M5 −M6 −M7

pm

)2

≡ 4Q3

p2ε+2m (mod p2k−2m) .

Combining these two congruences as in the previous lemma, we obtain

(21) Q2(M2
5 +M2

6 +M2
7 − 2(M5M6 +M5M7 +M6M7))

≡M5M6M7(2Q(2M4−M5−M6−M7)−M5M6M7) (mod pmin(µ+ε+m,2k+2ε)).

By (8) and (19), p2ε+2m ‖ LHS of (21). But from (20) we know that min(µ+
ε+m, 2k + 2ε) > 2ε+ 2m and so p2ε+2m ‖ RHS of (21), or

p2ε+2m−γ5−γ6−γ7 ‖ 2Q(2M4 −M5 −M6 −M7)−M5M6M7 .

Hence, by (10), we see that 2ε+2m−γ5−γ6−γ7 ≥ min(ε+m, γ5 +γ6 +γ7),
which, together with (7) and (20), implies that

(22) µ−
[
µ

4

]
≤ ε+m = γ5 + γ6 + γ7 < µ .

Also, from (10), (19) and (22) it can be seen that

p4m ‖ (2(2M4 −M5 −M6 −M7)2 + 4Q)(M2
5 +M2

6 +M2
7

−2(M5M6 +M5M7 +M6M7))− 12M5M6M7(2M4 −M5 −M6 −M7) .

This expression is the second derivative of (21) with respect to M4 and
so there are � h/p[(min(µ+ε−3m,2k+2ε−4m)+1)/2] + 1 choices for M4, given
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M5,M6,M7. Hence, by (22),

#H10 � h

(
h

pµ
+ 1
)

×
∑

k,ε,m

(
h

pmax(µ−ε,2k−ε/2)
+1
)(

h

pmin([(µ+ε−3m+1)/2],k+ε−2m)
+1
)

×
(

h

pµ−k
+ 1
) ∑
γ5,γ6,γ7

(
h

pγ5
+ 1
)(

h

pγ6
+ 1
)(

h

pγ7
+ 1
)

� µ3h

(
h

pµ
+ 1
) ∑

k,ε,m

(
h6

pD7
+

h5

pD8
+

h4

pD9
+ h3

)
,

where

D7 = max
(

2µ− k, µ+ k +
ε

2

)
+ min

([
µ+ ε−m+ 1

2

]
, k + ε−m

)

≥ 2µ+
ε

2
≥ 2µ+

[
µ

2

]
−
[
µ

4

]
,

D8 = µ−k+min
(

max
(
µ− ε

2
, 2k
)

+min
([

µ− 3m+ 1
2

]
, k+

ε

2
−2m

)
,

max
(
µ+m, 2k +

ε

2
+m

)
,

ε+ min
([

µ+ ε−m+ 1
2

]
, k + ε−m

))

> µ+ k ≥ µ+
[
µ

2

]
−
[
µ

4

]
,

D9 = min
(
µ− k + min

(
ε+m,max

(
µ− ε, 2k − ε

2

)
,

min
([

µ+ ε− 3m+ 1
2

]
, k + ε− 2m

))
,

min
([

µ− 3m+ 1
2

]
, k +

ε

2
− 2m

)
+ max

(
µ− ε

2
, 2k
))

> µ− k ≥ µ−
[
µ

2

]
.

It may now be assumed that ε = 2m. There are � h/pmax(µ−2m,2k−m)+1
choices for M8 from (6), (8), (11) and (13) given M4,M5,M6,M7.

Lemma 14. If H11 = {S′ : 2k > ε = 2m and γ5 + γ6 + γ7 ≥ 2k + m}
then #H11 � µ5A.
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P r o o f. From (10) there are � h/pm+1 choices forM4 givenM5,M6,M7

and it follows that

#H11 � h

(
h

pµ
+ 1
)∑

k,m

(
h

pmax(µ−2m,2k−m)
+ 1
)(

h

pµ−k
+ 1
)(

h

pm
+ 1
)

×
∑

γ5,γ6,γ7

(
h

pγ5
+ 1
)(

h

pγ6
+ 1
)(

h

pγ7
+ 1
)

� µ3h

(
h

pµ
+ 1
)∑

k,m

(
h6

pD10
+

h5

pD11
+

h4

pD12
+ h3

)
,

where

D10 = µ+ k+ 2m+ max(µ− 2m, 2k−m) ≥ 2µ+ k ≥ 2µ+
[
µ

2

]
−
[
µ

4

]
,

D11 = min(µ+k+ 2m,min(µ−k+m, 2k+ 2m) + max(µ−2m, 2k−m))

≥ µ+ k ≥ µ+
[
µ

2

]
−
[
µ

4

]
,

D12 = min(max(µ−m, 2k), µ− k +m, 2k + 2m)

≥ min(µ− k, 2k) ≥ µ−
[
µ

2

]
.

By (10) and (13) we know that pm |M4−M8 and so, by (6), (7) and (8),

(23) 3m ≤ γ5 + γ6 + γ7 < µ .

Also, with Q given by (14), from (6), (11) and (13) we obtain

Q

p2m ·
M4 −M8

pm
≡ M5M6M7

p3m (mod pµ−3m)

and
(
Q

p2m ·
M4 +M8 −M5 −M6 −M7

pm

)2

≡ 4Q3

p6m (mod p2k−2m) .

Proceeding as in Lemma 12, these two congruences combine to produce

(24) Q2(M2
5 +M2

6 +M2
7 − 2(M5M6 +M5M7 +M6M7))

≡M5M6M7(2Q(2M4−M5−M6−M7)−M5M6M7) (mod pmin(2k+4m,µ+3m)) .

Define x by

(25) px ‖ (M2
5 +M2

6 +M2
7 − 2(M5M6 +M5M7 +M6M7), pµ) .

Lemma 15. If H12 = {S′ : (25) holds, x ≥ 2k > ε = 2m and 2k + m >
γ5 + γ6 + γ7} then #H12 � µ5A.
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P r o o f. Since p2m ‖ Q (25) implies that pmin(2k+4m,µ+3m) |RHS of (24)
or, by (7),

4Q(2M4−M5−M6−M7) ≡ 2M5M6M7 (mod pmin(2k+4m,µ+3m)−γ5−γ6−γ7) .

We know that min(2k+ 4m,µ+ 3m)− γ5− γ6− γ7 > 3m. Since p3m ‖ LHS
and pγ5+γ6+γ7 ‖ RHS of the above we conclude that

(26) µ−
[
µ

4

]
≤ 3m = γ5 + γ6 + γ7 < µ .

As 4Q = (2M4−M5−M6−M7)2−M2
5−M2

6−M2
7 +2(M5M6+M5M7+M6M7)

we can rewrite the above as

(2M4 −M5 −M6 −M7)((2M4 −M5 −M6 −M7)2

−M2
5 −M2

6 −M2
7 + 2(M5M6 +M5M7 +M6M7))

≡ 2M5M6M7 (mod pmin(2k+m,µ)) .

By (10) and (25) it follows that

p2m ‖ 6(2M4 −M5 −M6 −M7)2

−2(M2
5 +M2

6 +M2
7 − 2(M5M6 +M5M7 +M6M7)) .

This is the derivative of the above expression with respect to M4 and so there
are � h/pmin(2k−m,µ−2m) + 1 choices for M4 given M5,M6,M7. Therefore

#H12 � h

(
h

pµ
+ 1
)∑

k,m

(
h

pmin(2k−m,µ−2m)
+ 1
)

×
(

h

pmax(2k−m,µ−2m)
+ 1
)(

h

pµ−k
+ 1
)

×
∑

γ5,γ6,γ7

(
h

pγ5
+ 1
)(

h

pγ6
+ 1
)(

h

pγ7
+ 1
)
.

As (26) holds, the result follows by comparison with Lemma 12.

Lemma 16. If H13 = {S′ : (25) holds, 2k > x ≥ µ −m, 2k > ε = 2m
and 2k +m > γ5 + γ6 + γ7} then #H13 � µ5A.

P r o o f. There are� h/pm+1 choices forM4 from (10) givenM5,M6,M7

and � h/p[(x+1)/2] + 1 choices for M7 from (25) given M5,M6. By (7)
and (23),

#H13 � h

(
h

pµ
+ 1
)

×
∑

k,m,x

(
h

pµ−k
+ 1
)(

h

pm
+ 1
)(

h

p2k−m + 1
)(

h

p[(x+1)/2]
+ 1
)
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×
∑
γ5,γ6

(
h

pγ5
+ 1
)(

h

pγ6
+ 1
)

� µh

(
h

pµ
+ 1
) ∑

k,m
γ5,γ6

(
h6

pD13
+

h5

pD14
+

h4

pD15
+ h3

)
,

where

D13 = µ+ k + γ5 + γ6 +
[
µ−m+ 1

2

]

≥ µ+ 2
[
µ−m+ 1

2

]
+ max

(
2m,µ−

[
µ

2

])
,

D14 =
[
µ−m+ 1

2

]
+ min(µ+ k, γ5 + γ6 + min(µ− k +m, 2k))

≥ µ+
[
µ−m+ 1

2

]
> µ+

[
µ

2

]
−
[
µ

4

]
,

D15 = min
(
µ+ k,

[
µ−m+ 1

2

]
+ min(2k, γ5 + γ6 +m,µ− k +m)

)

> µ−
[
µ

2

]
.

If m > [µ/4] then D13 ≥ 2µ+m ≥ 2µ+ [µ/2]− [µ/4] and if m ≤ [µ/4] then
D13 ≥ 3µ−m− [µ/2] ≥ 3µ− [µ/2]− [µ/4].

It remains to consider min(2k, µ −m) > x. From (8), (14) and (25) we
see that px+4m ‖ LHS of (24) and thus

px+4m ‖ M5M6M7(2Q(2M4 −M5 −M6 −M7)−M5M6M7) .

This together with (23) implies that x+ 4m ≥ γ5 + γ6 + γ7 + 3m, or

(27) x ≥ γ5 + γ6 + γ7 −m.

We now look at the derivatives of (24) with respect to M4. Define T,U and
V by

(28) pT ‖ (Q(2M4 −M5 −M6 −M7)

× (M2
5 +M2

6 +M2
7 − 2(M5M6 +M5M7 +M6M7))

−M5M6M7(2Q+ (2M4 −M5 −M6 −M7)2), pmin(2k+4m,µ+3m)) ,

(29) pU ‖ ((2Q+ (2M4 −M5 −M6 −M7)2)

× (M2
5 +M2

6 +M2
7 − 2(M5M6 +M5M7 +M6M7))

− 6M5M6M7(2M4 −M5 −M6 −M7), pmin(2k+4m,µ+3m))



338 L. Dodd

and
(30) pV ‖ ((2M4 −M5 −M6 −M7)

× (M2
5 +M2

6 +M2
7 − 2(M5M6 +M5M7 +M6M7))

− 2M5M6M7, p
min(2k+4m,µ+3m))

By (7), (10), (25) and (27) it can be seen that

T ≥ γ5 + γ6 + γ7 + 2m, U ≥ γ5 + γ6 + γ7 +m,
(31)

V ≥ γ5 + γ6 + γ7 .

The conditions S′ have now been extended. In the final section the following
notation will be used:

S′′ = “S′ : (25), (28), (29), (30) hold,

min(2k, µ−m) > x ≥ γ5 + γ6 + γ7 −m and 2k > ε = 2m”.

6. Completion of the proof. The following five lemmas conclude the
proof of Theorem 1.

Lemma 17. If H14 = {S′′ : T = γ5 + γ6 + γ7 + 2m} then #H14 � µ5A.

P r o o f. GivenM5,M6,M7 there are �h/pmin(2k+4m,µ+3m)−γ5−γ6−γ7−2m

+ 1 choices for M4 from (24) and (28). Hence

#H14 �h
(
h

pµ
+ 1
)

×
∑

k,m

(
h

pmax(µ−2m,2k−m)
+ 1
)(

h

pmin(2k+2m,µ+m)−γ5−γ6−γ7
+ 1
)

×
(

h

pµ−k
+ 1
) ∑
γ5,γ6,γ7

(
h

pγ5
+ 1
)(

h

pγ6
+ 1
)(

h

pγ7
+ 1
)
.

By (23) we know that min(2k+2m,µ+m)−γ5−γ6−γ7 ≤ min(2k−m,µ−
2m) ≤ max(2k −m,µ− 2m) and so the above becomes

#H14 � h

(
h

pµ
+ 1
) ∑

k,m
γ5,γ6,γ7

(
h6

pD16
+

h5

pD17
+

h4

pD18
+ h3

)
,

where

D16 = 2µ+ k ≥ 2µ+
[
µ

2

]
−
[
µ

4

]
,

D17 = min(2µ+ k − γ5 − γ6 − γ7, µ+ k + 2m, 2µ+m− k)

> µ+ k ≥ µ+
[
µ

2

]
−
[
µ

4

]
,
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D18 = min(µ− k + γ5 + γ6 + γ7,

min(µ+ 2k, µ+ k + 2m, 2µ− k +m)− γ5 − γ6 − γ7)

> µ− k ≥ µ−
[
µ

2

]
.

Lemma 18. If H15 = {S′′ : T > γ5+γ6+γ7+2m and U = γ5+γ6+γ7+m}
then #H15 � µ5A.

P r o o f. From (24) and (29) there are

� h/p[(min(2k+4m,µ+3m)−γ5−γ6−γ7−m+1)/2] + 1

choices for M4 given M5,M6,M7. Therefore

#H15 � h

(
h

pµ
+ 1
)

×
∑

k,m

(
h

p[(min(2k+3m,µ+2m)−γ5−γ6−γ7+1)/2]
+ 1
)

×
(

h

pmax(µ−2m,2k−m)
+ 1
)(

h

pµ−k
+ 1
)

×
∑

γ5,γ6,γ7

(
h

pγ5
+ 1
)(

h

pγ6
+ 1
)(

h

pγ7
+ 1
)
.

By (23) we see that
[

min(2k + 3m,µ+ 2m)− γ5 − γ6 − γ7 + 1
2

]
≤
[

min(2k, µ−m) + 1
2

]

< max(µ− 2m, 2k −m)

and so

#H15 � h

(
h

pµ
+ 1
) ∑

k,m
γ5,γ6,γ7

(
h6

pD19
+

h5

pD20
+

h4

pD21
+ h3

)
,

where

D19 =
[

min(2k + 3m,µ+ 2m) + γ5 + γ6 + γ7 + 1
2

]

+ max(2µ− 2m− k, µ+ k −m) ,

D20 =
[

min(2k + 3m,µ+ 2m)− γ5 − γ6 − γ7 + 1
2

]

+ min(µ− k + γ5 + γ6 + γ7,max(µ+ k −m, 2µ− k − 2m))

> m+ min
(

2µ− k −
[
µ

4

]
, µ+ k −m

)
≥ µ+

[
µ

2

]
−
[
µ

4

]
,
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D21 = min
([

min(2k + 3m,µ+ 2m)− γ5 − γ6 − γ7 + 1
2

]

+ min(µ− k,max(µ− 2m, 2k −m)) ,

µ− k + γ5 + γ6 + γ7

)
> µ− k ≥ µ−

[
µ

2

]
.

From (7) and (23) it follows that if 2k ≤ µ−m then

D19 ≥ 2µ+
[
γ5 + γ6 + γ7 −m+ 1

2

]

≥ 2µ+
[

max(3m,µ− [µ/4])−m+ 1
2

]
≥ 2µ+

[
µ

2

]
−
[
µ

4

]

and if 2k > µ−m then

D19 ≥ µ+
[
µ−m+ 1

2

]
+
[
µ+ max(3m,µ− [µ/4]) + 1

2

]

≥ 2µ+
[
µ

2

]
−
[
µ

4

]
.

It may now be assumed that

(32) T > γ5 + γ6 + γ7 + 2m, U > γ5 + γ6 + γ7 +m.

From (30) it follows that (2M4−M5−M6−M7)(M2
5 +M2

6 +M2
7−2(M5M6+

M5M7 + M6M7)) = HpV + 2M5M6M7 for some H ∈ Z with p -H. Substi-
tuting this into (28) gives

QHpV ≡M5M6M7(2M4 −M5 −M6 −M7)2 (mod pT ) .

By (7) and (10) we know that pγ5+γ6+γ7+2m ‖ RHS of the above and thus,
by (32), pγ5+γ6+γ7+2m ‖ QHpV , from which we conclude

(33) V = γ5 + γ6 + γ7 .

It can be seen from (29) that

(M2
5 +M2

6 +M2
7−2(M5M6+M5M7+M6M7))((2M4−M5−M6−M7)2+2Q)

≡ 6M5M6M7(2M4 −M5 −M6 −M7) (mod pU ) .

By (7) and (10) pγ5+γ6+γ7+m ‖ RHS and so, by (32), pγ5+γ6+γ7+m ‖ LHS.
Thus, using (10), (25) and (27), we deduce that p2m ‖ (2M4 −M5 −M6 −
M7)2 + 2Q and

(34) x = γ5 + γ6 + γ7 −m.

From (28) we have

4Q(2M4 −M5 −M6 −M7)(M2
5 +M2

6 +M2
7 − 2(M5M6 +M5M7 +M6M7))

−2M5M6M7(4Q+ 2(2M4 −M5 −M6 −M7)2) ≡ 0 (mod pT ) .
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As

4Q = (2M4−M5−M6−M7)2−(M2
5 +M2

6 +M2
7−2(M5M6+M5M7+M6M7))

this can be rewritten as

((2M4 −M5 −M6 −M7)3 + 2M5M6M7)

× (M2
5 +M2

6 +M2
7 − 2(M5M6 +M5M7 +M6M7))

−(2M4 −M5 −M6 −M7)(M2
5 +M2

6 +M2
7 − 2(M5M6 +M5M7 +M6M7))

−6M5M6M7(2M4 −M5 −M6 −M7)2 ≡ 0 (mod pT ) .

It follows from (7), (10), (25) and (34) that

(2M4 −M5 −M6 −M7)3(M2
5 +M2

6 +M2
7 − 2(M5M6 +M5M7 +M6M7))

−6M5M6M7(2M4 −M5 −M6 −M7)2 ≡ 0 (mod pmin(T,2(γ5+γ6+γ7)−m)) ,

which, together with (10), implies that

(35) (2M4−M5−M6−M7)(M2
5 +M2

6 +M2
7 −2(M5M6 +M5M7 +M6M7))

−6M5M6M7 ≡ 0 (mod pmin(T−2m,2(γ5+γ6+γ7)−3m)) .

By (29),

(2(2M4−M5−M6−M7)2+4Q)(M2
5 +M2

6 +M2
7−2(M5M6+M5M7+M6M7))

−12M5M6M7(2M4 −M5 −M6 −M7) ≡ 0 (mod pU ) .

Substituting for 4Q this becomes

3(2M4 −M5 −M6 −M7)2(M2
5 +M2

6 +M2
7 − 2(M5M6 +M5M7 +M6M7))

−(M2
5 +M2

6 +M2
7 − 2(M5M6 +M5M7 +M6M7))2

−12M5M6M7(2M4 −M5 −M6 −M7) ≡ 0 (mod pU ) ,

which, by (10), (25) and (34), reduces to

(2M4 −M5 −M6 −M7)(M2
5 +M2

6 +M2
7 − 2(M5M6 +M5M7 +M6M7))

−4M5M6M7 ≡ 0 (mod pmin(U−m,2(γ5+γ6+γ7)−3m)) .

Subtracting (35) from the above congruence we obtain 2M5M6M7 ≡ 0
(mod pmin(U−m,T−2m,2(γ5+γ6+γ7)−3m)) and so, by (7), γ5+γ6+γ7 ≥ min(U−
m,T − 2m, 2(γ5 + γ6 + γ7) − 3m). This, together with (7), (23) and (32),
implies that

(36) µ−
[
µ

4

]
≤ 3m = γ5 + γ6 + γ7 < µ .

It follows from (36) that
[
µ

2

]
−
[
µ

4

]
≤ m < k ≤

[
µ

2

]
≤ 2m.
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Lemma 19. If H16 = {S′′ : (32) holds and 2U ≥ min(µ+ 5m, 2k + 6m)}
then #H16 � µ5A.

P r o o f. Given M5,M6,M7 there are � h/pU−3m + 1 choices for M4

from (29), (30), (33) and (36). As

U ≥ min
([

µ+ 5m+ 1
2

]
, k + 3m

)

we may take the number of M4 to be � h/pmin(k,[(µ−m+1)/2]) + 1. Using
(36) it follows that

#H16 � h

(
h

pµ
+ 1
)

×
∑

k,m

(
h

pmin([(µ−m+1)/2],k)
+ 1
)(

h

pmax(µ−2m,2k−m)
+ 1
)

×
(

h

pµ−k
+ 1
) ∑
γ5,γ6,γ7

(
h

pγ5
+ 1
)(

h

pγ6
+ 1
)(

h

pγ7
+ 1
)

� µ3h

(
h

pµ
+ 1
)∑

k,m

(
h6

pD22
+

h5

pD23
+

h4

pD24
+ h3

)
,

where

D22 = µ− k + 3m+ min
(
k,

[
µ−m+ 1

2

])
+ max(µ− 2m, 2k −m)

≥ 2µ+m ≥ 2µ+
[
µ

2

]
−
[
µ

4

]
,

D23 = min
(
k,

[
µ−m+ 1

2

])

+ min(µ− k + 3m,max(2µ− k − 2m,µ+ k −m))

> µ+ min
(
k,

[
µ−m+ 1

2

])
> µ+

[
µ

2

]
−
[
µ

4

]
,

D24 = min
(
µ− k + 3m,min

(
k,

[
µ−m+ 1

2

])

+ min(µ− k,max(2k −m,µ− 2m))
)

> min(µ− k, 2k) ≥ µ−
[
µ

2

]
.
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For the final two cases it may be assumed that

(37) 2U < min(2k + 6m,µ+ 5m) .

We rewrite (24) as

(38) A4M
4
4 +A3M

3
4 +A2M

2
4 +A1M4 +A0 ≡ 0 (mod pmin(2k+4m,µ+3m)) .

Hence (28) and (29) now become

(39) pT ‖ (4A4M
3
4 + 3A3M

2
4 + 2A2M4 +A1, p

min(2k+4m,µ+3m))

and

(40) pU ‖ (12A4M
2
4 + 6A3M4 + 2A2, p

min(2k+4m,µ+3m))

where

(41)

A4 = σ2
1 − 4σ2 = M2

5 +M2
6 +M2

7 − 2(M5M6 +M5M7 +M6M7) ,

A3 = 8σ1σ2 − 2σ3
1 − 4M5M6M7 ,

A2 = σ4
1 − 2σ2

1σ2 − 8σ2
2 + 6M5M6M7σ1 ,

A1 = 8σ1σ
2
2 − 2σ3

1σ2 − 4M5M6M7σ2 − 2M5M6M7σ
2
1 ,

A0 = σ2
1σ

2
2 − 4σ3

2 + 2M5M6M7σ1σ2 +M2
5M

2
6M

2
7 ,

and

σ1 = M5 +M6 +M7 and σ2 = M5M6 +M5M7 +M6M7 .

From (39) we see that for some R ∈ Z, p -R,

M3
4 =

RpT − 3A3M
2
4 − 2A2M4 −A1

4A4
.

This, in conjunction with (38), implies that

A0 − A1A3

16A4
+
A3Rp

T

16A4
+M4

(
RpT

4
+

3A1

4
− A2A3

8A4

)
+M2

4

(
A2

2
− 3A2

3

16A4

)

≡ 0 (mod pmin(2k+4m,µ+3m)) .

But from (25), (34) and (36) we know that p2m ‖ A4 and thus

(42) 16A0A4 −A1A3 +A3Rp
T +M4(4A4Rp

T + 12A1A4 − 2A2A3)

+M2
4 (8A2A4 − 3A2

3) ≡ 0 (mod pmin(2k+6m,µ+5m)) .

Clearly from (40), pU ‖ 6A4M
2
4 + 3A3M4 +A2 and so

36A2
4M

4
4 +36A3A4M

3
4 +M2

4 (9A2
3+12A2A4)+6A2A3M4+A2

2 ≡ 0 (mod p2U ) .

Also, by (38),

36A4(A4M
4
4 +A3M

3
4 +A2M

2
4 +A1M4 +A0) ≡ 0 (mod pmin(2k+6m,µ+5m)) .

These two congruences and (37) imply that

M2
4 (24A2A4−9A2

3)+M4(36A1A4−6A2A3)+36A0A4−A2
2 ≡ 0 (mod p2U ) .
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Substituting this into (42) produces

12A0A4 − 3A1A3 +A2
2 + 3RpT (A3 + 4A4M4) ≡ 0 (mod p2U ) .

From (41) we know that

A3 + 4A4M4 = 2A4(2M4 −M5 −M6 −M7)− 4M5M6M7 .

Thus

12A0A4− 3A1A3 +A2
2 + 6RpT (A4(2M4−M5−M6−M7)− 2M5M6M7)

≡ 0 (mod p2U )

which, taken with (7), (10) and (36), implies that pmin(T+3m,2U) | 12A0A4−
3A1A3 +A2

2. By (41) we can rewrite this as

A4
4 + 24M2

5M
2
6M

2
7A4 ≡ 0 (mod pmin(T+3m,2U)) ,

or

(43) A3
4 + 24M2

5M
2
6M

2
7 ≡ 0 (mod pmin(T+m,2U−2m)) .

It is now necessary to examine the derivatives of A3
4 + 24M2

5M
2
6M

2
7 with

respect to M7. Define

(44)

pδ1 ‖ 3A2
4(2M7 − 2M5 − 2M6) + 48M2

5M
2
6M7 ,

pδ2 ‖ 6A2
4 + 6A4(2M7 − 2M5 − 2M6)2 + 48M2

5M
2
6 ,

pδ3 ‖ 36A4(2M7 − 2M5 − 2M6) + 6(2M7 − 2M5 − 2M6)3 ,

pδ4 ‖ 72A4 + 72(2M7 − 2M5 − 2M6)2 ,

pδ5 ‖ 720(M7 −M5 −M6) .

By assumption γ5 ≥ γ6 ≥ γ7 and so from (36) we have

(45) γ5 + γ6 ≥ 2m.

Therefore, as p2m ‖ A4 = (M7 − M5 − M6)2 − 4M5M6, it follows that
pm |M7 −M5 −M6 and from (44) we deduce that

(46) δ5 ≥ m, δ4 ≥ 2m, δ3 ≥ 3m.

Lemma 20. If H17 = {S′′ : (32), (37)–(41) and (44) hold and δ4 = 2m}
then #H17 � µ6A.

P r o o f. The proof is split into two cases according to the value of
min(2U − 2m,T +m).

C a s e 1: 2U − 2m ≤ T +m. Given M5,M6,M7 there are

� h/pmax(min(µ+3m,2k+4m)−T,T−U) + 1

choices for M4 from (38), (39) and (40). Since

max(min(µ+3m, 2k+4m)−T, T −U) ≥
[

min(µ+ 3m, 2k + 4m)− U + 1
2

]
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we may take the number of M4 to be � h/p[(min(µ+3m,2k+4m)−U+1)/2] + 1.
Given M5,M6 there are � h/pW + 1 choices for M7 from (43) and (44),
where

W = max(2U − 2m− δ1, δ1 − δ2, δ2 − δ3, δ3 − 2m) ≥
[
U + 1

2

]
−m.

Thus

#H17 � h

(
h

pµ
+ 1
)

×
∑

k,m,U

(
h

p[(min(µ+3m,2k+4m)−U+1)/2]
+ 1
)(

h

p[(U+1)/2]−m + 1
)

×
(

h

pµ−k
+ 1
)(

h

pmax(µ−2m,2k−m)
+ 1
) ∑
γ5,γ6

(
h

pγ5
+ 1
)(

h

pγ6
+ 1
)
.

By (37), [
min(µ+ 3m, 2k + 4m)− U + 1

2

]
≥
[
U + 1

2

]
−m

and so, using (45), we obtain

#H17 � µ2h

(
h

pµ
+ 1
)

×
∑

k,m,U

(
h2

pmin([(µ+m+1)/2],k+m)
+

h

p[(U+1)/2]−m + 1
)

×
(

h4

pmax(2µ−k,µ+k+m)
+
h3

pµ
+
h2

pk
+ h

)

� µ2h

(
h

pµ
+ 1
) ∑

k,m,U

(
h6

pD25
+

h5

pD26
+

h4

pD27
+ h3

)
,

where

D25 = min
([

µ+m+ 1
2

]
, k +m

)
+ max(2µ− k, µ+ k +m)

≥ 2µ+m ≥ 2µ+
[
µ

2

]
−
[
µ

4

]
,

D26 = min
(
µ+ min

([
µ+m+ 1

2

]
, k +m

)
,

[
U + 1

2

]
−m+ max(2µ− k, µ+ k +m)

)

> µ+ k > µ+
[
µ

2

]
−
[
µ

4

]
,
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D27 = min
(
µ+

[
U + 1

2

]
−m, k + min

([
µ+m+ 1

2

]
, k +m

)
,

max(2µ− k, µ+ k +m)
)
> µ−

[
µ

2

]
.

C a s e 2: T +M < 2U − 2m. There are

� h/pmax(min(µ+3m,2k+4m)−T,U−3m) + 1

choices for M4 from (29), (30), (33), (36), (38) and (39), given M5,M6,M7.
Since

max(min(µ+ 3m, 2k + 4m)− T,U − 3m)

≥
[

min(µ+ 3m, 2k + 4m)− T + U − 3m+ 1
2

]

we may take the number of M4 to be � h/p[(min(µ,2k+m)−T+U+1)/2] + 1.
Given M5,M6, there are � h/pY + 1 choices for M7 from (43) and (44),
where Y = max(T +m− δ1, δ1− δ2, δ2− δ3, δ3− 2m) ≥ [(T −m+ 3)/4] and
so

#H17 � h

(
h

pµ
+ 1
)

×
∑

k,m
U,T

(
h

p[(min(µ,2k+m)−T+U+1)/2]
+ 1
)(

h

p[(T−m+3)/4]
+ 1
)

×
(

h

pµ−k
+ 1
)(

h

pmax(µ−2m,2k−m)
+ 1
)

×
∑
γ5,γ6

(
h

pγ5
+ 1
)(

h

pγ6
+ 1
)
.

From (37),
[

min(µ, 2k +m)− T + U + 1
2

]
+
[
T −m+ 3

4

]

≥
[

min(2µ−m, 4k +m) + 2U − T
4

]

≥ min
(
k +m,

[
µ+m

2

])

and [
min(µ, 2k +m)− T + U + 1

2

]
≥ min

([
k +m

2

]
,

[
µ+m

4

])
.
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Also, (32) and (36) imply that T > 5m and consequently [(T−m+3)/4] > m.
Hence, by (45), it follows that

#H17 � µ4h

(
h

pµ
+ 1
)∑

k,m

(
h2

pmin([(µ+m)/2],k+m)
+

h

pm
+ 1
)

×
(

h4

pmax(2µ−k,µ+k+m)
+
h3

pµ
+
h2

pk
+ h

)

� µ4h

(
h

pµ
+ 1
)∑

k,m

(
h6

pD28
+

h5

pD29
+

h4

pD30
+ h3

)
,

where

D28 = min
([

µ+m

2

]
, k +m

)
+ max(2µ− k, µ+ k +m)

≥ 2µ+m ≥ 2µ+
[
µ

2

]
−
[
µ

4

]
,

D29 = min
(
µ+ min

([
µ+m

2

]
, k +m

)
,

max(2µ− k +m,µ+ k + 2m)
)

> µ+ k > µ+
[
µ

2

]
−
[
µ

4

]
,

D30 = min
(
µ+m, k + min

([
µ+m

2

]
, k +m

)
,

max(2µ− k, µ+ k +m)
)
> µ−

[
µ

2

]
.

Lemma 21. If H18 = {S′′ : (32), (37)–(41) and (44) hold and δ4 6= 2m}
then #H18 � µ6A.

P r o o f. By (46) we must have δ4 > 2m. Using (44) it follows that A4 +
(2M7 − 2M5 − 2M6)2 ≡ 0 (mod pδ4) and so we deduce that

(47) pm ‖ M7 −M5 −M6 .

This together with (44) implies that δ5 = m and

6A4 + (2M7 − 2M5 − 2M6)2 ≡ 0 (mod pδ3−m) .

It can also be seen from (44) that

6A4 + 6(2M7 − 2M5 − 2M6)2 ≡ 0 (mod pδ4) .
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Combining these two congruences gives

5(2M7 − 2M5 − 2M6)2 ≡ 0 (mod pmin(δ3−m,δ4)) ,

which, by (47), implies that 2m ≥ min(δ3 −m, δ4) and thus δ3 = 3m.

C a s e 1: 2U − 2m ≤ T +m. Given M5,M6,M7 there are

� h/p[(min(µ+3m,2k+4m)−U+1)/2] + 1

choices for M4 as in Lemma 20, Case 1. From (43) and (44) we have �
h/pZ + 1 choices for M7, given M5,M6, where

Z = max(2U − 2m− δ1, δ1 − δ2, δ2 − 3m) ≥
[

2U − 5m+ 2
3

]
.

Therefore

#H18 � h

(
h

pµ
+ 1
)

×
∑

k,m,U

(
h

p[(min(µ+3m,2k+4m)−U+1)/2]
+ 1
)(

h

p[(2U−5m+2)/3]
+ 1
)

×
(

h

pµ−k
+ 1
)(

h

pmax(µ−2m,2k−m)
+ 1
)∑
γ5,γ6

(
h

pγ5
+ 1
)(

h

pγ6
+ 1
)
.

It can be seen from (32) and (36) that U > 4m, which in turn implies that
[(2U − 5m+ 2)/3] > m and
[

min(µ+ 3m, 2k + 4m)− U + 1
2

]
+
[

2U − 5m+ 2
3

]

≥
[

min(3µ−m, 6k + 2m) + U

6

]

≥ min
([

µ+m

2

]
, k +m

)
.

Also, [
min(µ+ 3m, 2k + 4m)− U + 1

2

]
≥ min

([
k +m

2

]
,

[
µ+m

4

])

by (37). Using (45) it follows that

#H18 � µ3h

(
h

pµ
+ 1
)∑

k,m

(
h2

pmin([(µ+m)/2],k+m)
+

h

pm
+ 1
)

×
(

h4

pmax(2µ−k,µ+k+m)
+
h3

pµ
+
h2

pk
+ h

)

� µ5A
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by comparison with Case 2 of the previous lemma.

C a s e 2: T +m < 2U − 2m. Given M5,M6,M7 we have

� h/p[(min(µ,2k+m)−T+U+1)/2] + 1

choices for M4 as in Case 2 of Lemma 20. By (43) and (44) we have
� h/pL + 1 choices for M7 given M5,M6, where

L = max(T +m− δ1, δ1 − δ2, δ2 − 3m) ≥
[
T − 2m+ 2

3

]

and so

#H18 � h

(
h

pµ
+ 1
)

×
∑

k,m
U,T

(
h

p[(min(µ,2k+m)−T+U+1)/2]
+ 1
)(

h

p[(T−2m+2)/3]
+ 1
)

×
(

h

pµ−k
+ 1
)(

h

pmax(µ−2m,2k−m)
+ 1
)∑
γ5,γ6

(
h

pγ5
+ 1
)(

h

pγ6
+ 1
)
.

By (32) and (36), T > 5m and U > 4m. Consequently, [(T −2m+2)/3] > m
and[

T − 2m+ 2
3

]
+
[

min(µ, 2k +m)− T + U + 1
2

]

≥
[

min(3µ−m, 6k + 2m) + U

6

]
≥ min

([
µ+m

2

]
, k +m

)
.

As in Lemma 20, Case 2 we have

#H18 � µ4h

(
h

pµ
+ 1
)∑

k,m

(
h2

pmin([(µ+m)/2],k+m)
+

h

pm
+ 1
)

×
(

h4

pmax(2µ−k,µ+k+m)
+
h3

pµ
+
h2

pk
+ h

)

� µ6A .

Since #H � #{⋃18
j=1Hj}, Theorem 1 follows immediately from Lemmas 4

to 21.
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