
ACTA ARITHMETICA
LXVII.1 (1994)

On the roots of certain sequences of congruences

by

Daniel Berend (Beer Sheva)

1. Introduction and main theorems. Put

Pk = p1p2 . . . pk, k = 1, 2, . . . ,

where p1 < p2 < . . . is the sequence of all primes in increasing order. Denote
by xk the least positive integer x such that x(x + 1) ≡ 0 (mod Pk). Erdős
[E] opined that

(1)
xk
Pk
→ 0 and

xk√
Pk
→∞ as k →∞,

and similarly for k! instead of Pk (xk being defined correspondingly). In
this paper we deal with the first convergence, along with various strength-
enings and generalizations. The second convergence, which Erdős estimated
as “hopeless”, is left open.

As partial motivation to look at these questions, let us mention the
diophantine equations

(2) x(x+ 1) = Pk,

studied by Nelson, Penney and Pomerance [NPP], and

(3) x(x+ 1) = k!,

posed by Erdős at one of the Western Number Theory Conferences ([G,
Problems 301–305]). It is unknown whether these equations have finitely
many solutions or not, although (3) is known to have “few” solutions [BO].
Proving the second convergence in (1) would show in particular that (2) has
only finitely many solutions.

Theorem 1. limk→∞ xk/Pk = 0.

We shall actually obtain a stronger result. To state it we use the following
notation. Let (Ak) be a sequence of subsets of [0, 1). Then (Ak) converges to
[0, 1) (in the Hausdorff metric), and we write Ak → [0, 1) as k → ∞, if for
every ε > 0 the sets Ak are eventually ε-dense in [0, 1) (i.e., intersect every
subinterval of length ε).

[97]
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Theorem 2. Let q1 < q2 < . . . be a sequence of primes satisfying∑∞
l=1 1/ql = ∞. Put Qk = q1q2 . . . qk, k ∈ N. Let Sk be the set of all

solutions of the congruence

x(x+ 1) ≡ 0 (mod Qk)

in the interval [0, Qk − 1]. Define

Rk = {x/Qk : x ∈ Sk} ⊆ [0, 1).

Then Rk → [0, 1) as k →∞.

Now Theorem 2 admits the following (stronger) finite version.

Theorem 2′. Given ε > 0 there exists an M = M(ε) having the following
property. Let Q be a positive integer factorizing as Q = qe11 q

e2
2 . . . qekk , with∑k

i=1 q
−ei
i > M , and let S(Q) be the set of all solutions of the congruence

x(x+ 1) ≡ 0 (mod Q) in the interval [0, Q− 1]. Then the set

R = {x/Q : x ∈ S(Q)} ⊆ [0, 1)

is ε-dense in [0, 1).

Example 1. Theorems 2 and 2′ do not apply to obtain the analogue
of Theorem 1 when Pk is replaced by other “natural” sequences, such as
k! or even [1, 2, . . . , k]. The reason is that in these cases “too many” of the
exponents ei are greater than 1:

k! =
π(k)∏

i=1

p
[k/pi]+[k/p2

i ]+...
i , [1, 2, . . . , k] =

π(k)∏

i=1

p
[logpik]
i ,

where π(k) denotes the number of primes not exceeding k. On the other
hand, Theorem 2′ does apply to the sequence

Qk =
π(k)∏

i=1

p
[log logpi (k+1)]
i .

Theorem 3 will take care of the first two sequences, although we do not
obtain the density result of Theorem 2.

Denote by P (Q) the number of distinct prime divisors of a positive in-
teger Q.

Theorem 3. Let Qk be a sequence of positive integers satisfying P (Qk)
→∞ as k →∞. Let xk be the least positive solution of the congruence

x(x+ 1) ≡ 0 (mod Qk).

Then xk/Qk → 0.

Again, Theorem 3 admits a finite version, which this time we can make
quantitative.
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Theorem 3′. Let Q be a positive integer and x be the smallest positive
solution of the congruence x(x+ 1) ≡ 0 (mod Q). Then

x ≤ Q

P (Q)
.

For Theorem 2 we have the following converse.

Theorem 4. Given any ε > 0, there exists a sequence of primes (qk)∞k=1
such that Rk ⊆ [0, ε) ∪ (1− ε, 1) for each k, where Rk is as in Theorem 2.

The following theorem shows in particular that Theorem 3′ is essentially
best possible.

Theorem 5. Given any ε > 0, there exists a sequence of primes (qk)∞k=1
such that , denoting by xk the least positive solution of the congruence

x(x+ 1) ≡ 0 (mod Qk),

where Qk = q1q2 . . . qk, we have

xk ≥ (1− ε)Qk
k
, k = 1, 2, . . .

In the next section we prove some extraneous results that will serve us in
proving the main (positive) results, but seem to be of independent interest.
The proofs of Theorems 1–5 are given in Section 3.

I would like to express my gratitude to P. Erdős for long and interesting
discussions on these problems.

2. Dense parallelepipeds on the circle. Given a (finite or infinite)
sequence (αn) in some additive semigroup, the parallelepiped based on (αn)
is denoted by IP -(αn) and defined as the algebraic sum of the sets {0, αn}:

IP -(αn) = {0, α1}+ {0, α2}+ . . .

= {αn1 + αn2 + . . .+ αnj : j ≥ 0, 1 ≤ n1 < n2 < . . . < nj}.
(Our notation derives from the concept of an IP-set; see [B, Def. 2.3].) The
parallelepiped is d-dimensional if the sequence (αn) is of finite length d, and
infinite-dimensional if the sequence is infinite. (Thus, for example, the set
{0} may be considered as a parallelepiped of any finite dimension or even
of infinite dimension.)

We shall be interested in finite parallelepipeds in the circle group T =
R/Z. It will be convenient to identify T with the interval [0, 1). Denote by ‖x‖
the distance of x ∈ R (or x ∈ T) from the nearest integer. In [B, Prop. 2.1(1)]
the following condition was shown to be sufficient for an infinite-dimensional
parallelepiped IP -(αn)∞n=1 to be dense in T:

∞∑
n=1

‖hαn‖ =∞, h = 1, 2, . . .
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Our main result in this section (Proposition 2) consists of an analogue for
finite-dimensional parallelepipeds, namely a sufficient condition for such par-
allelepipeds to be ε-dense. First we present

Proposition 1. A d-dimensional parallelepiped in T contains a non-
trivial point x with ‖x‖ ≤ 1/(d+ 1).

Here a point x ∈ IP -(αn)dn=1 is non-trivial if it is a sum of a non-zero
number of generators αn. (Note that we may well have x = 0.)

P r o o f. Consider the following d+ 1 points:

yi =
i∑

n=0

αn, i = 0, 1, . . . , d.

Obviously, we can find two of them, say yi and yj , 0 ≤ i < j ≤ d, with
‖yj − yi‖ ≤ 1/(d+ 1). But then

∥∥∥
j∑

n=i+1

αn

∥∥∥ ≤ 1
d+ 1

,

which proves the proposition.

R e m a r k 1. As a d-dimensional parallelepiped contains 2d − 1 non-
trivial points, one could expect to have in it usually a point whose distance
from 0 is of the same order of magnitude as 2−d. In general, however, the
proposition cannot be improved, as the simple example α1 = α2 = . . . =
αd = 1/(d+ 1) shows. Moreover, taking a small perturbation of these αn’s
we obtain basically the same example, with the parallelepiped containing 2d

distinct points.

Proposition 2. For any ε > 0 there exists a B = B(ε) ∈ N such that
for every sequence (αn)dn=1 in T satisfying

d∑
n=1

‖hαn‖ > B, h = 1, 2, . . . , B,

the parallelepiped IP -(αn)dn=1 is ε-dense.

P r o o f. Suppose, to the contrary, that there exists some ε > 0 such that
for every B ∈ N there exists a finite sequence αB = (αBn)dBn=1 with

dB∑
n=1

‖hαBn‖ > B, h = 1, 2, . . . , B,

the dB-dimensional parallelepiped PM = IP -αB being not ε-dense.
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Call a point x ∈ T a multi-limit point of (αB)∞B=1 if for every ε > 0
and positive integer N there exists a B such that the interval (x− ε, x+ ε)
contains at least N points of αB . Denote by L the set of all multi-limit
points of (αB). Clearly, since dB →∞ as B →∞, the set L is non-empty.

Take a point x ∈ L. Taking a B for which αB contains sufficiently many
points very close to x, one sees that the corresponding PB contains mod-
ulo 1 a small perturbation of the set {nx : 1 ≤ n ≤ N}, where N can
be made arbitrarily large by choosing B appropriately. Now the closure of
the set {nx : n ∈ N} is a subgroup of T, which is T itself if x is irra-
tional, and {0, 1/g, 2/g, . . . , (g − 1)/g} if x is rational with denominator g
(in reduced form). Hence our assumption implies that L is a finite set of
rationals, say L = {0, 1/g, 2/g, . . . , (g − 1)/g}. Split each αB into 2g sub-
sequences α(j)

B , 1 ≤ j ≤ g, placing in α(j)
B those elements of αB belonging

to [(j − 1)/(2g), j/(2g)). For each B select j0 = j0(B) as the j for which∑
x∈�(j)

B

‖gx‖ is maximal. Passing to a subsequence of (αB)∞B=1 we may as-

sume j0(B) to be constant. Denote the sequence α(j0)
B by βB = (βBn)d

′
B
n=1.

Define γB = (γBn)[d′B/g]
n=1 by

γBn =
g∑

i=1

βB,(g−1)n+i, n = 1, 2, . . . , [d′B/g].

Passing to a subsequence again, we may assume that ‖γBn‖ < ε for every
B and n. Our construction guarantees that

∑
n ‖γBn‖ ≥ 1 for sufficiently

large B, so that IP -γB is ε-dense in T. Since IP -αB ⊇ IP -γB , the original
parallelepiped is ε-dense as well. This completes the proof.

3. Proofs. P r o o f o f T h e o r e m 2′. Take a positive integer Q =
qe11 q

e2
2 . . . qekk . It will be slightly more convenient to consider, instead of S,

the set S′ = S(Q) + 1, consisting of all solutions of

(4) x(x− 1) ≡ 0 (mod Q).

Define integers yi, 1 ≤ i ≤ k, in the range [0, Q− 1] by the requirements

yi ≡ 1 (mod qeii ), yi ≡ 0 (mod q
ej
j ), 1 ≤ j ≤ k, j 6= i.

View the set {0, 1, . . . , Q − 1} as the additive group Z/QZ. It is readily
verified that

S′ = {0, y1}+ {0, y2}+ . . .+ {0, yk}.
Put ri = yi/Q, 1 ≤ i ≤ k. Note that ri is (in reduced form) a rational with
denominator qeii for each i. Putting

R′ = {x/Q′ : x ∈ S′} ⊆ [0, 1),
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and viewing [0, 1) again as the circle group T, we obtain

R′ = {0, r1}+ {0, r2}+ . . .+ {0, rk}.
We have to show that, if

∑k
i=1 q

−ei
i is sufficiently large, then R′ is ε-dense

in T. In fact, take B as in Proposition 2 and suppose that
∑k
i=1 q

−ei
i >

B + logB + 1. Then for 1 ≤ h ≤ B we have
k∑

i=1

‖hri‖ ≥
∑

i:qei
i
>h

‖hri‖ ≥
∑

i:qei
i
>h

q−eii

≥
k∑

i=1

q−eii −
B∑
n=1

n−1 ≥ (B + logB + 1)− (logB + 1) ≥ B .

By Proposition 2, this proves the theorem.

P r o o f o f T h e o r e m 3′. We proceed as in the proof of Theorem 2′. It
has to be shown that (4) has a solution in the range [2, Q/P (Q) + 1]. Let

S1 = {0, y1}+ {0, y2}+ . . .+ {0, yk−1} ⊂ S′,
R1 = {0, r1}+ {0, r2}+ . . .+ {0, rk−1} ⊂ R′.

By Proposition 1, R1 contains a point r =
∑
i∈I ri (∅ 6= I ⊆ {1, 2, . . . , k−1})

with ‖r‖ ≤ 1/k. If r ∈ [0, 1/k], then consider the number s = rQ =
∑
i∈I yi

(mod Q). Clearly, s solves (4) and |s| ≤ Q/k = Q/P (Q). Since I 6= ∅ we
have r 6= 0, so that s 6= 0. Since I 6= {1, 2, . . . , k} we have s 6= 1. Therefore,
in this case s furnishes a solution of (4) as desired. If r ∈ [1− 1/k, 1), then
take J = {1, 2, . . . , k} − I and r′ =

∑
i∈J ri. Then

r′ = 1 +
1
Q
− r ∈

(
1
Q
,

1
Q

+
1
k

]
.

Hence the corresponding solution of (4), namely s′ = r′Q =
∑
i∈J yi, is

again in the required range. This completes the proof.

P r o o f o f T h e o r e m 4. Choose q1 arbitrarily. Assume that q1, q2, . . .
. . . , qk−1 have been chosen. The system of congruences

(5) q1q2 . . . qi−1qi+1 . . . qk−1x ≡ 1 (mod qi), i = 1, 2, . . . , k − 1,

clearly has a solution x modulo q1q2 . . . qk−1 = Qk−1. Any such solution is
relatively prime to Qk−1. By Dirichlet’s theorem on the existence of primes
in arithmetic progressions there exist infinitely many primes in the progres-
sion x+Qk−1N. Take one of these as qk.

For each k, define integers (depending on k) yi, 1 ≤ i ≤ k, in the range
[0, Qk − 1] by the requirements

(6)
yi ≡ 1 (mod qi),

yi ≡ 0 (mod qj), 1 ≤ j ≤ k, j 6= i.
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Our construction guarantees that

yi = q1q2 . . . qi−1qi+1 . . . qk, i = 1, 2, . . . , k − 1,

yk ≡ Qk + 1−
k−1∑

j=1

yj (mod Qk).

Putting

(7) ri = yi/Qk, 1 ≤ i ≤ k,
we consequently have

ri =
1
qi
, i = 1, 2, . . . , k − 1,

rk ≡ 1 +
1
Qk
−
k−1∑

j=1

1
qj

(mod 1).

Hence, setting R′k = {0, r1}+ {0, r2}+ . . .+ {0, rk}, we obtain

R′k ⊆
[
0,
k−1∑

i=1

1
qi

]
∪
[
1 +

1
Qk
−
k−1∑

i=1

1
qi
, 1
)
,

and therefore

Rk = R′k −
1
Qk
⊆
[
0,
k−1∑

i=1

1
qi

]
∪
[
1−

k−1∑

i=1

1
qi
, 1
)
.

Since, by our construction, the sequence qk may clearly be chosen with∑∞
k=1 1/qk arbitrarily small, this concludes the proof.

P r o o f o f T h e o r e m 5. Basically, the idea is to get close to the situa-
tion of the example given in Remark 1. We start as in the proof of Theorem 4,
but instead of (5) require upon selecting each qk that it satisfies the system

q1q2 . . . qi−1

⌈
qi
k

⌉
qi+1 . . . qk ≡ 1 (mod qi), i = 1, 2, . . . , k − 1.

Defining yi and ri, 1 ≤ i ≤ k, by (6) and (7), we obtain

yi = q1q2 . . . qi−1

⌈
qi
k

⌉
qi+1 . . . qk, i = 1, 2, . . . , k − 1,

yk ≡ Qk + 1−
k−1∑

j=1

yj (mod Qk),
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and therefore

ri =
dqi/ke
qi

, i = 1, 2, . . . , k − 1,

rk = 1 +
1
Qk
−
k−1∑

j=1

dqi/ke
qj

.

It follows that ∣∣∣∣ri −
1
k

∣∣∣∣ ≤
1
qi
, i = 1, 2, . . . , k − 1,

whence ∣∣∣∣
∑

i∈I
rki − |I|

k

∣∣∣∣ ≤
k−1∑

j=1

1
qj

+
1
Qk

, I ⊆ {1, 2, . . . , k}

(where |I| denotes the cardinality of I). Consequently, if s 6= 0, 1 is any
solution of (4), then s =

∑
i∈I yi, with

∣∣∣∣s−
Qk|I|
k

∣∣∣∣ ≤
( k−1∑

j=1

1
qj

+
1
Qk

)
Qk.

Again, the sequence qk may clearly be chosen with
∑∞
k=1 1/qk arbitrarily

small, whence the theorem follows.
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Erdős, J. Number Theory 42 (1992), 189–193.
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