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I. Introduction. In this paper we investigate the number of solutions
of the so-called Thue–Mahler equation

F (x, y) = pa1
1 . . . pass

where F (x, y) is a binary form of degree r ≥ 3 without multiple factors and
with rational integral coefficients, to be solved in rational integers x, y. More
generally, we shall consider the Thue–Mahler equation in number fields, as
follows.

Let k be a number field and let S be a finite set of places of k which
includes all places at∞. Let [k : Q] be the degree of k and for each absolute
value v let [kv : Qv] be the corresponding local degree. We normalize the
absolute value | |v so that

(i) if v|p, then
|p|v = p−[kv:Qv]/[k:Q],

(ii) if v|∞ then
| |v = ‖ ‖[kv:Qv]/[k:Q]

with ‖ ‖ the euclidean absolute value.
We also define

ε(v) =
{

[kv : Qv]/[k : Q] if v|∞,
0 otherwise.

This quantity is useful in handling inequalities, because of

|a1 + a2 + . . .+ an|v ≤ nε(v) max
i
|ai|v.

We have ∑

v|∞
ε(v) = 1,

therefore for any set of places S we have∏

v∈S
|a1 + a2 + . . .+ an|v ≤ n

∏

v∈S
max
i
|ai|v.

[69]
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We denote by OS the ring of S-integers of k and by O∗S the group of
units of OS , thus

OS = {x ∈ k : |x|v ≤ 1 for v 6∈ S},
O∗S = {x ∈ k : |x|v = 1 for v 6∈ S}.

We define the S-absolute value | |S and the projective absolute S-height
HS(x, y) to be

|x|S =
∏

v∈S
|x|v, HS(x, y) =

∏

v∈S
max(|x|v, |y|v).

By the product formula we see that if x is a non-zero S-integer then
|x|S ≥ 1 with equality if and only if x is an S-unit, and similarlyHS(x, y) ≥ 1
if (x, y) ∈ O2

S is not (0, 0). Then the Thue–Mahler equation in the field k
relative to the set S can be written as

|F (x, y)|S = 1

with F ∈ OS [x, y] homogeneous of degree r, to be solved in S-integers x, y.
Solutions to the Thue–Mahler equation fall naturally into equivalence classes
{(ux, uy)} for u ∈ O∗S , and we are interested in obtaining bounds for the
number of equivalence classes of solutions. Each equivalence class determines
uniquely a projective solution x/y in the projective line P1(k) = k∪∞, and
we shall denote by N(F ) the set of projective solutions so determined.

From now on, we assume that F has an irreducible factor over k of degree
at least 3. Thus it suffices to consider the case in which F itself is irreducible
of degree at least 3. For if F = F ′F ′′ is a factorization of F over k then by
Gauss’s Lemma we also have a factorization over OS and now F (x, y) for
x, y ∈ OS is an S-unit if and only if F ′(x, y) and F ′′(x, y) are both S-units.

Let T be the torsion subgroup of O∗S , that is, the roots of unity in k; by
Dirichlet’s Unit Theorem, the group O∗S/T is free abelian of rank |S| − 1,
therefore O∗S/T (O∗S)r is finite abelian of order r|S|−1. Thus every S-unit
u can be written as u = ζηθr with ζ ∈ T and θ ∈ O∗S and η a suitable
representative in O∗S of an element of O∗S/T (O∗S)r, so that the equation
F (x, y) = u becomes

η−1F (θ−1x, θ−1y) = ζ.

We deduce that

N(F ) =
⋃
N0(Fi)

where Fi runs over the r|S|−1 forms η−1F (θ−1x, θ−1y) and where N0(G), for
a form G ∈ OS [x, y], denotes the set of projective solutions of the equation

G(x, y) ∈ T.
In 1984 Evertse [E] obtained uniform bounds for the number of solutions
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of the generalized S-unit equation in number fields, thereby obtaining for
the first time a bound independent of the height for the number of solutions
of the Thue–Mahler equation. From his results it follows that cr

3|S|, for some
absolute constant c > 1, is such a bound.

In 1987 Bombieri and Schmidt [BS] obtained the bound c6r for the num-
ber of integral solutions of a Thue equation F (x, y) = 1 of degree r ≥ 3,
without multiple factors. This has been further improved and generalized
to the Thue equation F (x, y) = m by C. L. Stewart [S]. The interested
reader will find in [E] and [S] an ample bibliography on the history of the
Thue–Mahler equation.

In 1987, Bombieri [B1] claimed the bound (4|S|)2[k:Q](4r)26|S| for the
number of equivalence classes of solutions of the Thue–Mahler equation in
number fields. Unfortunately, the proof of the Gap Principle in Section V
of [B1] contains an error which invalidates the counting of the number of
small solutions of the Thue–Mahler equation, and therefore the main result
of [B1] cannot be considered as proved there.

In this paper we shall give an updated and complete treatment of the
Thue–Mahler equation in number fields, showing how to establish a modified
form of the Gap Principle in [B1] and recovering the Main Theorem of [B1],
in a rather stronger form. However, Lemma 5 and Theorem 1 of [B1] should
be considered as not being established.

We shall prove the following result.

Main Theorem. Let k be an algebraic number field , let S be a finite set
of places of k containing all the infinite places and let OS and O∗S be the
ring of S-integers and the group of S-units of k. Let F (x, y) ∈ OS [x, y] be a
form of degree r with an irreducible factor over k of degree at least 6. Then
the number of equivalence classes of solutions x, y ∈ OS of the Thue–Mahler
equation F (x, y) ∈ O∗S does not exceed (12r)12|S|.

We note that the constants 12 and 12 in this bound can be brought
down somewhat and they are stated here as round numbers merely for con-
venience.

Finally, we remark that if F does not have an irreducible factor over k of
degree at least 6 but still has at least three inequivalent linear factors over
a finite extension k′ of k, then we obtain a bound c|S| for the number of
solutions of the Thue–Mahler equation F (x, y) ∈ O∗S , where c is an absolute
constant. In fact, in this case F has a factor F ′ ∈ OS [x, y] of degree at most
5 with at least three inequivalent linear factors over some extension k′ of
k, and we may apply Evertse’s results in [E] to the Thue–Mahler equation
F ′(x, y) ∈ O∗S .

Another proof of our Main Theorem, with somewhat better constants,
has also been found by Evertse, using a rather different method.
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The author is grateful to the referee for pointing out some inaccuracies
in an earlier version of this paper.

II. Plan of the paper. In view of the complicated proof, it seems to
be worthwile to summarize its structure and more importantly to explain
the motivation behind certain definitions and constructions.

The basic idea behind the proof goes back to Thue. Suppose that

F (x, y) =
r∏

i=1

(x− αiy) = 1

and that F is irreducible over k. Let k′ be an extension of k containing all
roots αi, and let us fix an extension of the absolute value | |v to the field k′.
This allows us to speak about the quantities |x− αiy|v for i = 1, . . . , r.

In an equivalent way, we can take k′′ = k(α), the extension of degree
r of k obtained by adding a root α of F , and note that in view of our
normalizations we have

|F (x, y)|v =
∏

w|v
|x− αy|rw.

Now we see that the set |x− α1y|v, . . . , |x− αry|v for a fixed extension of v

to k′ coincides with the set consisting of |x−αy|v = |x−αy|r/[k′′w:kv ]
w , taken

with multiplicity [k′′w : kv], for a fixed α and all extensions w|v of v to k′′.
We expect exactly one factor |x − αiy|v to be small, and the others to

be of order of magnitude of max(|x|v, |y|v). Since the product of the factors
is 1, we get an inequality

min
i
|x− αiy|v ≤ c(F, v) max(|x|v, |y|v)−(r−1)

for a suitable coefficient c(F, v) independent of the point (x, y); for example,
one may take

c(F, v) = (2ε(v) max
i

max(1, |αi|v))r−1 max
i,j
|αi − αj |(r−1)(r−2)/2

v |D(F )|−1/2
v

with D(F ) the discriminant of F . If one takes the product of these inequal-
ities for v ∈ S one gets

(2.1) Λ(x, y) =
∏

v∈S
min
i
|x− αiy|v ≤ c(F )HS(x, y)−(r−1)

where c(F ) can be bounded by a power of the height of F .
This inequality is useful if the right-hand side is small, i.e. if HS(x, y) is

larger than a certain power of the height of F , say M ; in this case, we speak
of large solutions.

The idea for bounding the number of large solutions goes back to Mahler.
First of all, with each solution one associates a vector {i(v) : v ∈ S} deter-
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mined by |x − αi(v)y|v = mini |x − αiy|v; the number of such vectors is at
most r|S|. Now consider solutions associated with the same vector. We have

0 ≤ log |x− αi(v)y|v/ logΛ(x, y) ≤ 1

for each v ∈ S, so that we can view {log |x − αi(v)y|v/ logΛ(x, y) : v ∈ S}
as a point in the unit |S|-dimensional cube, lying on the hyperplane where
the sum of the coordinates is 1. We partition this cube into N |S| smaller
cubes by means of a grid of side 1/N , and put solutions into the same
class if they belong to the same cube. Thus we obtain approximation classes
determined by a vector {i(v) : v ∈ S} and by the cube containing the point
{log |x− αi(v)y|v/ logΛ(x, y) : v ∈ S}; the quantity 1/N is the size of the
approximation class. Obviously the number of classes does not exceed N |S|,
but since the points involved are restricted to a special hyperplane one finds
the better bound |S|(N+|S|−1

|S|−1

)
for the number of approximation classes. This

improved bound is important for our estimates.
From (2.1) one can prove that if x′ and x are two distinct solutions in

the same approximation class and HS(x′) ≥ HS(x) then

HS(x′) > HS(x)(1−δ)(r−1)

where δ < 1/2 is an absolute constant. This implies that the number of
large solutions in a fixed approximation class with HS(x) < M ((1−δ)(r−1))K

does not exceed K; this gives a total of K|S|(N+|S|−1
|S|−1

)
r|S|. The remaining

solutions with HS(x) ≥M ((1−δ)(r−1))K are called very large solutions. Very
large solutions give rise to exceptionally good diophantine approximations
to the αi’s, and one can use the fundamental method of Thue to prove that
in each approximation class there are at most 8 very large solutions if K is
larger than some absolute constant. This gives a bound for the number of
large and very large solutions of the Thue–Mahler equation.

This part of the proof follows classical lines and numerical improvements
originate from more careful estimates and a sharper form of the Thue Prin-
ciple used in dealing with very large solutions.

There remains the problem of estimating the number of small solutions.
The paper [BS] of Bombieri and Schmidt deals directly with the problem of
obtaining a good counting of small solutions. In case k = Q and |S| = 1,
Bombieri and Schmidt were able to show that one could replace (2.1) by
another inequality which could be used to prove again a gap principle; in
a somewhat weaker but simpler way, their argument can be summarized as
follows.

The first step consists in proving an inequality

(2.2) min
i
|x− αiy| ≤ 2

maxi,j |βi − βj | ·
1
|y|
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where the βi’s are obtained from the αi’s by means of a fractional linear
transformation associated with a suitable element A ∈ SL(2,Z). If G(x) =
F (Ax) then

∏
max(1, |βi|) is the Mahler height of G. Note that the βi’s are

determined only up to a translation. By choosing this translation accurately
one verifies that we may also suppose

(2.3) max
i,j
|βi − βj | ≥ 2−1M(G)1/r

where M(G) is the Mahler measure of G. If we start with a form F of
smallest Mahler height in its SL(2,Z) equivalence class then M(G) ≥M(F )
and thus

(2.4) min
i
|x− αiy| ≤ 4M(F )−1/r

|y| .

Now suppose x/y and x′/y′ are two distinct projective solutions with x and
x′ in the same approximation class. Then by (2.4) we have

1 ≤ |xy′ − x′y| = |(x− αiy)y′ − (x′ − αiy′)y|(2.5)

≤ 8M(F )−1/r max(|y′/y|, |y/y′|),
therefore, ordering solutions by increasing values of |y|, we find that the
sequence of second coordinates of inequivalent solutions in a given approxi-
mation class satisfies the gap principle

|yi+1| ≥ 1
8
M(F )1/r|yi|.

After K steps we reach the lower bound ( 1
8M(F )1/r)K and thus there are

at most Kr solutions with y 6= 0 and |y| < ( 1
8M(F )1/r)K . If K is large

enough (a power of r suffices) we reach ( 1
8M(F )1/r)K > M , i.e. the level

of large and very large solutions. This of course requires M(F ) to be not
too small, for example M(F ) > 16r. The actual argument used by Bombieri
and Schmidt is more refined, leading to sharp bounds.

The elimination of the condition M(F ) > 16r requires one final idea,
namely transforming the equation F (x, y) = 1 into finitely many equations
Fi(x, y) = 1 where Fi is obtained from F by means of a transformation
of determinant greater than 1. It is easily seen that such transformations
necessarily increase the height of the Fi’s, thus removing the condition of a
lower bound for the height of F .

It is tempting to follow the same argument in analyzing the general
Thue–Mahler equation, but we encounter new problems in dealing with small
solutions. Inequality (2.2) carries over to the general case without difficulty,
but (2.5) creates a problem. First of all, it is not true that |xy′ − x′y|v ≥ 1
for every v, and what we have at our disposal is only |xy′ − x′y|S ≥ 1. A
more serious problem, which was overlooked in [B1], is that we cannot use
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(2.2) directly in estimating (2.5), since this would lead to

|xy′ − x′y|v ≤ 4ε(v) max
( |y′/y|v

maxi,j |βi − βj |v ,
|y/y′|v

maxi,j |β′i − β′j |v

)

and the difficulty is that maxi,j |β′i−β′j |v and maxi,j |βi−βj |v are not related
to each other in any obvious way; the error in [B1] was to forget the prime ′

in the expression maxi,j |β′i − β′j |v.
A way out of this difficulty can be seen if we assume (for the time being

as a working hypothesis) that |x′ − αi(v)y
′|v ≤ |x− αi(v)y|v for each v ∈ S.

Now we can use (2.2) in estimating (2.5) and find

|xy′ − x′y|v ≤ 4ε(v)

maxi,j |βi − βj |v max
(

1,
|y′|v
|y|v

)

and hence

max(1,max
i,j
|βi − βj |v|xy′ − x′y|v) ≤ 4ε(v) max

(
1,
|y′|v
|y|v

)
.

The analogue of (2.3) would be a lower bound for
∏

v∈S
max(1,max

i,j
|βi − βj |v|xy′ − x′y|v)

or equivalently, since the βi’s are determined only up to translation, a lower
bound for ∏

v∈S
max(1,max

i
|βi − β|v|xy′ − x′y|v)

where β ∈ k is the average of the βi’s. Although this expression is reminiscent
of the Mahler height, because of the presence of the term |xy′−x′y|v it does
not seem to be immediately comparable with the Mahler height of G. So in
[B1] we introduced a new height

mS(F ) = inf
∏

v∈S
max(1,max

i
|αi − α|v|y|v)

where the infimum is taken over y ∈ OS , y 6= 0, and asked that F be
reduced with respect to this height, i.e. that mS(F ) be a minimum (actually
the infimum in [B1] is taken over a smaller set). Now the analogue of (2.5)
becomes

mS(F ) ≤ 4r
∏

v∈S
max

(
1,
|y′|v
|y|v

)
.

The working hypothesis |x′ − αi(v)y
′|v ≤ |x − αi(v)y|v can be handled

by restricting solutions to the same approximation class with sufficiently
fine mesh, provided Λ(x, y) and Λ(x′, y′) are larger than mS(F )−K ; the
Gap Principle so obtained leads essentially to the same estimate as that
claimed in [B1], V, p. 227, but since it needs solutions to belong to the same
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approximation class the bound stated in [B1], Lemma 5, p. 231 must be
modified.

Suppose this done. There is one last difficulty, already dealt with in [B1].
The classical definition of large and very large solutions is given in terms

of the Mahler height M(F ) of F , and we could not find an immediate com-
parison between the height mS(F ) and M(F ). This means that the diophan-
tine approximation properties of solutions must be stated in such a way as
to involve only the new height, and this was done in [B1] by introducing a
modified height for solutions, called here the reduced height.

It remains to remove the technical hypothesis of a lower bound for the
height mS(F ). The method used in [BS] and [B1] depends on choosing trans-
formations in GL(2,OS) with large determinant. This works well if [k : Q]
is kept fixed or if k has a prime not in S with small norm, but it leads to
estimates which are no longer exponential in |S| if primes not in S have large
norm. In this paper we deal directly with the case of small height mS(F ),
at the cost of additional complications.

III. Equivalent and reduced forms. We say that two forms F and G
are equivalent , and write F ∼ G, if there is A ∈ GL(2,OS) with detA ∈ O∗S
and a root of unity ζ ∈ T such that

G(x) = ζF (Ax)

where x = (x, y). It is clear that if F ∼ G then |N0(F )| = |N0(G)| and more
precisely

N0(F ) = AN0(G)
where A acts on N0(G) by the obvious fractional linear transformation.

Let F (x, y) = a0x
r + a1x

r−1y + . . . + ary
r be a form and suppose that

N0(F ) is not empty, so that we have a solution F (x0, y0) = ζ0. Then the
transformation

A0 =
(
x0 −ζ−1

0 ary
r−1
0

y0 ζ−1
0 (a0x

r−1
0 + a1x

r−2
0 y0 + . . .+ ar−1y

r−1
0 )

)

has detA0 = 1, A0(1, 0) = (x0, y0) and the form G(x) = ζ−1
0 F (A0x) is

equivalent to F with G(1, 0) = 1, i.e. G has leading coefficient 1. We then
say that the form G is normalized and denote by F the set of normalized
forms equivalent to F . Normalized forms split into linear factors as

F (x, y) =
r∏

i=1

(x− αiy)

with the αi’s in a finite extension k′ of k. We define

α =
1
r

r∑

i=1

αi, mv(F, y) = max(1,max
i
|αi − α|v|y|v),
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mS(F, y) =
∏

v∈S
mv(F, y) and mS(F ) = inf mS(F, y)

where the infimum is taken over y ∈ O∗S . The quantities mv(F, y) are inde-
pendent of the extension of v to the field k′.

We consider all pairs (F, y) consisting of a normalized form F ∈ F and
of an element y ∈ OS , y 6= 0.

Definition. A pair (F, y0) with F ∈ F and y0 ∈ OS , y0 6= 0 is reduced if

mS(F, y0) = inf mS(G, y)

where the infimum is taken over all G ∈ F and all y ∈ OS , y 6= 0.

We verify that inf mS(F, y) is attained as follows. Suppose that mS(F, y)
≤M . We have

|y|S
∏

v∈S
max
i
|αi − α|v =

∏

v∈S
max
i
|αi − α|v|y|v ≤ mS(F, y) ≤M.

For every v we have |αi − αj |v ≤ 2ε(v) maxi |αi − α|v, thus
(∏

v∈S
max
i
|αi − α|v

)r(r−1)
≥
∏

v∈S

∏

i 6=j
(2−ε(v)|αi − αj |v) = 2−r(r−1)|D(F )|S

where D(F ) ∈ k is the discriminant of F . Since |D(F )|S ≥ 1 it follows that

(3.1) |y|S ≤ 2M

and therefore |y|S is bounded from above. Now we note that if u ∈ O∗S then
the transformation A =

( 1 0
0u

)
yields mv(F ◦ A, y/u) = mv(F, y) for every

v, while F ◦ A ∼ F is still normalized. It follows that y may be replaced
by any representative (modO∗S), and therefore since |y|S is bounded we
can take y from a finite set. Moreover, this shows that we may assume
that maxi |αi − α|v is bounded too. But if a ∈ OS then the transformation
A =

( 1 a
0 1

)
yields mv(F ◦ A, y) = mv(F, y) for every v, while F ◦ A ∼ F is

still normalized. This means that we may translate αi by any element in
OS , and in particular by an element a such that α − a is in a fundamental
domain for (

∏
v∈S kv)/OS , and shows that we may assume that each |αi|v is

bounded, and hence the αi’s can also be taken from a finite set. This proves
that a reduced pair exists.

By (3.1), it is immediate that

Lemma 1. If (F, y0) is a reduced pair then |y0|S ≤ 2mS(F ).

If (F, y0) is reduced and A =
( 1 0

0u

)
with u ∈ O∗S then (F ◦A, y0/u) is also

reduced, and similarly if A =
( 1 a

0 1

)
and a ∈ OS then (F ◦ A, y0) is reduced

too. This shows that the subgroup A =
( 1 ∗

0 ∗
)

of GL(2,OS) transforms re-
duced pairs into reduced pairs. The next definition introduces a height on
solutions which is invariant by the action of this subgroup.
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Definition. Let (F, y0) be reduced. The reduced F -height of a solution
x/y ∈ N0(F ) is

H∗S(x, y) = HS(x− αy, y/y0) =
∏

v∈S
max(|x− αy|v, |y/y0|v).

Now we consider the effect of equivalence transformations on forms in
F . We follow the argument in [BS].

Lemma 2. There is G(u,w) =
∏

(u − βiw) with G ∼ F such that for
each v ∈ S

min
i
|x− αiy|v ≤ (2r)ε(v)|r|−1

v

maxi |βi − β|v|y|v
.

Here rβ =
∑
i βi.

P r o o f. Let F (x, y) = xr + a1x
r−1y + . . . + ary

r =
∏

(x − αiy) be
a normalized form and let x = (x, y) be a solution of the Thue–Mahler
equation F (x) = ζ. If A is the matrix

A =
(
x −ζ−1ary

r−1

y ζ−1(xr−1 + a1x
r−2y + . . .+ ar−1y

r−1)

)

we have detA = 1, thus if z = (−ζ−1ary
r−1, ζ−1(xr−1 + a1x

r−2y + . . . +
ar−1y

r−1)) we have det(x, z) = 1. Thus for x′ with S-integer coordinates we
can write x′ = ax + bz with S-integers a, b, and actually b = det(x,x′) =
xy′ − x′y. We abbreviate Li(x) = x− αiy and deduce by linearity that

(3.2) Li(x′)/Li(x) = a− βib
where

βi = βi(A) = −Li(z)/Li(x).

Let G(u,w) = ζ−1F (ux + wz). Then G ∼ F and we have, noting that
F (x) = ζ,

G(u,w) = ζ−1F (A(u,w)) =
r∏

i=1

Li(ux + wz)/Li(x) =
r∏

i=1

(u− βiw).

Now we choose x′ = (1, 0) and obtain, by (3.2),

1
Li(x)

− 1
Lj(x)

= (βi − βj)y,

so that

(3.3) max
i,j
|βi − βj |v|y|v ≤ 2ε(v) max

i

1
|Li(x)|v .
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Finally,

|r(βi − β)|v =
∣∣∣
r∑

j=1

(βi − βj)
∣∣∣
v
≤ rε(v) max

i,j
|βi − βj |v

and the conclusion of Lemma 2 is an easy consequence of the two last dis-
played inequalities.

Lemma 2 is the key ingredient in showing that small solutions of the
Thue–Mahler equation are sparse.

IV. Diophantine approximation properties of solutions. Let F ∈
k[x, y] be a form

F (x, y) = a0x
r + a1x

r−1y + . . .+ ary
r = a0

∏
(x− αiy)

with coefficients in k. Intuitively, if |F (x, y)|v is small then we expect x/y
to approximate one of the roots αi associated with F . The following result,
which holds for general forms F , is a quantitative form of this principle.

Lemma 3. For each absolute value | |v and x, y ∈ k we have

min
i
|x− αiy|v

≤ 2(r−1)ε(v)|a0|r−2
v |D(F )|−1/2

v max
i,j
|αi − αj |(r−1)(r−2)/2

v

|F (x)|v
|y|r−1

v

.

P r o o f. We abbreviate ξ = x/y and note that

a0

r∏

i=1

(ξ − αi) = F (x)/yr,

thus

(4.1) |ξ − αi(v)|v = |a0|−1
v

(∏′ |ξ − αi|v
)−1
|F (x)|v|y|−rv

where i(v) is such that |ξ − αi(v)|v = mini |ξ − αi|v and where the prime ′

means that the value i = i(v) is omitted from the product. We have

|αi(v) − αi|v ≤ 2ε(v) max(|ξ − αi(v)|v, |ξ − αi|v) = 2ε(v)|ξ − αi|v,
therefore

(4.2)
∏′ |ξ − αi|v ≥ 2−(r−1)ε(v)

∏′ |αi(v) − αi|v.
Also

|D(F )|1/2v = |a0|r−1
v

∏

i<j

|αi − αj |v,

which clearly implies

(4.3)
∏′ |αi(v) − αi|v ≥ |D(F )|1/2v |a0|−r+1

v

(∏′′ |αi − αj |v
)−1
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where
∏′′ runs over i < j, i, j 6= i(v). The conclusion of Lemma 3 follows

easily from (4.1), (4.2) and (4.3).

Lemma 4. For each absolute value | |v and x, y ∈ k we have

min
i
|x− αiy|v

≤ 2(r−1)ε(v)|a0|r−2
v |D(F )|−1/2

v max
i
|αi|r−1

v max
i,j
|αi − αj |(r−1)(r−2)/2

v

|F (x)|v
|x|r−1

v

.

P r o o f. We have

F (x, y) = a0

r∏

i=1

(x− αiy) = (−1)rar
r∏

i=1

(
y − 1

αi
x

)
.

Let G(X,Y ) be the form

G(X,Y ) = (−1)rar
r∏

i=1

(
X − 1

αi
Y

)

where (X,Y ) = (y, x). Then Lemma 4 follows from the analogue of (4.1),
(4.2) and (4.3) for the form G(X,Y ), noting that (−1)rar = a0α1 . . . αr.

Definition.
Λ(x) =

∏

v∈S
min
i
|x− αiy|v.

Now we are ready to prove the main result of this section.

Lemma 5. Suppose the form F (x, y) ∈ OS [x, y] has no multiple factors
and that (F, y0) is reduced. Let

H∗S(x) =
∏

v∈S
max(|x− αy|v, |y/y0|v)

be the corresponding reduced F -height. Then

(2mS(F ))−(r−1) |F (x)|S
H∗S(x)r−1 ≤ Λ(x) ≤

(
2mS(F )
|y0|S

)r(r−1)/2 |F (x)|S
H∗S(x)r−1 .

P r o o f. We begin by proving the upper bound. We apply Lemmas 3 and
4 to the form

G(X,Y ) =
r∏

i=1

(X − α∗i Y )

where α∗i = (αi − α)y0, at the point

(X,Y ) = (x− αy, y/y0)

for which G(X,Y ) = F (x, y). We have

a0 = 1, max(1,max
i
|α∗i |v) = mv(F, y0),

max |α∗i − α∗j |v ≤ 2ε(v)mv(F, y0),
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therefore we get

min
i
|x− αiy|v

≤ (2ε(v)mv(F, y0))r(r−1)/2 |F (x)|v
|D(G)|1/2v

(max(|x− αy|v, |y/y0|v))−(r−1).

The required inequality follows by taking the product of the last displayed
inequality for v ∈ S, noting that D(G) = y

r(r−1)
0 D(F ) and |D(F )|S ≥ 1.

The proof of the lower bound is even simpler. We have

|x−αiy|v = |(x−αy)−α∗i (y/y0)|v ≤ 2ε(v)mv(F, y0) max(|x−αy|v, |y/y0|v),
therefore from

∏
(x− αiy) = F (x) we get

min
i
|x− αiy|v ≥ |F (x)|v(2ε(v)mv(F, y0) max(|x− αy|v, |y/y0|v))−(r−1)

and the result follows by taking the product of the last displayed inequality
for v ∈ S.

V. Classification of solutions. For a form F ∈ OS [x, y] of degree r
we consider the set N0(F ) = {x/y : F (x, y) ∈ T} of projective solutions of
the Thue–Mahler equation. We assume that F is normalized, so that

F (x, y) =
r∏

i=1

(x− αiy).

We begin by subdividing solutions into not more than r|S| classes, ac-
cording to the vector {i(v) : v ∈ S} of indices determined by the condition

|x− αi(v)y|v = min
i
|x− αiy|v.

A further subdivision into classes follows an idea of Mahler and is quite
standard in this type of problem. Lemma 6 below replaces the more com-
plicated Mahler’s Lemma of [B1] and Lemma 4 of [E].

We recall that by definition

Λ(x) =
∏

v∈S
min
i
|x− αiy|v

and note that since mini |x− αiy|v ≤ 1 for v ∈ S we have

0 ≤ log |x− αi(v)y|v/ logΛ(x) ≤ 1

for each v ∈ S. Thus the vector {log |x − αi(v)y|v/ logΛ(x) : v ∈ S} is a
point in the unit |S|-dimensional cube and lies on the hyperplane where
the sum of the coordinates is 1. We partition this cube by means of a grid
of side 1/N with N a positive integer, and we further classify solutions
into approximation classes according to the cube determined by them. The
quantity 1/N is the size of the class.
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Lemma 6. The number of approximation classes of size 1/N determined
by the vectors

{log |x− αi(v)y|v/ logΛ(x) : v ∈ S}
does not exceed

|S|r|S|
(
N + |S| − 1
|S| − 1

)
< r|S|

(
r

(
N

|S| + 1
))|S|−1(

1 +
|S|
N

)N
.

P r o o f. Let us fix the vector {i(v) : v ∈ S} and define γv = log |x −
αi(v)y|v/ logΛ(x). In order to bound the number of cubes we associate with
each vector {γv : v ∈ S} the south-west corner

{
1
N

[Nγv] : v ∈ S
}

of the cube containing the point {γv : v ∈ S}. Then since
∑
v∈S γv = 1 we

see that ∑

v∈S
[Nγv] ≤ N.

We fix one place v0 ∈ S and suppose we are given the |S| − 1 integers
nv = [Nγv] for v 6= v0, v ∈ S. Then nv ≤ Nγv < nv + 1, therefore using∑
v∈S γv = 1 we find

N −
∑

v 6=v0

nv − (|S| − 1) < Nγv0 ≤ N −
∑

v 6=v0

nv

and deduce that [Nγv0 ] has not more than |S| possibilities. The number of
solutions of

∑
v 6=v0

nv ≤ N is precisely
(
N+|S|−1
|S|−1

)
, the number of choices for

{i(v) : v ∈ S} is r|S|, and
(
N + |S| − 1
|S| − 1

)
<

(
N

|S| + 1
)|S|−1(

1 +
|S|
N

)N
;

Lemma 6 follows.

Classification into approximation classes is done with respect to the lin-
ear forms x−αiy. We also need to compare the sizes of |y|v, which leads to
a further subdivision into classes which we call magnitude classes.

We want to compare y with a fixed non-zero S-integer y0. We then
consider the subset S′ = S′(y) = {v ∈ S : |y/y0|v ≥ 1}. Now we have again

0 ≤ log |y/y0|v/ log |y/y0|S′ ≤ 1

and we may partition the |S′|-dimensional unit cube into cubes of size 1/M ,
analogously to what was done before. In the same way, let S′′ be the subset
S′′ = S′′(y) = {v ∈ S : |y/y0|v < 1} and partition the |S′′|-dimensional unit
cube into cubes of size 1/M . A magnitude class thus consists of a partition
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S = S′ ∪ S′′ and of two cubes, with solutions falling into magnitude classes
according to which cubes contain the points

{log |y/y0|v/ log |y/y0|S′ : v ∈ S′}, {log |y/y0|v/ log |y/y0|S′′ : v ∈ S′′}.
Lemma 7. The number of magnitude classes of size 1/M within a given

approximation class is at most

2|S|
(
M + |S| − 1
|S| − 1

)
+
|S|−1∑
s=1

s(|S|− s)
(|S|
s

)(
M + s− 1
s− 1

)(
M + |S| − s− 1
|S| − s− 1

)

≤ |S|2
(

4M
|S| + 2

)|S|−2(
1 +

|S|
2M

)2M

if |S| ≥ 2, and 2 if |S| = 1.

P r o o f. The proof is the same as in Lemma 6, noting that the number
of subsets of S of cardinality s is

(|S|
s

)
, and that

∑
s(|S| − s)

(|S|
s

)
= |S|(|S| − 1)2|S|−2.

VI. The Gap Principle. The Gap Principle in this section replaces
the erroneous Gap Principle in [B1], and provides the correct extension of
(2.5) to the general case.

Lemma 8. Let (F, y0) be a reduced pair and let x be a solution of the
Thue–Mahler equation F (x, y) ∈ T , belonging to an approximation class
C(x) of size 1/N . Let x′ ∈ C(x) be a solution projectively distinct from x
and satisfying Λ(x′) ≤ Λ(x). Then we have

∏

v∈S
max

(
1,
|y′|v
|y|v

)
≥ 1

4r
Λ(x)|S|/NmS(F ).

Moreover , if U ≥ 1 then the number of solutions x′ ∈ C(x), projectively
distinct from x, such that Λ(x′) ≤ Λ(x) and

∏

v∈S
max

(
1,
|y′|v
|y|v

)
≤ U

does not exceed
25
16

(8Λ(x)−|S|/NU6/5)[k:Q]r|S||T |
(

6|S|
|S|
)
.

P r o o f. Let {i(v) : v ∈ S} and {γv : v ∈ S} be the approximation class
and the south-west corner of the cube associated with x and x′. Then

Λ(x)γv+1/N ≤ |x− αi(v)y|v ≤ Λ(x)γv ,
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hence

|x′ − αi(v)y
′|v ≤ Λ(x′)γv ≤ Λ(x)γv ≤ Λ(x)−1/N |x− αi(v)y|v.

Let βi and β be as in Lemma 2. This inequality and Lemma 2 give

|det(x,x′)|v = |(x− αi(v)y)y′ − (x′ − αi(v)y
′)y|v(6.1)

≤ 2ε(v)Λ(x)−1/N |x− αi(v)y|v max(|y|v, |y′|v)

≤ (4r)ε(v)|r|−1
v Λ(x)−1/N

maxi |βi − β|v
max

(
1,
|y′|v
|y|v

)

and we deduce

(6.2) max(1,max
i
|βi − β|v| det(x,x′)|v)

≤ (4r)ε(v)|r|−1
v Λ(x)−1/N max

(
1,
|y′|v
|y|v

)
.

If G(x, y) =
∏

(x− βiy) then G ∼ F and
∏

v∈S
max(1,max

i
|βi − β|v|det(x,x′)|v) = mS(G,det(x,x′)) ≥ mS(F )

because F is reduced. Now the first clause of Lemma 8 follows by taking the
product of (6.2) for all v ∈ S.

Let X (x) be the set of solutions x′ ∈ C(x), projectively distinct from x,
satisfying Λ(x′) ≤ Λ(x) and

∏

v∈S
max

(
1,
|y′|v
|y|v

)
≤ U.

We have

0 ≤ log max
(

1,
|y′|v
|y|v

)/
logU ≤ 1

for every v ∈ S. We partition the |S|-dimensional unit cube into cubes
of size 1/(5|S|) and associate with each solution x′ the north-east corner
{θv : v ∈ S} of the cube containing the vector{

log max
(

1,
|y′|v
|y|v

)/
logU : v ∈ S

}
.

Then

(6.3) max
(

1,
|y′|v
|y|v

)
≤ Uθv ,

(6.4)
∑

v∈S
θv ≤ 6/5

and, by an argument similar to that used in Lemma 6, the number of cubes
involved does not exceed |S|(6|S||S|

)
.
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Consider now a subset Y(x) ⊆ X (x) of solutions x′ associated with the
same cube {θv : v ∈ S}. We proceed as in the proof of (6.1), using (3.3)
in place of Lemma 2 (this allows us to save a factor 4r), and estimating
max(1, |y′|v/|y|v) by means of (6.3). We obtain

(6.5) |det(x,x′)|v ≤ 4ε(v)B−1
v Λ(x)−1/NUθv

where we have abbreviated Bv = max |βi − βj |v.
We subdivide the set Y(x) into equivalence classes by putting two ele-

ments x′ and x′′ into the same equivalence class if

det(x,x′ − x′′) = 0,

and denote by Z(x) a set of representatives in Y(x) for these equivalence
classes; it follows that

(6.6) det(x,x′ − x′′) 6= 0

whenever x′ and x′′ are two distinct elements of Z(x).
Let us fix an archimedean absolute value v0 and define

‖ ‖ = | |[k:Q]/[kv0 :R]
v0

so that ‖ ‖ is the ordinary euclidean absolute value. Let us write for sim-
plicity

Cv = 4ε(v)B−1
v Λ(x)−1/NUθv

and consider the interval

‖ξ‖ ≤ C [k:Q]
v0

if v0 is real, or the square

‖Re(ξ)‖ ≤ C [k:Q]/2
v0

, ‖Im(ξ)‖ ≤ C [k:Q]/2
v0

if v0 is complex. We subdivide each interval or square, as the case may be,
into P or P 2 subintervals or subsquares of side 1/P the original side, where
P is a positive integer. By (6.5) and Dirichlet’s Box Principle, if |Z(x)| > P
when v0 is real or |Z(x)| > P 2 when v0 is complex, one of these subintervals
or subsquares must contain two points det(x,x′) and det(x,x′′) with distinct
elements x′ and x′′ of Z(x). It follows that

‖det(x,x′ − x′′)‖ ≤ 2
P
C

[k:Q]/[kv0 :R]
v0 ,

hence

|det(x,x′ − x′′)|v0 ≤
(

2
P

)ε(v0)

Cv0 .

It is also clear from (6.5) that

|det(x,x′ − x′′)|v ≤ 2ε(v)Cv
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for v 6= v0. We take the product of these inequalities for all v ∈ S and find

|det(x,x′ − x′′)|S ≤ 2P−1
∏

v∈S
Cv.

We choose P the largest integer such that P < |Z(x)| if v0 is real and
P 2 < |Z(x)| if v0 is complex, and assume correspondingly that |Z(x)| > 2
or |Z(x)| > 25. Then 16

25 |Z(x)| ≤ P if v0 is real, and ≤ P 2 if v0 is complex.
In view of (6.4), the last displayed inequality implies

(6.7) |det(x,x′ − x′′)|S
(

16
25
|Z(x)|

)1/[k:Q]

≤ 8
(∏

v∈S
Bv

)−1
Λ(x)−|S|/NU6/5.

We note that
(∏

v∈S
Bv

)r(r−1)
≥
∏

v∈S

∏

i 6=j
|βi − βj |v = |D(G)|S ≥ 1,

and |det(x,x′ − x′′)|S ≥ 1 by (6.6). Thus (6.7) yields

|Z(x)| ≤ 25
16

(8Λ(x)−|S|/NU6/5)[k:Q].

This inequality, obtained with the assumption |Z(x)| > 2 if v0 is real and
|Z(x)| > 25 if v0 is complex, clearly continues to hold in the remaining
cases.

It remains to give an upper bound for the number of elements in a given
equivalence class. But if det(x,x′ − x′′) = 0 then x′′ = x′ + λx with λ ∈ k,
so that the number of elements in a given equivalence class does not exceed
the number of solutions λ of

F (x′ + λx) ∈ T.
This is an equation of degree at most r in λ, and therefore the cardinality
of an equivalence class is at most r|T |.

The proof of Lemma 8 is completed by noting that the total number of
solutions does not exceed the number of cubes times the maximum number
of elements in an equivalence class times the maximum of |Z(x)|.

VII. The Strong Gap Principle. This section follows rather closely
the corresponding section in [B1], with some simplifications.

Lemma 9. Let (F, y0) be a reduced pair and let H∗S be the corresponding
reduced F -height. Then for any S1 ⊆ S and any solution x of the Thue–
Mahler equation F (x, y) ∈ T we have

(2mS(F ))−2H∗S(x)−1 ≤ |y/y0|S1 ≤ 2mS(F )H∗S(x).
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P r o o f. We abbreviate α∗i = (αi−α)y0 and (X,Y ) = (x−αy, y/y0). We
have

r∏

i=1

(X − α∗i Y ) = F (x) ∈ T,

thus maxi |X − α∗i Y |v ≥ 1. It follows that

1 ≤ 2ε(v) max(1,max
i
|α∗i |v) max(|X|v, |Y |v)

= 2ε(v)mv(F, y0) max(|X|v, |Y |v).
Let S = S1 ∪S2. We take the product of the last inequality over v ∈ S2 and
find

∏

v∈S2

max(|X|v, |Y |v) ≥ 1
2mS(F )

.

Finally,

(7.1) H∗S(x) =
∏

v∈S1

max(|X|v, |Y |v)
∏

v∈S2

max(|X|v, |Y |v) ≥ |y/y0|S1

2mS(F )
,

which gives the right-hand side inequality of Lemma 9.
We also note that since |y|S ≥ 1 we have

|y/y0|S1 = |y/y0|S/|y/y0|S2 ≥ |y0|−1
S |y/y0|−1

S2

and the left-hand side inequality of Lemma 9 follows from (7.1) applied to
the set S2 and from Lemma 1.

Lemma 10. Let (F, y0) be a reduced pair , let H∗S be the reduced F -height
and let x and x′ be two projectively distinct solutions of the Thue–Mahler
equation F (x, y) ∈ T , belonging to the same approximation class of size 1/N
with N ≥ r

r−1 |S| and to the same magnitude class of size 1/M . Suppose x
and x′ are so ordered that H∗S(x′) ≥ H∗S(x) and that H∗S(x) > (2mS(F ))r/2.
Then

(2mS(F )H∗S(x′))1+|S|/M ≥ 1
2

((2mS(F ))−r/2H∗S(x))(1−|S|/N)(r−1).

P r o o f. Let {γv : v ∈ S} and {δv : v ∈ S′} be the south-west and north-
east corners of the cubes determined by the approximation and magnitude
class of x and x′. Note that

(7.2)
∑

v∈S
γv ≥ 1− |S|

N
,

(7.3)
∑

v∈S′
δv ≤ 1 +

|S|
M
.
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We have

(7.4) |det(x,x′)|v
= |(x− αi(v)y)y′ − (x′ − αi(v)y

′)y|v
≤ 2ε(v)|y0|v max(|x− αi(v)y|v|y′/y0|v, |x′ − αi(v)y

′|v|y/y0|v)
≤ 2ε(v)|y0|v max(Λ(x)γv |y′/y0|v, Λ(x′)γv |y/y0|v).

We also have

|y/y0|v ≤ |y/y0|δvS′ , |y′/y0|v ≤ |y′/y0|δvS′ for v ∈ S′,
|y/y0|v ≤ 1, |y′/y0|v ≤ 1 for v 6∈ S′.

We substitute these inequalities in (7.4) as the case may be, substitute the
upper bound of Lemma 5 for Λ(x) and Λ(x′), note that H∗S(x) ≤ H∗S(x′),
and take the product over v ∈ S. We get, using |det(x,x′)|S ≥ 1,

1 ≤ 2|y0|S
((

2mS(F )
|y0|S

)r(r−1)/2

H∗S(x)−(r−1)
)Σγv

max(|y/y0|S′ , |y′/y0|S′)Σδv .

In view of (7.2) and (7.3) and |y0|S ≥ 1 this simplifies to

(7.5)

1 ≤ 2((2mS(F ))r/2H∗S(x)−1)(1−|S|/N)(r−1) max(|y/y0|S′ , |y′/y0|S′)1+|S|/M ;

here we have used the condition N ≥ r
r−1 |S| to absorb the term |y0|S into

the term |y0|−r(r−1)(Σγv/2)
S .

By Lemma 9 and H∗S(x) ≤ H∗S(x′) we have max(|y/y0|S′ , |y′/y0|S′) ≤
2mS(F )H∗S(x′). We substitute this inequality into (7.5) and the conclusion
of Lemma 10 follows.

VIII. Counting small solutions. In this section we apply the Gap
Principle of Section V to obtain bounds for the number of solutions of
bounded height in a given approximation and magnitude class.

Lemma 11. Let (F, y0) be a reduced pair and let H∗S be the associated
reduced F -height. Let K, M and N be positive integers such that

M ≥ (4K + 8)|S|, N ≥ 4(r − 1)(K + 1)|S|.
Then if 2mS(F ) > (8r)4 then the number of projective solutions x/y

of the Thue–Mahler equation F (x, y) ∈ T , in a given approximation class
of size 1/N and magnitude class of size 1/M and with reduced F -height
H∗S(x) < (2mS(F ))K , does not exceed 64(K + 1)(K + 2).

If instead 2mS(F ) ≤ (8r)4 then the number of projective solutions x/y
of the Thue–Mahler equation F (x, y) ∈ T in a given approximation class
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of size 1/N and magnitude class of size 1/M and with reduced F -height
H∗S(x) < (2mS(F ))K does not exceed

25
16

(K + 1)(K + 2)r|S||T |(8r)( 18
5 −

|S|
N

4
5 (r−1)(K+1))[k:Q] 8[k:Q]+2

(
6|S|
|S|
)
.

P r o o f. Let x and x′ be two solutions belonging to the same approxi-
mation and magnitude class of sizes 1/N and 1/M . Let {δv : v ∈ S′} and
{ηv : v ∈ S′′} be the north-east and south-west corners of the two cubes
associated with the magnitude class of x and x′. Then we have

(8.1) |y/y0|δv−1/M
S′ ≤ |y/y0|v ≤ |y/y0|δvS′ ,

(8.2) |y/y0|ηv+1/M
S′′ ≤ |y/y0|v ≤ |y/y0|ηvS′′

for v ∈ S′ and v ∈ S′′ respectively; the same inequality holds if we replace
y by y′, because x and x′ have the same magnitude class.

We also have

(8.3)
∑

v∈S′
δv ≤ 1 +

|S′|
M

,

(8.4)
∑

v∈S′′
ηv ≤ 1.

Suppose for example that Λ(x′) ≤ Λ(x).
Let us abbreviate B = (2mS(F ))1/8 + ε where ε > 0 is small and let us

say that a solution x is of type (m,n) if

Bm ≤ |y/y0|S′ < Bm+1, B−n−1 < |y/y0|S′′ ≤ B−n.
Then (8.1) and (8.2) show that if x and x′ have the same type (m,n) we
must have

(8.5) max
(

1,
|y′|v
|y|v

)
≤ Bδv+(m+1)/M if v ∈ S′,

(8.6) max
(

1,
|y′|v
|y|v

)
≤ Bηv+(n+1)/M if v ∈ S′′.

We apply Lemma 8 (the Gap Principle) to the pair x and x′, note that
(8r)−1 > (2mS(F ))−1/4 and use the lower bound of Lemma 5, obtaining
∏

v∈S
max

(
1,
|y′|v
|y|v

)
≥ 1

4r
Λ(x)|S|/NmS(F ) > (2mS(F ))

3
4−
|S|
N (r−1)(K+1).

By (8.3)–(8.6), we now see that

(8.7) B2+max(m+1,n+1)|S|/M > (2mS(F ))
3
4−
|S|
N (r−1)(K+1)

whenever there are two distinct solutions x and x′ with the same type (m,n).
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By choosing ε sufficiently small, we may interpret (8.7) as saying that as
long as

(8.8) max(m+ 1, n+ 1) ≤ 8M
|S|
(

1
2
− |S|
N

(r − 1)(K + 1)
)

there is at most one solution for each type (m,n).
It remains to bound the number of types and to verify condition (8.8).
We apply Lemma 9 to x and obtain

|y/y0|S′ ≤ (2mS(F ))K+1,

|y/y0|S′′ ≥ (2mS(F ))−K−2,

therefore we must have m < 8(K + 1) and n < 8(K + 2) and the number
of types does not exceed 64(K + 1)(K + 2). Moreover, max(m+ 1, n+ 1) ≤
8K + 16 and (8.8) becomes a consequence of the assumption

M ≥ (4K + 8)|S|, N ≥ 4(r − 1)(K + 1)|S|
of Lemma 11. This completes the proof of the first clause of Lemma 11.

Now suppose that 2mS(F ) ≤ (8r)4. We apply the second clause of
Lemma 8, again using the lower bound of Lemma 5, to infer that

(8.9)
∏

v∈S
max

(
1,
|y′|v
|y|v

)
≥ U

except for at most

(8.10)
25
16

(8(2mS(F ))
|S|
N (r−1)(K+1)U6/5)[k:Q]r|S||T |

(
6|S|
|S|
)

exceptions x′ for each choice of x, including x. If we choose

U = (2mS(F ))
3
4−
|S|
N (r−1)(K+1)

then the counting proceeds exactly as before, except that the final bound
has to be multiplied by the quantity in (8.10). An easy majorization now
yields the last statement of Lemma 11.

IX. Counting large solutions. In this section we use the Strong Gap
Principle to bound the number of large, but not very large, solutions of the
Thue–Mahler equation in a fixed approximation and magnitude class of size
1/N .

Lemma 12. Let (F, y0) be a reduced pair. Let N be a positive integer such
that N > r

r−2 |S|, let

λ =
N − |S|
N + |S| (r − 1)
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and let H satisfy H ≥ (2mS(F ))2λr/(λ−1). Then the number of projective
solutions x/y of the Thue–Mahler equation F (x, y) ∈ T , in a given approxi-
mation class of size 1/N and magnitude class of size 1/N and with reduced
F -height satisfying

logH ≤ logH∗S(x) ≤ λn

2
logH,

does not exceed n.

P r o o f. The hypothesis on N implies λ > 1. We order the solutions in
the interval H∗S(x) ≥ H by increasing height, thus obtaining a sequence
x0, x1, . . . By Lemma 10 (the Strong Gap Principle) we have

H∗S(xn+1) ≥ D−1H∗S(xn)λ

where
D = 2N/(|S|+N)(2mS(F ))λr/2 for n = 0, 1, . . .

Now a classical iteration gives

H∗S(xn) > (D−1/(λ−1)H∗S(x0))λ
n ≥ (D−1/(λ−1)H)λ

n

and Lemma 12 follows by noting that the lower bound on H implies
D−1/(λ−1)H > H1/2.

X. Counting very large solutions. In this section we use the method
of Thue to give an upper bound for the number of solutions of the Thue–
Mahler equation in a given approximation and magnitude class and with
sufficiently large height. The proof follows very closely the corresponding
section of [B1], with some improvements in the numerical treatment.

We say that a solution x of the Thue–Mahler equation F (x) ∈ T is very
large if H∗S(x) ≥ (2mS(F ))10000r3

.

Lemma 13. Let c(6) = 33, c(7) = 10, c(8) = 6, c(9) = 5, c(10) = c(11) =
4, c(r) = 3 if 12 ≤ r ≤ 19 and c(r) = 2 if r ≥ 20. Suppose that r ≥ 6 and
N ≥ c(r)|S|. Then the number of very large solutions x of the Thue–Mahler
equation F (x, y) ∈ T in a given approximation and magnification class of
size 1/N does not exceed 8.

P r o o f. We recall the following result. Let k be a number field, let k′ be
an extension of k of degree r ≥ 2 and let α′, α′′ be two elements of k′ of
degree r over k.

Thue Principle. Let t, τ, θ, δ′, δ′′ be positive real numbers such that√
2

r + 1
< t <

√
2
r
, τ < t, t < θ < 1/t

and let β′, β′′ ∈ k. Then either
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∏

v∈S
max(|α′ − β′|θδ′v , |α′′ − β′′|θ−1δ′′

v )

> ((3H(α′))CH(β′))−δ
′/(t−τ)((3H(α′′))CH(β′′))−δ

′′/(t−τ)

with C = 2/(2− rt2), or

r

2
δ′′

δ′
>
r

2
t2 +

1
2
τ2 − 1.

This is a rephrasing of Theorem 2 of [B2], with the following additional
remarks. The conditions |α′ − β′|v ≤ 1 and |α′′ − β′′|v ≤ 1 in [B2] are su-
perfluous, because otherwise a stronger result can be obtained omitting the
places v ∈ S for which these inequalities fail; also the condition k′v = kv
in [B2] can be omitted, because it is used nowhere in the proof and it was
stated only because otherwise we cannot get arbitrarily close approxima-
tions, a fact which is irrelevant for our purposes.

In our case we apply the Thue Principle as follows. Let x1 = (x1, y1)
and x2 = (x2, y2) be two very large solutions of the Thue–Mahler equation
belonging to the same approximation class and magnitude class of size 1/N ,
and assume that

(2mS(F ))10000r3 ≤ H∗S(x1) ≤ H∗S(x2).

We fix a root α of F and choose α′ = α′′ = (α − α)y0, and β′ =
(x1 − αy1)/(y1/y0), β′′ = (x2 − αy2)/(y2/y0). Since x1 and x2 are in the
same approximation class, we can choose the extension of v to k′ = k(α) for
v ∈ S so that

|x− αi(v)y|v = |x− αy|v
for every v ∈ S.

We have for each v ∈ S the bound

|α′ − β′|v = |y1/y0|−1
v |x1 − αy1|v ≤ |y1/y0|−1

v Λ(x1)γv

where the γv’s are as in Section VII. Moreover, by Lemma 9 we have

|y1/y0|v ≥ 1 if v ∈ S′,
|y1/y0|v ≥ |y1/y0|ηv+1/N

S′′ ≥ ((2mS(F ))2H∗S(x1))−ηv−1/N if v ∈ S′′

and using Lemma 5 we obtain

(10.1) |α′ − β′|v ≤
(

(2mS(F ))r(r−1)/2

H∗S(x1)r−1

)γv
if v ∈ S′,

(10.2) |α′ − β′|v ≤ ((2mS(F ))2H∗S(x1))ηv+1/N
(

(2mS(F ))r(r−1)/2

H∗S(x1)r−1

)γv

if v ∈ S′′.
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Since we assume r ≥ 6 and (2mS(F ))10000r3 ≤ H∗S(x1), inequalities
(10.1) and (10.2) may be simplified to

(10.3) |α′ − β′|v ≤ H∗S(x1)−(r−1.001)γv if v ∈ S′,
(10.4) |α′ − β′|v ≤ H∗S(x1)1.001(ηv+1/N)−(r−1.001)γv if v ∈ S′′;
similar bounds also hold with α′′, β′′, x2 in place of α′, β′, x1, because x1

and x2 belong to the same approximation and magnitude classes.
Now we choose θ = 1, δ′ = 1/ logH∗S(x1) and δ′′ = 1/ logH∗S(x2). By

(10.3), (10.4) and
∑
ηv ≤ 1,

∑
γv ≥ 1− |S|/N we deduce

(10.5)
∏

v∈S
max(|α′ − β′|θδ′v , |α′′ − β′′|θ−1δ′′

v )

≤ exp
(

2.002− r + (r + 2.002)
|S|
N

)
.

In order to apply the Thue Principle we need to compare this quantity
with

((3H(α′))CH(β′))−δ
′/(t−τ)((3H(α′′))CH(β′′))−δ

′′/(t−τ).

This is easily done. Let w, v run over all places of k′, k respectively. Since
rα′ = (rα − rα)y0 is integral over OS we have |(αi − α)y0|v ≤ |1/r|v for
every i and every v 6∈ S, hence

H(α′) =
∏

max(1, |α′|w) =
∏( r∏

i=1

max(1, |(αi − α)y0|v)
)1/r

≤
∏

v∈S
max(1,max

i
|(αi − α)y0|v)

∏

v 6∈S
|1/r|v.

It follows that

(10.6) H(α′) ≤ rmS(F ).

We also have

H(β′) =
∏
v

max(1, |y0(x1 − αy1)/y1|v) =
∏
v

max(|x1 − αy1|v, |y1/y0|v)

= H∗S(x1)
∏

v 6∈S
max(1, |y0(x1 − αy1)/y1|v).

Since r(x1 − αy1) and y0(y/y0) are S-integers we have

|x1 − αy1|v ≤ |1/r|v, |y/y0|v ≤ |1/y0|v for v 6∈ S,
and by Lemma 1 we deduce

(10.7) H(β′) ≤ r|y0|SH∗S(x1) ≤ 2rmS(F )H∗S(x1).
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The same inequalities as (10.6) and (10.7) hold with α′′, β′′ and x2 in
place of α′, β′ and x1. It is now clear that

((3H(α′))CH(β′))−δ
′/(t−τ)((3H(α′′))CH(β′′))−δ

′′/(t−τ)

≥ ((3rmS(F ))C+1H∗S(x1))−δ
′/(t−τ)((3rmS(F ))C+1H∗S(x2))−δ

′′/(t−τ)

and using (2mS(F ))10000r3 ≤ H∗S(xi) we may simplify the last displayed
inequality to

(10.8) ((3H(α′))CH(β′))−δ
′/(t−τ)((3H(α′′))CH(β′′))−δ

′′/(t−τ)

≥ exp
(
−
(

2 +
C + 1
5000r2

)
1

t− τ
)
.

Now we can apply the Thue Principle. In view of (10.5) and (10.8) the
first alternative becomes

(10.9) r − 2.002− (r + 2.002)
|S|
N
≤
(

2 +
4− rt2

5000r2(2− rt2)

)
1

t− τ
while the second alternative yields

(10.10) logH∗S(x1) ≤ logH∗S(x2) <
r

rt2 + τ2 − 2
logH∗S(x1).

We choose for example t2 = 2/(r + 0.005) and τ2 = 2 − rt2 + 0.0001. Let
c(6) = 33, c(7) = 10, c(8) = 6, c(9) = 5, c(10) = c(11) = 4, c(r) = 3 if
12 ≤ r ≤ 19 and c(r) = 2 if r ≥ 20. Then a numerical calculation shows
that the first alternative (10.9) cannot hold if N ≥ c(r)|S|, hence the second
alternative (10.10) must hold and we get

(10.11) logH∗S(x1) ≤ logH∗S(x2) < 10000r logH∗S(x1).

We choose for x1 the smallest solution (assuming it exists) with H∗S(x1)
≥ (2mS(F ))10000r3

. Now by Lemma 12 and

λ =
N − |S|
N + |S| (r − 1) ≥ c(r)− 1

c(r) + 1
(r − 1)

we see that the number of solutions of (10.11) does not exceed

[log(20000r)/ log λ] + 1 ≤ 8.

This proves Lemma 13.

XI. A bound for N0(F ). It is now easy to put together the information
obtained so far and get a bound for N0(F ). Let c(r) be as in Lemma 13.

Lemma 14. Suppose r ≥ 6 and let λ = c(r)−1
c(r)+1 (r−1). Let a(r) be given by

a(6) = 32921, a(7) = 3180, a(8) = 1606, a(9) = 852, a(10) = a(11) = 564,
a(r) = 335 if 12 ≤ r ≤ 19 and a(r) = 165 if r ≥ 20. Let (F, y0) be
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a reduced pair. Then the number of projective solutions x/y of the Thue–
Mahler equation F (x, y) ∈ T with reduced F -height

H∗S(x) ≥ (2mS(F ))2λr/(λ−1)

does not exceed |S|3(a(r)r)|S|.

P r o o f. Let N = c(r)|S|. We divide solutions into approximation
and magnitude classes of size 1/N , and divide the range H∗S(x) ≥
(2mS(F ))2λr/(λ−1) into the two ranges

(2mS(F ))2λr/(λ−1) ≤ H∗S(x) < (2mS(F ))10000r3
,

(2mS(F ))10000r3 ≤ H∗S(x).

In the first interval we use Lemma 12, obtaining not more than

[log(20000r3)/ log λ] ≤ 9

solutions in each class. In the second interval we use Lemma 13, obtaining
at most 8 solutions in each class. By Lemmas 6 and 7 the number of classes
does not exceed

|S|6
(N + |S|)(4N + 2|S|)2

(
r

(
N

|S|+1
)(

4N
|S| +2

))|S|(
1+
|S|
N

)N(
1+
|S|
2N

)2N

,

and Lemma 14 follows after a straightforward numerical calculation.

Lemma 15. Suppose (F, y0) is a reduced pair. Then the number of pro-
jective solutions x/y of the Thue–Mahler equation F (x, y) ∈ T with reduced
F -height

H∗S(x) < (2mS(F ))2λr/(λ−1)

does not exceed 0.01|S|3|T |e29.13|S|r10.8|S|−1.

P r o o f. We take K = [ 2λr
λ−1 ] + 1 and apply Lemma 11 with M = (4K +

8)|S|, N = 4(r− 1)(K + 1)|S|. The bound in Lemma 15 will be the number
of approximation and magnitude classes of sizes 1/N , 1/M times the bound
appearing in Lemma 11. By Lemmas 6 and 7 the number of approximation
classes of size 1/N and of magnitude classes of size 1/M does not exceed

(
N + |S| − 1
|S| − 1

) |S|5
(4M + 2|S|)2 (2r)|S|

(
2M
|S| + 1

)|S|(
1 +

|S|
2M

)2M

.

We note that the choices of K, M , N imply
(
N + |S| − 1
|S| − 1

)
≤ 2

5

√
N + |S|
N |S|

(
N

|S| + 1
)|S|−1(

1 +
|S|
N

)N

and

2r
(
N

|S| + 1
)(

2M
|S| + 1

)(
1 +
|S|
N

)N/|S|(
1 +

|S|
2M

)2M/|S|
< 3367r4,
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therefore the number of approximation and magnitude classes does not ex-
ceed

(11.1)
2
5

√
N + |S|
N |S|

|S|6
(N + |S|)(4M + 2|S|)2 (3367r4)|S|.

We also have

(K + 1)(K + 2) ≤ 17
2
r2,

(
6|S|
|S|
)
≤ 4

9
|S|−1/2(66/55)|S|

hence the bound in Lemma 11 becomes

(11.2)
1700

9
r3|S|1/2|T |2 66

5 [k:Q]r
17
5 [k:Q](66/55)|S|.

The proof of Lemma 15 follows from multiplying (11.1) and (11.2), and using
the trivial estimate [k : Q] ≤ 2|S|.

XII. Proof of the Main Theorem. The proof of the Main Theorem
is now immediate. Suppose r ≥ 6. By Lemmas 14 and 15 we infer

|N(F )| ≤ r|S|−1|N0(F )|
≤ r|S|−1(0.01|S|3|T |e29.13|S|r10.8|S|−1 + |S|3(a(r)r)|S|).

After dividing by (12r)12|S| we get a quantity which decreases with r. There-
fore, taking r = 6 and using the bounds |T | ≤ 4|S|2 if |S| ≥ 15, |T | ≤ 7.5|S|
if |S| ≤ 15, we see that this ratio does not exceed 1. This completes the
proof.
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