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On an almost pure sieve

by

C. Hooley (Cardiff)

Combinatorial sieve methods can be classified according to the extent
they depart from the exact exclusion principle of Legendre. Such a proce-
dure, for instance, was adopted in the introductory chapter of our tract [5],
in which a discussion of the basic elimination process was followed succes-
sively by descriptions of our simple asymptotic sieve, the first Brun sieve
introduced in [1], and the second and more powerful sieve initiated by Brun
in his seminal paper of 1920 [2]. But the more picturesque and elegant
description of this classification in terms of purity or impurity of sieves
is suggested to us by the name Brun’s Pure Sieve that Halberstam and
Richert assign to the earlier Brun sieve in their monograph [3]. Thus the
purer the sieve the more closely it approximates to the fundamental ex-
clusion process, while the more powerful it is the impurer and more com-
plicated it is likely to be; in particular, sieves of substantial impurity ap-
plied to problems of difficulty normally yield only upper and lower posi-
tive bounds for what is sought. Naturally, under such an arrangement the
so-called pure sieve of Brun is not actually completely unmixed because
only the exclusion process of Legendre can have this status, albeit this
qualification is merely a trifling matter of semantics that need not here
detain us.

All versions or derivatives of Brun’s method normally used are consider-
ably more complex than his pure sieve. It is therefore not a little surprising
that it has not been previously noticed that the addition of only a minor in-
gredient serves to convert the pure sieve into a much stronger instrument. So
effective is the outcome that the resulting slightly impure sieve achieves up-
per and lower bounds of the same general power as those attained by much
impurer versions of Brun’s method, while retaining a simplicity that enables
it to be used in circumstances where other methods of comparable strength
are unworkable. Such a situation, for example, occurs when the constituents
in upper or lower sieving bounds

∑
d|n %(d) for

∑
d|n µ(d) happen to appear

in sums of the form
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∑

n≤x
ψ(n)

(∑

d|n

%(d)
2ω(d)

)2

,

which possibly somewhat unexpectedly are also untreatable in terms of the
elegant Selberg methods that fall outside our present classification of sieves.
Estimates of optimal orders of magnitude for sums of this general type being
needed in our forthcoming work [6] on integers in small intervals that are
sums of two squares, we devote the present paper to the definition of our
almost pure sieve and to an explanation of its mechanism by an application
to a problem of prime twins type; in so doing, we supply an easy demon-
stration of the infinitude of pairs of integers differing by 2 that do not have
more than fourteen prime factors—a result that is not markedly inferior to
that first obtained by Brun in [2]. To the array of sieve methods we thus
add a simple, versatile, and transparent tool that has much of the power
enjoyed by more complicated procedures.

The almost pure sieve method used in our present application to almost
prime twins has been deliberately described in such a way that only very
minor modifications are needed for its indispensable operation in the above
mentioned paper [6], in which the following new theorem is proved.

Let M(m,h) be the number of integers n in the interval m ≤ n < m+ h
that are expressible as the sum of two squares. Then, if h ≤ x and h/

√
log x

→∞ as x→∞, we have

A1h√
log x

< M(m,h) <
A2h√
log x

for all m not exceeding x save for at most o(x) exceptional values, where
A1, A2 denote positive absolute constants.

Essentially best possible as a result involving almost all values of x, this
theorem improves upon previous work of Harman’s [4].

We follow the precedent set in [5] and describe the method in a general
context, since the applications are not necessarily always confined to the
divisibility properties of integers. Here, appropriately modifying our nota-
tion in [5] to suit the present occasion, we are presented with a finite set
A of N elements denoted generically by m, each of which may or may not
possess one or more of the properties α1, . . . , αn in a family S indexed by
1, . . . , n. This family is partitioned into h mutually exclusive sub-families
Sj of cardinality nj in order that we may set up the present machinery for
estimating the number N1,...,n of elements in A that possess none of the
properties αi. A typical choice (possibly vacuous) of sj elements from the
indexing set of Sj is then denoted by ιj,sj so that a sub-set of 1, . . . , n of car-
dinality s can be expressed as ιs = (ι1,s1 , . . . , ιh,sh), where s = s1 + . . .+ sh;
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also N(ιs) = N(ι1,s1 , . . . , ιh,sh) is to indicate the number of elements in A
having all the properties indexed by ιs.

Ere we delineate the present sieve it is helpful to digress momentarily
by remarking that traditionally there have been two ways of approaching
such a task. Some sieves lend themselves to an explanation via bounds for
N1,...,n in terms of the sums N(ιs), while others are better elucidated by the
bounds provided for the characteristic function f(m) of the non-excluded or
sifted set. Formulae of the first type, however, are normally substantiated
by considering their applicability to the special case N = 1 and hence by
establishing results of the second type. Thus the difference in presentations
is merely one of emphasis, corresponding in fact to a reversal of the order
of summations in a double sum.

Although the more elementary sieve methods are usually expressed
through the former method, the nature of our slightly impure sieve is more
easily unveiled in terms of the characteristic function of the sifted set. This
is bounded by means of the inequalities

(1) f(m) ≤
∏

1≤j≤h

( ∑

sj≤rj
(−1)sj

∑
ιj,sj∈m

1
)

and

f(m) ≥
∏

1≤j≤h

( ∑

sj≤rj
(−1)sj

∑
ιj,sj∈m

1
)

(2)

−
∑

1≤k≤h

( ∑
ιk,rk+1∈m

1
)∏

j 6=k

( ∑

sj≤rj
(−1)sj

∑
ιj,sj∈m

1
)
,

in which r1, . . . , rh are suitably chosen non-negative even integers and in
which the symbolism ι ∈ m means that m is to possess all the properties
indexed by a sub-set ι of 1, . . . , n. The upper inequality has a right-hand side
that is a product of expressions occurring in Brun’s pure sieve and therefore
follows, for example, from equation (5A) in [5]. The lower inequality is per-
force a little more complicated, since the total number of negative factors on
the right of (1) might well be even when the numbers rj were taken to be odd
in accordance with the lower pure Brun sieve for each set of properties Sj .
To prove (2) we first note that its right-hand side is unchanged when the
variables j, k of multiplication and summation are restricted to values l for
which a positive number ul of properties in Sl are possessed by m. Hence,
also now using the Legendre formula, we see that (2) is certainly true either
when m has none of the properties in S or when there is an exponent l such
that 1 ≤ ul ≤ rl. In the remaining case, if j′, k′ denote indices for which
ul 6= 0 and for which therefore

(3) ul > rl ,
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the substitution of j′, k′ for j, k in the right of (2) does not affect its value
and gives rise to a multiplicand and summand that are seen to be equal,
respectively, to

∑

sj′≤rj′
(−1)sj′

(
uj′

sj′

)
=
(
uj′ − 1
rj′

)

and (
uk′

rk′ + 1

) ∏

j′ 6=k′

(
uj′ − 1
rj′

)

in virtue of the identity

(1− y)u−1 = (1− y)u(1− y)−1 =
∑
r

( r∑
s=0

(−1)s
(
u

s

))
yr .

The right-hand side of (2) is thus
{

1−
∑

k′

(
uk′

rk′ + 1

)/(
uk′ − 1
rk′

)}∏

j′

(
uj′ − 1
rj′

)
,

in which the first factor equals

1−
∑

k′

uk′

rk′ + 1
≤ 0

by (3); the proof of (2) is therefore complete.
Having concluded our discussion of the sieve in a general context, we

illustrate its relevance to more familiar situations in the theory of numbers
by considering its application to problems of twin primes type. We shall
therefore be involved with the production of upper and lower bounds for
the number π2(x, ξ) of positive integers m not exceeding x which are to
have the feature that m(m + 2) is to be indivisible by any prime p not
exceeding a certain limit ξ, concentrating almost entirely on the lower bound
because only a small amount of the reasoning used for this is needed for the
other. The primes p not exceeding ξ now describe the unwanted properties,
wherefore the integers m not exceeding x with properties appertaining to
p1, . . . , ps are just those for which m(m+ 2) is divisible by d = p1 . . . ps and
are thus N(x, d) in number when the previous notation N(ι) is appropriately
adapted. Consequently,

(4) N(x, d) =
xν(d)
d

+O(ν(d)) =
xν(d)
d

+O(dε) ,

where ν(d) is the multiplicative function of square-free numbers d defined
by ν(p) = 1 if p = 2 and ν(p) = 2 otherwise.

Considerable latitude in the apportionment of the properties to sub-fam-
ilies is permissible provided that it be made within a framework having cer-
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tain prescribed features. Yet some care should be taken in the specification
of the numerical parameters defining the structure lest we stray too far from
the theoretical limits of the method. First, having written ξ = x1/u, we let

(5) η = log log x ,

which function tends to infinity so slowly as x → ∞ that π2(x, ξ) can be
directly evaluated asymptotically by Legendre’s principle whenever ξ ≤ η.
In the contrary situation ξ > η to which we may now confine ourselves, we
bring in parameters a, a1 that are selected here to be 3.99, 4, respectively,
and use the former to define the sequence ξ0, . . . , ξR, ξR+1 by

(6) ξj =




ξ1/aj for j ≤ R− 1,
η for j = R,
1 for j = R+ 1,

where R is the least exponent j for which ξ1/aj ≤ η. For j = 1, . . . , R + 1
the family Sj of unwanted properties is then to appertain to the primes pj
satisfying ξj < pj ≤ ξj−1, a typical square-free product (possibly empty) of
which is to be denoted by dj . The restricting agent rj on the number sj of
properties in this family Sj—in other words, the number ω(dj) of distinct
prime factors of dj—to be used in (2) is determined by those of the equations

(7) r1 = r2 = r3 = 10; rj = 14(j − 3) (j ≥ 4)

that appertain to subscripts not exceeding R, while rR+1 is formally taken
to be ∞ in reflection of the fact that sR+1 is only circumscribed by the
cardinality of SR+1.

Since, in the current circumstances, formula (2) becomes

f(m) ≥
∏

1≤j≤R+1

∑

dj|m(m+2)
ω(dj)≤rj

µ(dj)(8)

−
∑

1≤k≤R+1

( ∑

dk|m(m+2)
ω(dk)=rk+1

1
)∏

j 6=k

∑

dj|m(m+2)
ω(dj)≤rj

µ(dj)

in the notation described above, we have

π2(x, ξ) ≥
∑

ω(dj)≤rj(j=1,...,R+1)

µ(d1) . . . µ(dR+1)N(x, d1 . . . dR+1)

−
∑

1≤k≤R+1

∑

ω(dj)≤rj(j 6=k)
ω(dk)=rk+1

µ(d1) . . . µ(dR+1)
µ(dk)

N(x, d1 . . . dR+1)
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by substitution in

π2(x, ξ) =
∑

m≤x
f(m)

and a change in the orders of summation in the resulting multiple sums.
Hence, recalling our convention about ω(dR+1) and letting θd1,...,dR denote
the condition that there be R−1 indices i from 1, . . . , R for which ω(di) ≤ ri
and that the remaining one satisfy ω(di) ≤ ri + 1, we infer from (4) that

(9) π2(x, ξ)

≥ x
∑

ω(dj)≤rj(j=1,...,R+1)

µ(d1) . . . µ(dR+1)ν(d1 . . . dR+1)
d1 . . . dR+1

− x
∑

1≤k≤R

∑

d1,...,dR+1
ω(dj)≤rj(j 6=k)
ω(dk)=rk+1

µ(d1) . . . µ(dR+1)ν(d1, . . . , dR+1)
µ(dk)d1 . . . dR+1

+O
( ∑

d1,...,dR+1
θd1,...,dR

(d1 . . . dR+1)ε
)

= x
∏

1≤j≤R+1

∑

ω(dj)≤rj

µ(dj)ν(dj)
dj

− x
∑

1≤k≤R

∑

ω(dk)=rk+1

ν(dk)
dk

∏

j 6=k

∑

ω(dj)≤rj

µ(dj)ν(dj)
dj

+O
( ∑

d1,...,dR+1
θd1,...,dR

(d1 . . . dR+1)ε
)

= x

{
1−

∑

1≤k≤R

( ∑

ω(dk)=rk+1

ν(dk)
dk

/ ∑

ω(dk)≤rk

µ(dk)ν(dk)
dk

)}

×
∏

1≤j≤R+1

∑

ω(dj)≤rj

µ(dj)ν(dj)
dj

+O
( ∑

d1,...,dR+1
θd1,...,dR

(d1 . . . dR+1)ε
)

= x
(

1−
∑

1≤j≤R

(∑(j)

2

/∑(j)

1

)) ∏

1≤j≤R+1

∑(j)

1
+O
(∑

3

)
, say,

since we shall see that
∑(j)

1 is certainly non-zero as soon as we begin to
develop this initial inequality.
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Our exploitation of (9) is speeded by using the following lemma, whose
proof is not unconnected with the principles of Brun’s pure sieve but whose
existence is usually ignored in the treatment thereof.

Lemma. Let σr denote the r-th elementary symmetric function of num-
bers a1, . . . , an lying between 0 and 1. Then

∑

0≤r≤s
(−1)rσr −

∏

1≤i≤n
(1− an)

is non-negative or non-positive according as s is even or odd.

Immediately, we have

(10)
∑(j)

1
≥

∏

ξj<p≤ξj−1

(
1− ν(p)

p

)
> 0 ,

thus vindicating the assertion made after (9). Indeed, since
∏

p≤y

(
1− ν(p)

p

)
∼ c

log2 y

{
1 +O

(
1

log y

)}
,

we even have
∑(j)

1
≥ log2 ξj

log2 ξj−1

{
1 +O

(
1

log ξj

)}
(11)

≥ 1
a2 + o(1) ≥ 1

a2
1

(j = 1, . . . , R)

by (6). Also, in like manner,
∑

ξj<p≤ξj−1

1
p

= log log ξj−1 − log log ξj +O

(
1

log ξj

)

≤ log a+ o(1) ≤ log a1 (j = 1, . . . , R)

so that, by (9) and the elementary inequality N ! ≥ (N/e)N ,

∑(j)

2
≤ 1

(rj + 1)!

(
2

∑

ξj<p≤ξj−1

1
p

)rj+1

(12)

≤
(

2e log a1

rj + 1

)rj+1

≤
(

2e log a1

tj

)tj
(j = 1, . . . , R)

under the sufficient condition

(13) 2e log a1 < tj < rj + 1 .

The indices rj were chosen in (7) so that favourable estimates for the
sums

∑(j)
2 are consistent with a satisfactory value of

∑
3 when u is a small
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constant. To attend to the former sums, we set

tj = 2eαj log a1

in conformity with (13), where αj > 1 is a suitably close lower approximation
to the number (rj + 1)/2e log a1 that can be verified, for example, by the
use of mathematical tables. Then, considering the values of rj in (7), we can
display the appropriate values of αj and lower bounds βj for 2eαj logαj in
the following table:

j = 1, 2, 3 j ≥ 4

αj = 1.455 (1.85)(j − 3)

βj = 2.95 6(j − 3) .

Therefore, by (11) and (12),

∑(j)

2

/∑(j)

1
< a2

1

(
1
αj

)2eαj log a1

=
1

a
2eαj logαj−2
1

<
1

a
βj−2
1

(j = 1, . . . , R) ,

whence

1−
∑

1≤j≤R

(∑(j)

2

/∑(j)

1

)
> 1−

∑

1≤j≤R

1

a
βj−2
1

(14)

> 1− 3
419/20

−
∞∑

k=1

1
44k

= 1− 3
419/20

− 1
255

>
3
20

by a relatively crude calculation.
An examination of the conditions of summation in

∑
3 shews that the size

of any number d1 . . . dR+1 corresponding to a contributing set d1, . . . , dR+1

is circumscribed by xγηη, where

γ =
1
u

(
1 +

∑

1≤j≤R

rj
aj−1

)
<

1
u

(
1 + 10 +

10
a

+
10
a2 +

14
a3

∞∑

k=0

k + 1
ak

)

=
1
u

(
1 +

10a
a− 1

+
14

a(a− 1)2

)
<

74
5u

.

Hence

(15)
∑

3
= O

(
x

log3 x

)

whenever u ≥ 74/5.
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The first result attained by the method follows from (9), (10), (14), and
(15), which give

(16) π2(x, ξ) >
3x
20

∏

p≤ξ

(
1− ν(p)

p

)
=

3x
40

∏

2<p≤ξ

(
1− 2

p

)

when ξ ≤ x5/74. In particular, we have established the existence of infinitely
many pairs of natural numbers differing by 2 neither of which has more than
fourteen prime factors.

A slightly shorter account would have been possible if we had been merely
content to derive an inequality of type (16) for values of ξ not exceeding a
smaller limit of the type xA1 . On the other hand, some further fine tun-
ing of the procedures might have resulted in some minor improvements,
which, however, are not worth seeking through this avenue because stronger
and more complicated methods are available for this particular purpose.
In like but much simpler manner, the formula (1) yields the upper bound
O(x/ log2 x) for the number of prime twins not exceeding x.

The development adopted above was chosen to suit the needs of a theo-
rem about pseudo-prime twins. Yet, if we look for an improvement in (16)
that is suitable for large values of u, then we must vary the previous process
by selecting the parameters in terms of u. This is done easily by setting b
to be the least even integer exceeding u/2 and then redefining rj and αj
as rj = bj and αj = (rj + 1)/(2e log a1), it being easily verified that (15)
continues to hold. Since an examination of the consequential change to (14)
reveals that now

1−
∑

1≤j≤R

(∑(j)

2

/∑(j)

1

)
> 1− e−A2u log u ,

we obtain the lower bound that is latent in the formula

π2(x, x1/u) = x

(
1 +O(e−Au log u) +O

(
1

log x

)) ∏

p≤x1/u

(
1− ν(p)

p

)
,

the upper bound aspect of which is obtainable via (1). Our method thus
produces fundamental lemmata, keener versions of which have been derived
by Halberstam, Richert [3], and others by the more usual forms of Brun’s
method.
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