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0. Introduction and notations. It has long been known that there
are only finitely many non-isomorphic abelian CM-fields with class number
one. Lately, K. Yamamura (see [Y]) has determined all abelian CM-fields
with class number one. There are exactly 172 non-isomorphic such number
fields. It is also known (see [O, Th. 2]) that there are only finitely many
non-isomorphic normal CM-fields with class number one and J. Hoffstein
proved that the degrees of such fields are less than 436 (see [H, Corollary
2]). Hence, it is time to move on to the determination of non-abelian or even
non-normal CM-fields with class number one and of fixed degrees. We look
at the smallest possible degrees. We point out that there does not exist any
non-abelian but normal CM-field with degree 6. Hence, we will look at the
non-normal quartic case and at the octic non-abelian normal case, i.e. at the
quaternion or dihedral cases. Indeed, let N be a CM-field that is normal
over Q. As in [W, p. 38], one can easily see that the complex conjugation
is an element of order two in the Galois group of the extension N/Q that
commutes with all the other elements of this Galois group. This constraint
on the Galois group of a normal CM-field enables us to point out that for
example there does not exist any non-abelian but normal CM-field with
degree 2p where p is an odd prime. Thus, the lowest possible degree for a
non-abelian normal CM-field is 8. Here we know that the Galois group of
any non-abelian normal octic number field is either a quaternion group or a
dihedral group.

In this paper, we prove that there does not exist any quaternion octic
CM-field with class number one because the class number of such a number
field is always even. Let us note that in [Lou 4] the first author determined all
quaternion octic CM-fields with class number two. We then prove that there
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are exactly 17 non-isomorphic dihedral octic CM-fields with class number
one, and that there are exactly 37 non-isomorphic non-normal quartic CM-
fields with class number one.

These results rely on upper bounds for the discriminants of these number
fields found by the first author in a previous paper (see [Lou 1]), and on a
necessary condition for the relative class number of a CM-field to be one.
This restricting necessary condition enables us to get the dihedral octic CM-
fields with relative class number one and the non-normal quartic CM-fields
with relative class number one thanks to the numerical computation of the
relative class numbers of only 26 non-normal quartic CM-fields. Finally, the
computation of the class numbers of their maximal totally real subfields
provides us with the ones with absolute class number one.

In the following five sections we proceed as follows. First, we show that
normal quaternion octic CM-fields have even class numbers implying that
there are no quaternion octic CM-fields with class number one. Second, we
reduce the determination of the dihedral octic CM-fields with class number
one to that of the ones with relative class number one. Thus, we describe
the normal dihedral octic CM-fields with odd relative class numbers as a
family {N(p,q)}p,q where p and q are primes subject to certain constraints.
Third, we give a restricting necessary condition for the relative class num-
ber of a CM-field to be one. Fourth, thanks to this restricting necessary
condition we determine the normal dihedral octic CM-fields with relative
class number one: there are 19 non-isomorphic such fields. Fifth, thanks to
the computation of the class numbers of their maximal totally real subfields
we determine which dihedral octic CM-fields with relative class number one
have class number one and determine the non-normal quartic CM-fields with
class number one.

Notations. For any number field F we assume that F lies in the complex
field and we set the following notations:

• AF is the ring of algebraic integers of F ,
• EF is the unit group of F ,
• WF is the group of roots of unity of F ,
• H(F ) is the ideal class group of F ,
• h(F ) is the class number of F ,
• d(F ) is the discriminant of F .

For any CM-field F we set the following notations:

• 2N = [F : Q] is the degree of F ,
• F+ is the maximal totally real subfield of F .

The complex conjugation is the non-trivial F+-isomorphism of the qua-
dratic extension F /F+. Set α for the complex conjugate of α. We remind
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the reader that in a CM-field every unit of absolute value 1 is a root of unity
(see [W, p. 38]).

• N = [F+ : Q] is the degree of F+,
• d(F+) is the discriminant of F+, so that d(F+)2 divides d(F ),
• ∆(F ) = |d(F )/d(F+)|, so that we have

∆(F ) ≥ d(F+) and ∆(F ) ≥
√
d(F ),

• QF ∈ {1, 2} is the Hasse unit index of F (see [W, Th. 4.12]),
• h∗(F ) = h(F )/h(F+) is the relative class number of F ,
• H+(F+) is the strict ideal class group of F+,
• h+(F+) is the strict class number of F+,
• iF /F+ is the natural map from the fractional ideals of F+ to those

of F .

1. Class numbers of non-abelian normal octic CM-fields. In this
section we reduce the determination of normal octic CM-fields with class
number one to that of non-normal quartic CM-fields with relative class num-
ber one. We firstly show that there are no quaternion octic CM-fields with
class number one:

Theorem 1. Relative class numbers of normal quaternion octic CM-
fields are even.

Let N be a normal octic CM-field with Galois group the quaternion
group Q8 with eight elements: Q8 = {±1,±i,±j,±k} with i2 = j2 = k2 =
−1 and with ij = k = −ji, jk = i = −kj and ki = j = −ik. Let N+ be
the totally real quartic subfield of N . Then N+ is bicyclic biquadratic. Let
k0, k1 and k2 be the three quadratic subfields of N , so that N/k0, N/k1

and N/k2 are cyclic quartic. The lattice of subfields of N can be set out as
follows:

N

N+

k0 k1 k2

Q

|||||| BBBBBB

CCCCCC {{{{{{

Now, as N+ is totally real, N+ cannot be Q(
√−1,

√
2) that is the only

biquadratic bicyclic number field with exactly one finite ramified prime.
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Hence, at least two primes are ramified in the bicyclic biquadratic extension
N+/Q. Moreover, any prime ideal of N+ that is ramified in N+/Q is also
ramified in N/N+. Indeed, it is ramified in at least one quadratic extension
N+/ki. As N/ki is cyclic quartic, we see that it is totally ramified in N/ki,
hence ramified in N/N+. We get Theorem 1 from the following Proposition
2 that will be used throughout this paper in order to prove that CM-fieldsN
with odd relative class numbers are such that only few ideals of N+ ramify
in the quadratic extension N/N+:

Proposition 2. Let N be a CM-field and let N+ be its maximal totally
real subfield. Then the relative class number of N is even provided that at
least two prime ideals of N+ ramify in the quadratic extension N/N+.

P r o o f. First, the kernel of iN/N+ has order 1 or 2 (see [W, Th. 10.3]).
Hence,

|H(N)/iN/N+(H(N+))| =
{
h∗(N) if iN/N+ is injective,
1
2h
∗(N) if iN/N+ is not injective.

Second, let σ denote the complex conjugation. If ε is a unit of N then ε/ε is
a unit of absolute value 1, hence a root of unity of N , i.e. W 2

N ⊆ Uσ−1
N ⊆

WN . Now, let t be the number of prime ideals Pi of N that are ramified in
the quadratic extension N/N+. We prove that 2t−1 divides h∗(N). More
precisely, we prove that if these t prime ideals generate a subgroup of order
≤ 2t−1 in the group H(N)/iN/N+(H(N+)) then they generate a subgroup
of order 2t−1 and iN/N+ is injective.

Indeed, let us suppose that there exists at least one non-empty and finite
productR = Pi1 ·. . .·Pir of r out of the t prime ideals Pi’s such that its ideal
class is in iN/N+(H(N+)). Then there exists α ∈ N and an integral ideal
I of N+ such that R = (α)iN/N+(I). Then (α) = (α), so that there exists
a unit ε in N such that α = εα. Then ε is a unit of absolute value 1, hence
a root of unity of N . If we had WN = Uσ−1

N then we would have ε = η/η
for some unit η in N . Then β+ = ηα is in N+ and R = iN/N+((β+)I) so
that each prime ramified ideal Pi that divides R would divide R with an
even power. A contradiction. Hence Uσ−1

N = W 2
N , ε ∈ WN \W 2

N and we
may assume that ε = ζ is a generator of the cyclic group WN . Let β ∈ AN
be such that ζ = β/β (we may take β = 1 + ζ if ζ 6= −1, and β =

√−d with
d ∈ AN+ such that N = N+(

√−d) if ζ = −1). Then

(∗) (β)R = iN/N+((γ+)I)

where γ+ = αβ is in N+. Hence, we have

R = Rζ
def=

∏

vPi ((β)) odd

Pi

where Rζ does not depend on β such that ζ = β/β. Hence, there exists
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exactly one non-empty and finite product R = Pi1 · . . . · Pir of r out of
the t prime ideals Pi’s such that its ideal class is in iN/N+(H(N+)). Thus,
2t−1|iN/N+(H(N+))| divides h(N). Moreover, iN/N+ is injective. Indeed,
if J were a non-principal ideal in N+ such that iN/N+(J) = (α′) then the
same line of reasoning shows that

(∗∗) (β)iN/N+(J) = iN/N+((γ′+))

for some γ′+ inN+. Thus, (∗) and (∗∗) would implyR = iN/N+((γ+/γ
′
+)IJ)

and each prime ramified ideal Pi that divides R would divide R with an
even power. A contradiction. Hence, 2t−1 divides h∗(N).

Lemma 3. Let N be a dihedral number field and let K be any non-normal
quartic subfield of N . Then N is a CM-field if and only if K is a CM-field
(see [Lou 1]).

Let N be a dihedral octic CM-field. If K is a non-normal quartic subfield
of N then

h∗(N) =
QN

2
(h∗(K))2

(see [Lou 1]) with QN ∈ {1, 2} being the Hasse unit index of N .

We note that Theorem 1 and Lemma 3 reduce the determination of
normal non-abelian octic CM-fields with relative class number one to that
of non-normal quartic CM-fields with relative class number one.

2. Non-normal quartic CM-fields and dihedral octic CM-fields
with odd relative class numbers. Let K be a non-normal quartic CM-
field. Let K+ be its real quadratic subfield and let δ be a totally positive
element of AK+ such that K = K+(

√−δ). Then we have:

(1) The principal ideal (δ) of AK+ is not a square in AK+ so that
K/K+ is ramified at at least one finite prime.

P r o o f. Indeed, if we had (δ) = I2, then NK+/Q(δ) that is positive
would be a square in Q so that K/Q would be normal.

(2) The map iK/K+ is injective from the ideal class group H(K+) of
K+ into the ideal class group H(K) of K.

P r o o f. Indeed, if I is a fractional ideal of K+ such that IAK = (α) for
some α ∈ K, then (α) = (α) so that ε = α/α is a unit of AK of absolute
value 1, hence a root of unity of K. Since K/Q is non-normal, the group
WK of roots of unity of K is {−1,+1}. Hence, either ε = 1 and α is in K+

so that I is a principal fractional ideal of K+, or ε = −1 so that β = α
√−δ

is in K+ and (
√−δ)I = (β). Taking relative norms shows that the ideal (δ)

of K+ would be a square in K+, so that (1) provides us with the desired
contradiction.
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From now on, we assume that K has odd relative class number h∗(K).
By [W, Th. 10.2], the class number h(K+) of the real quadratic subfield
K+ of K is odd. We now prove a little bit more:

(3) The strict class number h+(K+) of K+ is odd. Thus K+ = Q(
√
p)

with p 6≡ 3 (mod 4) a prime.

P r o o f. Let L be the class field over K+ to the subgroup H+(K+)2 of
H+(K+), the ideal class group of K+ in the strict sense. Then L/K+ is not
ramified at the finite places so that from (1) we get L ∩K = K+. Hence,
KL/K is abelian and such that Gal(KL/K) is isomorphic to Gal(L/K+)
via restriction. Moreover, KL/K is unramified so that it is the class field
overK to some subgroupH of H(K). Hence, if FrKL/K and FrL/K+ denote
the Artin maps, we have:

H(K)/H ∼−−−−−→
FrKL/K

Gal(KL/K)
yNK/K+

yresL

H+(K+)/H+(K+)2 ∼−−−−−→
FrL/K+

Gal(L/K+)

Since NK/K+ ◦ iK/K+ is well defined from H(K+) to H+(K+) and such
that NK/K+ ◦ iK/K+(H(K+)) is included in H+(K+)2, we see that
iK/K+(H(K+)) is included in the kernel of FrKL/K , i.e. in H. Thus, by
(2), the degree [KL : K] = [L : K+] divides h∗(K), so that [L : K+] is
odd, and therefore the strict class number of K+ is odd. Hence, we get the
desired result.

(4) There is exactly one prime ideal Q+ of K+ that ramifies in K/K+.
Let Q denote the prime ideal of N lying above Q+. Then there exists a
totally positive element δ+ of K+ such that K = K+(

√−δ+), (δ+) =

Q
h(K+)
+ and (

√−δ+) = Qh(K+).

P r o o f. The first statement follows from Proposition 2 and (1). First, if a
prime ideal L of K+ is such that the exact power of L that divides the ideal
(δ) is odd, then L is ramified in K/K+. Second, the strict class number
h+ = h+(K+) of K+ is odd and h(K+) = h+. Now, noticing from (1) that
the ideal (δ) is not a square in K+, we see that there exists a fractional ideal
I of K+ such that (δ) = Q+I

2. Raising this equality to the h+-th power
provides us with δ+ and x such that δ = δ+x

2 where δ+ is any totally positive
generator of Qh+

+ . Hence, K = K+(
√−δ+) and (

√−δ+)2h+ = Q2h+ .

(5) Let q be the rational prime lying below the prime ideal Q of (4).
Then q splits in K+/Q and q 6≡ 3 (mod 4). Hence, if p = 2 then q ≡ 1
(mod 8). Moreover , d(K) = qd(K+)2 provided that q is odd.
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P r o o f. If Q+ were inert in K+/Q, then NK+/Q(δ+) that is positive
would be a square in Q and as in (1) the extension K/Q would be normal.
If Q+ were ramified in K+/Q, then by (3) we would have Q+ = (

√
p) with

p the prime such that K+ = Q(
√
p). Hence, NK+/Q(δ+) = ph+ would be

a square in K+ = Q(
√
p) and K/Q would be normal. Thus, we get the

desired first result. For the second result, we first note that we may assume
q 6= 2. SinceK/K+ = K/Q(

√
p) is ramified only above q (and at the infinite

places), the normal closure N of K is such that N/Q(
√
p) is ramified only

above q (and at the infinite places). Since N contains Q(
√
p,
√
q) (for we

have NK+/Q(δ+) = qh+ where h+ is odd), we see that Q(
√
p,
√
q)/Q(

√
p)

can be ramified only at the finite places above q, hence is unramified at
the places above 2, so that q 6≡ 3 (mod 4). The last assertion follows from
the fact that the quadratic extension K/K+ is ramified only at Q+, and
this ideal is tamely ramified, so that the different DK/K+ of this quadratic
extension is Q where NK/Q(Q) = NK+/Q(Q+) = q.

(6) Let N be the normal closure of K. Then N is a normal dihedral
octic CM-field and its totally real quartic subfield N+ is N+ = Q(

√
p,
√
q).

Moreover , N/Q(
√
pq) is a cyclic quartic extension unramified at the finite

places. Hence, 4 divides the strict class number of Q(
√
pq) and 4 does not

divide the class number of Q(
√
pq).

P r o o f. By the end of the proof of (5), Q(
√
p) and Q(

√
q) are quadratic

subfields of N . Hence, Q(
√
pq) is the third quadratic subfield of the dihedral

octic field N and N+ = Q(
√
p,
√
q) is a totally real quartic subfield of N .

Since K is totally imaginary, so is N . Hence, N is a CM-field. Let K̃ be one
of the two non-normal quartic subfields of N that are not isomorphic to K,
so that K̃ is not a quadratic extension of Q(

√
p). As h∗(K̃) = h∗(K) is odd,

we see from (3) that K̃ is a quadratic extension of Q(
√
q). As K/Q(

√
p)

is unramified above p and N/Q(
√
p) is the normal closure of K/Q(

√
p) it

follows that N/Q(
√
p) is unramified above p. In the same way, N/Q(

√
q) is

unramified above q. Computing ramification indices in the tower shows that
p and q have ramification indices equal to 2 in N/Q. Hence, N/Q(

√
pq) is

unramified at the finite places. The assertions concerning the class number
of Q(

√
pq) follow from class field theory and from the fact that the 2-Sylow

subgroups of the ideal class group of Q(
√
pq) are cyclic in the wide and

narrow senses provided that p and q are distinct primes not congruent to 3
(mod 4).

(7) Conversely, we have:

Theorem/Definition. Let p and q be two distinct primes that are not
congruent to 3 (mod 4) and such that q splits in Q(

√
p). Let N(p,q) denote

the unique cyclic quartic extension of Q(
√
pq) unramified at the finite places
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(hence N(p,q) = N(q,p)). Then N(p,q) is a dihedral octic field. Moreover , let
K(p,q) denote any one of the two isomorphic non-normal quartic subfields
of N(p,q) that contain the real quadratic field Q(

√
p). The following three

conditions are equivalent :

(a) N(p,q) is a CM-field ,
(b) K(p,q) is a CM-field ,
(c) 4 does not divide the class number of the real quadratic field Q(

√
pq)

(let us point out that this implies NQ(
√
pq)/Q(εpq) = +1 where εpq > 1 is the

fundamental unit of the real quadratic field Q(
√
pq)).

P r o o f. As q splits in Q(
√
p), it follows that 4 divides the strict class

number of Q(
√
pq) and 2 divides the class number of Q(

√
pq). Moreover,

the 2-Sylow subgroups of the narrow ideal class group and of the wide ideal
class group of Q(

√
pq) are cyclic. Let 2n+ , n+ ≥ 2, and 2n, n ≥ 1, be

the orders of these 2-Sylow subgroups in the narrow sense and in the wide
sense (so that n+ = n or n+ = n + 1). Let H(p,q) be the Hilbert 2-class
field of Q(

√
pq), so H(p,q) is the maximal unramified abelian 2-extension of

Q(
√
pq) and Gal(H(p,q)/Q(

√
pq)) is isomorphic to the 2-Sylow subgroup of

the ideal class group of Q(
√
pq). Let H+

(p,q) be the strict Hilbert 2-class field

of Q(
√
pq), so H+

(p,q) is the maximal abelian 2-extension of Q(
√
pq) unrami-

fied at the finite places and Gal(H+
(p,q)/Q(

√
pq)) is isomorphic to the 2-Sylow

subgroup of the narrow ideal class group of Q(
√
pq). Then H(p,q) ⊆H+

(p,q),

andH+
(p,q)/Q(

√
pq) is cyclic of degree 2n+ andH(p,q)/Q(

√
pq) is cyclic of de-

gree 2n. Moreover, the maximality ofH(p,q) implies thatH(p,q)/Q is normal,
hence H(p,q) contains a normal quartic number field that is an unramified
quadratic extension of Q(

√
pq), hence contains Q(

√
p,
√
q). Hence, we have

H+
(p,q)

2n+−n
H(p,q)

2n−1

Q(
√
p,
√
q) 2 Q(

√
pq) 2 Q.

In the same way, H+
(p,q)/Q is normal, hence H+

(p,q) is either totally real or

totally imaginary. The maximality of H(p,q) implies that H+
(p,q) is totally

real if and only if H+
(p,q) = H(p,q), hence if and only if n+ = n. Moreover,

if H+
(p,q) is totally imaginary, then it is a quadratic extension of the totally

real number field H(p,q), hence H+
(p,q) is a CM-field.

Now, by class field theory, there exists a unique cyclic quartic extension
N(p,q) of Q(

√
pq) unramified at the finite places, namely the only subfield

of H+
(p,q) that is a quartic extension of Q(

√
pq). Since H+

(p,q)/Q is normal

and H+
(p,q)/N(p,q) is cyclic, N(p,q)/Q is normal. Moreover, it is not abelian

since the genus number field of Q(
√
pq) is Q(

√
p,
√
q). Thus, it is dihedral or

quaternionic. In fact,N(p,q) is a dihedral octic field. Indeed, it suffices to note
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that the quartic extension N(p,q)/Q(
√
p) is not cyclic since q that ramifies

in the quadratic extension Q(
√
p,
√
q)/Q(

√
p) would be totally ramified in

the cyclic quartic extension N(p,q)/Q(
√
p), hence ramified in the quadratic

extension N(p,q)/Q(
√
p,
√
q).

Now we prove that (a)⇔(c). If n ≥ 2 then N(p,q) is included in H(p,q),
hence N(p,q) is totally real. If n = 1, then n+ = 2 and H(p,q) = Q(

√
p,
√
q)

and N(p,q) = H+
(p,q) is a CM-field. Finally, (a)⇔(b) was proved in [Lou 1]

(see Lemma 3).

(8) If K(p,q) is a CM-field then h∗(K(p,q)) is odd.

P r o o f. We set K = K(p,q), K+ = kp = Q(
√
p) and let ε+ be the

fundamental unit of K+, so that NK+/Q(ε+) = −1. Since QK = 1 and
WK = {−1,+1}, we have EK = EK+ . Now, let C be an ideal class of order
≤ 2 in the ideal class group of K. Since NK/K+(C) has order ≤ 2 in the
ideal class group of K+ that has odd order, it follows that NK/K+(C) is
principal, so that CC = iK/K+(NK/Q(C)) is principal, and thus C = C, i.e.
C is an ambiguous class. Let I be an integral ideal in C. There exists α in K
such thatI = (α)I. Hence, (αα) = (1) so that there exists an integer n such
that αα = ε2n

+ (indeed, αα is positive and in EK = EK+ so that there exists
an integer m such that αα = εm+ ; since 0 < NK/Q(α) = (−1)m, m is even).
If β = α/εn+ then I = (β)I and ββ = 1 so that there exists an algebraic
integer γ in K such that β = γ/γ. Thus,J = J where J = (γ)I is in C. It
follows that there exists an integral ideal L of K+ such that J = iK/K+(L)
or J = iK/K+(L)Q where Q is the prime ideal of K ramified in K/K+

given in (4). By (4), Jh(K+) is principal so that the order of C is odd, i.e.
C is the principal ideal class. Hence, there does not exist an ideal class of
order 2, so that h(K) is odd.

Hence, we have proved:

Theorem 4. A number field is a non-normal quartic CM-field with odd
relative class number if and only if it is a subfield of a dihedral octic CM-field
N(p,q) that is a cyclic quartic extension of the real quadratic field Q(

√
pq),

unramified at the finite places, such that 4 does not divide the class number
of Q(

√
pq), where p and q are distinct primes not congruent to 3 (mod 4)

and q splits in Q(
√
p).

We finish this section by giving an upper bound on discriminants of
non-normal quartic CM-fields with relative class number one:

Theorem 5 (see [Lou 1]). Let K be a non-normal quartic CM-field , and
let k be its real quadratic subfield. Then K has relative class number greater
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than one provided that

∆(K) def=
d(K)
d(k)

≥ 5 · 109.

R e m a r k.

∆(K(p,q)) =
{
pq if 2 6= p < q,
8q if 2 = p < q

(see (5)).

3. A criterion for the relative class number of a CM-field to
be one. We show that CM-fields with relative class number one have the
remarkable property that prime ideals that split completely have large ab-
solute norm:

Theorem 6. Let F be a CM-field , and assume that the natural map
iF /F+ from the group of fractional ideals of F+ to that of F is injective.
Assume that h∗(F ) = 1 and let P+ be a prime ideal of F+ that is not inert
in F /F+. Then

NF+/Q(P+) ≥ 1
4N

d(F )
d(F+)2 .

P r o o f. Let P be a prime ideal of F lying above P+. Since h∗(F ) = 1
and since iF /F+ is injective, we have

H(F ) = iF /F+(H(F+)).

Hence, there exists an ideal I of F+ such that IP is principal in F , i.e.
there exists α ∈ AF such that IP = (α). Let us point out that since the
prime ideal P is not inert in F /F+, we have α ∈ F \F+, so that α−α 6= 0.
Taking norms, we get

NF+/Q(P+)NF+/Q(I)2 = NF /Q(IP ) = NF+/Q(NF /F+(α)).

Now,

NF /F+(α) = αα =
β + γ

4
with β = (α+ α)2 = NF /F+(α+ α) and γ = −(α− α)2 = NF /F+(α− α).

Since β and γ are totally positive elements in F+, we get

NF+/Q(P+)NF+/Q(I)2 =
1

4N
NF+/Q(β + γ)

≥ 1
4N

NF+/Q(γ) =
1

4N
NF /Q(α− α).

Let DF /F+ be the different of the quadratic extension F /F+. We have

NF /Q(IDF /F+) = NF+/Q(I)2 d(F )
d(F+)2 .
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Hence, it suffices to prove that the ideal IDF /F+ divides the principal ideal
(α− α). Thus, we prove that for any prime ideal L of F we have

(∗) vL(α− α) ≥ vL(IAF ) + vL(DF /F+).

First, if L is not ramified in F /F+, then vL(DF /F+) = 0 and (∗) is
clearly satisfied since α ∈ IAF and α ∈ IAF . Second, if L is ramified in
F /F+ and if Gi, i ≥ −1, are the ramification subgroups of the Galois group
G = {Id, σ} (where σ is the complex conjugation) of the quadratic extension
F /F+, then we have (see [Se, Chapitre IV, Proposition 4])

vL(DF /F+) =
∑

i≥0

(Card(Gi)− 1) = 1 + max{i : i ≥ 0 and σ ∈ Gi}.

Now, vL(α−α) ≥ a+i+1 if σ ∈ Gi and if vL(α) ≥ a, hence if vL(IAF ) ≥ a.
Hence, we get the desired result.

4. Determination of the non-normal quartic CM-fields and of
the dihedral octic CM-fields with relative class number one. Let us
recall the following rules:

Lemma. Let N/F be a bicyclic biquadratic extension of number fields.
Let Ki/F , 0 ≤ i ≤ 2, be the three quadratic subextensions of N/F . Let
PF be a prime ideal of AF that is not ramified in N/F . If PF is inert in
K1/F and in K2/F , then PF splits in K0/F and the prime ideals of K0

lying above PF are inert in N/K0.

Let N be a dihedral octic number field. Let K1, K
′
1, K2 and K′2 be the

non-normal quartic subfields of N , where K ′1 is isomorphic to K1, K
′
2 is

isomorphic to K2 and K1 is not isomorphic to K2. Let ki be the quadratic
subfield of Ki, so that each N/ki is a bicyclic biquadratic extension. Let
k+ be the quadratic subfield of the only quartic subfield N+ of N that is
normal over Q, so that N+/Q is bicyclic biquadratic. This situation can be
well understood with the help of the following lattice of subfields:

N

K1 K ′1 N+ K2 K′2

k1 k+ k2

Q

mmmmmmmmmmmmmm

zzzzzz DDDDDD

QQQQQQQQQQQQQQ

||||||

mmmmmmmmmmmmmm QQQQQQQQQQQQQQ

BBBBBB
QQQQQQQQQQQQQQQ mmmmmmmmmmmmmmm
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Now, let l be a prime number that is unramified in N/Q, let L1 be a
prime ideal of k1 lying above l, let L+ be any prime ideal of N+ lying above
L1 and let L2 be the prime ideal of k2 lying below L+. Let us assume that
L1 is inert in K1/k1 and in K ′1/k1. We prove that l splits in k+/Q.

Indeed, from the previous lemma, L1 that is inert in K1/k1 and in
K ′1/k1 splits completely in N+/k1 and the prime ideals of N+ lying above
L1 are inert in N/N+. Hence, L2 splits in N+/k2 for if it were inert
then it would be inert in N/k2, hence in K2/k2 and in K ′2/k2, so that
the previous lemma would tell us that it would split in N+/k2. Hence,
we have just proved that L+ splits in N+/k1 and in N+/k2. We deduce
that l splits in k+/Q for if it were inert then it would be inert in k1/Q
and in k2/Q, and the previous lemma would provide us with a contradic-
tion.

Now, let N be a dihedral octic CM-field with relative class number one.
As N/N+ is unramified at the finite places, we get d(N) = d(N+)2 so that
Theorem 6 is useless. Nevertheless, by Lemma 3, the non-normal quartic
CM-subfields K1 and K ′1 of N also have relative class number one. By The-
orem 6, any prime ideal L1 of k1 remains inert in K1/k1 and in K′1/k1 pro-
vided that its norm is less than d(K1)/16d(k1)2 = d(K ′1)/16d(k1)2. Hence,
if N = N(p,q) has relative class number one, then so does K1 = K(p,q).
Hence any prime ideal L of Q(

√
p) such that

Nkp/Q(L) <
1
16
d(K(p,q))
d(kp)2 =

q

16

(see (5) for the equality) is inert in K(p,q)/Q(
√
p), so that by the previous

arguments, l splits in k+ = Q(
√
pq). Let us note that a prime l (with l 6= p

and l 6= q) splits in Q(
√
pq) if and only if

(
pq
l

)
= +1, hence if and only if(

l
q

)
=
(
p
l

)
. We have thus proved:

Theorem 7. Let l denote any prime. Let p 6≡ 3 (mod 4) and q ≡ 1
(mod 4) be two distinct primes such that q splits in the real quadratic field
Q(
√
p). If the relative class number of a dihedral octic CM-field N(p,q) is

one, then we have:

(a)
(
l
q

)
= −1 if

(
p
l

)
= −1 and 4 ≤ l2 < q/16;

(b)
(
l
q

)
= +1 if

(
p
l

)
= +1 and 2 ≤ l < q/16.

Now, there are exactly 40 values of

∆ =
{
pq if p 6= 2,
8q if p = 2

with 2 ≤ p < q two primes such that p 6≡ 3 (mod 4), q ≡ 1 (mod 4),(
p
q

)
= +1, ∆ < 5 · 109 and (a) and (b) of Theorem 7 are satisfied. The

largest one is ∆ = 113977. Let us note that as we have assumed that p < q,
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these necessary conditions (a) and (b) imply
(
∆

l

)
= +1 for all primes l such that l < ∆1/4/4,

so that we can hope to get only few values of ∆ less than 5 · 109 such that
these conditions (a) and (b) are fulfilled. It is worth mentioning that if one
wants to solve the class number one problem for K(p,q) then one cannot
assume that p < q for we do not have h(K(p,q)) = 1 ⇔ h(K(q,p)) = 1, i.e.
the symmetric relation h∗(K(p,q)) = h∗(K(q,p)) does not always hold for the
absolute class numbers. For example, we will note below that h(K(17,257)) =
1 6= 3 = h(K(257,17)). But now, if q is small then the necessary conditions
of Theorem 7 are likely to be satisfied for many ∆ = pq less than 5 · 109, so
that if our criterion of Theorem 6 had been written as a necessary condition
for the class number of a CM-field to be one, then it would have provided
us with a lot of values of ∆ = pq less than 5 · 109, so that it would have
been difficult to solve the class number one problem for non-normal quartic
CM-fields. This in fact motivated the authors to discuss everything in terms
of relative class numbers instead of class numbers.

We would like to point out that there are several tricks in order to speed
up the sieve based on the necessary conditions of Theorem 7. Indeed, from
(a) and (b) written with l = 2 we see that p ≡ q (mod 8) provided that p
and q are odd primes such that q > 64. Hence, ∆ ≡ 1 (mod 8) provided
that ∆ is odd and ∆ > 4096. Moreover, if p = 2, then q ≡ 1 (mod 8).
Moreover, we can get much better lower bounds on ∆ than the one given in
Theorem 5, provided that p is a small prime. Indeed, we have:

Theorem (see [Lou 1, Th. C]). Let K be a non-normal quartic CM-field
with real quadratic subfield k such that d(K) ≥ 16d(k)2. Let ε(k) > 1 and
h(k) be the fundamental unit and the class number of k. If h∗(K) = 1,
then (

1− 13
d(K)1/4

) √
d(K)

log(d(K))
≤ 481h(k) log(ε(k)).

Thus, for example, with p = 2 we get h∗(K(2,q)) > 1 provided that
d(K(2,q)) = 64q > 8 · 107 (see (5) for the equality), i.e. provided that ∆ =
8q > 107, i.e. provided that q > 2 · 106.

Second, there are only 30 of these 40 values of ∆ = pq such that
the fundamental unit εpq of the real quadratic field Q(

√
pq) is such that

NQ(
√
pq)/Q(εpq) = +1. Let us point out that the class numbers of the corre-

sponding real quadratic fields Q(
√
p) are all equal to one. The class numbers

hpq of the corresponding real quadratic fields Q(
√
pq) are given in the fol-

lowing table:
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(p, q) hpq (p, q) hpq (p, q) hpq (p, q) hpq

(2,17) 2 (5,41) 2 (5,269) 6 (41,73) 6

(2,73) 2 (13,17) 2 (17,89) 2 (29,149) 10

(2,89) 2 (5,61) 2 (37,41) 2 (17,257) 2

(2,97) 2 (13,29) 2 (29,53) 2 (73,97) 2

(2,233) 2 (5,101) 4 (5,389) 2 (97,313) 2

(2,281) 2 (5,109) 2 (13,157) 2 (109,421) 2

(5,149) 2 (17,137) 2 (173,269) 4

(13,61) 4 (13,181) 2 (193,337) 4

Third, only 26 out of these 30 values of (p, q) are such that K(p,q) is
a non-normal quartic CM-field with odd relative class number, namely the
ones such that 4 does not divide hpq (Theorem 4). Now, we sum up the
numerical computation of the relative class numbers of the corresponding
26 non-normal quartic CM-fields K(p,q):

(p, q) h∗(K(p,q)) (p, q) h∗(K(p,q)) (p, q) h∗(K(p,q))

(2,17) 1 (5,41) 1 (5,389) 1

(2,73) 1 (13,17) 1 (13,157) 1

(2,89) 1 (5,61) 1 (17,137) 1

(2,97) 3 (13,29) 1 (13,181) 1

(2,233) 1 (5,109) 1 (41,73) 11

(2,281) 1 (5,149) 1 (29,149) 5

(5,269) 1 (17,257) 1

(17,89) 7 (73,97) 1

(37,41) 3 (97,313) 17

(29,53) 1 (109,421) 11

Let us point out that the first author computed these class numbers using
the method developed in [Lou 2], [Lou 3] and the second author computed
them using the method developed in [Ok]. As the results agreed, we can be
quite confident of them. Hence, we get:

Theorem 8. There are exactly 19 non-isomorphic dihedral octic CM-
fields with relative class number one, namely the N(p,q)’s with

(p, q) ∈ {(2, 17), (2, 73), (2, 89), (2, 233), (2, 281),

(5, 41), (5, 61), (5, 109), (5, 149), (5, 269), (5, 389),

(13, 17), (13, 29), (13, 157), (13, 181),

(17, 137), (17, 257), (29, 53), (73, 97)}.
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Hence, there are exactly 38 non-isomorphic non-normal quartic CM-fields
with relative class number one, namely the K(p,q)’s and K(q,p)’s with p and
q as above.

5. Determination of the non-normal quartic CM-fields and of
the dihedral octic CM-fields with class number one. If we compute
the class numbers of the real quadratic subfields of these 38 non-normal
quartic CM-fields with relative class number one, we see that there exist
37 non-isomorphic non-normal quartic CM-fields with class number one,
the exceptional field being K(257,17) for which we have 3 = h(K(257,17)) 6=
h(K(17,257)) = 1. Now, we compute the class numbers of the 18 dihedral
octic CM-fields with relative class number one.

Lemma (see [Lou 4], [Kub]). Let p 6≡ 3 (mod 4) and q 6≡ 3 (mod 4)
be two distinct primes such that the fundamental unit εpq > 1 of the real
quadratic field Q(

√
pq) is such that NQ(

√
pq)/Q(εpq) = +1. Then the class

number h(k(p,q)) of the totally real bicyclic biquadratic number field k(p,q) =
Q(
√
p,
√
q) is equal to 1

2hphqhpq where hd stands for the class number of the
real quadratic field Q(

√
d).

Hence, exactly 17 of the 19 dihedral octic CM-fields with relative class
number one have class number one too. The two dihedral octic CM-fields
N(p,q) with relative class number one but with class numbers greater than
one are given in the following table:

(p, q, pq) (hp, hq , hpq) h(N(p,q))

(5, 269, 1345) (1, 1, 6) 3

(17, 257, 4369) (1, 3, 2) 3

and we get:

Theorem 9. (a) There are exactly 37 non-isomorphic non-normal quar-
tic CM-fields with class number one, namely the K(p,q)’s with

(p, q) ∈ {(2, 17), (2, 73), (2, 89), (2, 233), (2, 281),

(5, 41), (5, 61), (5, 109), (5, 149), (5, 269), (5, 389),

(13, 17), (13, 29), (13, 157), (13, 181),

(17, 2), (17, 13), (17, 137), (17, 257),

(29, 13), (29, 53), (41, 5), (53, 29),

(61, 5), (73, 2), (73, 97)(89, 2), (97, 73),

(109, 5), (137, 17), (149, 5), (157, 13), (181, 13),

(233, 2), (269, 5), (281, 2), (389, 5)}.
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(b) There are exactly 17 non-isomorphic dihedral octic CM-fields with
class number one, namely the N(p,q)’s with

(p, q) ∈ {(2, 17), (2, 73), (2, 89), (2, 233), (2, 281),

(5, 41), (5, 61), (5, 109), (5, 149), (5, 389),

(13, 17), (13, 29), (13, 157), (13, 181),

(17, 137), (29, 53), (73, 97)}.
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