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We generalize results for ratios of generalized hypergeometric functions
obtained by P. T. Young [9] to the case of a power of p. More precisely,
we generalize Theorems 3.2 and 3.4 in [9]. In order to do that, introducing
a generalization of the p-adic Gamma function to a power of p seems to
simplify expressions of the results, and this is done in Section 1. There we
prove properties of this generalized Gamma function. In Section 2, after
proving some preliminary results for certain ratios of binomial coefficients
and giving a “truncated” version of Dwork’s theorem, we prove the theorems.
We follow very closely the proofs of the corresponding theorems in [9], and
our methods also apply to the well-poised series (Theorems 3.1 and 3.3 in
[9]) treated in [10]. Some applications are also given in [10].

Throughout this paper, p is a prime, v, denotes the p-adic valuation
normalized by v,(p) = 1 and by the p-adic expansion we mean the standard
p-adic expansion whose coefficients are all in {0,1,...,p — 1}.

1. The p-adic Gamma function is defined by

Iyn+1) = (1" 5

p1J
for a positive integer n and is extended by continuity to all of Z,:

Iy: 7y — 7,
(cf. [6]). Here Z, is the ring of p-adic integers.
For a non-negative integer [, we define a map h; from Z, to Z, by

hi(z) = ap ™
j=l
for x € Z, with the p-adic expansion Z;io iL‘jpj . Then h; is obviously con-

tinuous. Let t be a positive integer and ¢ = p’.

[141]
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DEFINITION. For z € Z, we define a map [ from Z, to Z; by

Ly +1) = [[ L) + 1),
=0

Then I7, is continuous and, for ¢ = 1, I'; coincides with I',. N. Koblitz con-

structed and studied an extension of the p-adic Gamma function (cf. [4], [5]).

There he uses I'; for a different function, but this will cause no confusion.
I'; has the following properties analogous to I7,.

ProposITION 1. (1) If z =y (mod p™) forn >t —1, then
I'y(xz) = I'y(y) (mod pr D),

(2) For a positive integer n,

rin+1)==0"p "] 4
j=1
qtj

where

t—1 t
n n n
A:t+2[,] and B:Zu_tH
t )
oo LP' o L p
and [x] denotes the largest integer not exceeding x.

(3) We have

()M hy ()T (x)  if @ € qZy and k = vy(x),
Lo(w+1) = { (1)L, (x) o,

(4) For p odd,
Ly(@)Ty(1 — @) = (=1)! 1),

where Ry(x) is the integer in {1,2, ..., q} satisfying Ri(x) = = (mod q). For
p=2,

_ [ (=) if o & qZy and @ & L,
Ly () [o(1 - 2) = { () ifaeql, ora € L,

where x; is the coefficient of pt in the p-adic expansion of x.
(5) Let N be an integer > 2, prime to p. Then

]h n(%) = n hqu<;)gw<x>l,

where gy (x) = NE@-IN@=D2R @) yith Rl (x) = (x — Ry(z))/q.
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(6) For Gauss sums, we have the following. For p odd and j in {1,2,...
coyq — 2},
j o ‘
I <1—q + 1> =(-1)'q lﬂs(])Tq(wé,lﬁmq).
Here 14 is the Gauss sum defined by

Tq(X,T/)) = - Z X($)w($)>

z€lF,
Pl = —p b 4(x) = () is the additive character of F, with the p-th root
of unity ¢, satisfying ¢ = 1+7 (mod 72), w, is the Teichmiiller character,
and s(j) = Zf;é js for the p-adic expansion j = Zf;é Gip®.
Proof. We use the properties of I, (cf. [6], Chap. 14).

(1) If z =y (mod p™), then I',(xz) = I,(y) (mod p™), so this is obvious.
(2) We have

n  [n/p] [n/p* ™)

n

[Hi=1Ii11@)--- I] @9
j=1 j=1 j=1 j=1

q1j pti  pij pti

= (=)™ I, (n + 1) (= 1) /PPl 1/ P ([ /p] 4 1) .
()T Gt T ([t 1),

Since
t—1

t—1
[I (/e +1) = [] p(ha(n) + 1) = Ly(n + 1),
i=0 i=0

the result follows.

(3) I', satisfies the following functional equation:

_ [ —aly(x) ifzeZy,
Dplz+1) = { “Iy(x) itz € pZ,.
Set f(x) to be I'y(z +1). When k =v,(z +1) <oo,let z+1=3",, y;p’
be the p-adic expansion of z 4 1. Then for [ < k, we have a
hi(z)=(p—=1+...+@=0p""" + (e — D"+ ypp™™ 4
= —1+mx+1).

For | > k, we have h;(z) = hy(x + 1).

1. If £ > t, then

t—1

fla+1) = (=)' ] L) + 1) = (-1)' f(2).

1=0
This also holds for k£ = co.
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2. If k < t, then

t—1

fle+1) = ()" hy(z+ 1) [ Lo(u(@) + 1) = (—1)*  hy (2 + 1) f(2).

1=0
By substituting = — 1 for x, the result follows.
(4) I', satisfies the following:

I(@) (1 — ) = {i(—xl))Rl(:c) gg > ;

where
e(z) =

Assume that k = v,(z) < oo and let = 3,2, ;p! be the p-adic expansion
of x. Then for | < k, we have

hi(—z)=(p—z)p* '+ ) (p—a; - 1)p' ™" = —hy(x).

Jj>k+1

—1 ifz=0,1 (mod 4),
1 ifz=2,3 (mod4).

For [ > k, we have
hl(—SL’) =-1- hl(l‘)
1. If £ > t, then

Iy(z+1)I,(1 —2) H{F (hu(z Ip(—hu(x) + 1)}

H{F (hi(2)) (1 — hy(z))}
_ { (—1) P =1 forp> 2,
(1) f;é e(hi(x)) forp=2.
Since I'y(z + 1) = (—1)'T,(z), we have

rn =0 = {1025

This also holds for k = co.
2. If k < t, then

Iy(x+1)I,(1—x)

— ﬁfp(hl(x)+1)pr(7hl($)+1) 1:[ Iy(—hi(z
=0

I=k+1

>

N
I
o
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{HF hu(@) +1) (=1 (- @) [ Ty (—hut)
=0
_ {(_ )khk@:)( )k:-l—(p zp)+...+(p—zi—1) it p>2,
(—=1)*hi (@) [T1Zg £(—Tu()) if p=2.

Since I',(z + 1) = (=1)*"hy(z)I,(x), we have

(

( 1)t 1+R:(x) if p>2,
Ly(2)F(1—x) = ¢ (—1)t+= if p=2 and z € Z;,

(—1)t- = if p=2 and z ¢ Z;.

(5) Set

- r, (;{) ]jlj)l I, (x; Z) 71[}1(1‘).

1=

-

Then for non-zero z,

on(z+1) _ Tyle+ DTy(x/N)
an(@) T@)L((+N)/N)
_ [ hu(a)

q
B z)/hx(x/N) if x & qZ, and v,(x) =k,
1 if x € qZ,,.
If v,(x) = k, then hy(z) = N - hy(x/N), so
gy(z+1) [N ifz &qZy,
By continuity in x, we only need to consider positive integers. Hence

_ [ N-gn(n—=1) ifn—1¢qZ,
gN(n)_{gN(n—l) ifn—1¢€qZ,

- Nn—l—[(n—l)/q]gN(l).

As gy(1) =1 and [(n —1)/q] = R}(n), we get the result.
(6) By the Gross—Koblitz formula (cf. [6], Chap. 15),

(=1)'q ™ 77y (], vor ) = HF <1_<

7))

But

so the result follows. m
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Remarks. 1. Just like I,

]ﬁlr i _{il if N is odd,
polet I\ N +1lor +3i

a if N is even.
2.For0<a,b<a+b<qg—1,
Tq(wq_av 1/’7r,q)7q(wq_b7 Yrq)
Tq(wtz_(a+b)7¢7r,q)
_ (i BED ()
Iy (541)
where J(x1, x2) denotes the Jacobi sum. This follows from (6).

J(w;%w ) =

q q

2. We generalize theorems in [9] to a power of p. Let p be an odd prime
and let ¢ denote p' as before.

PROPOSITION 2. Let a and b be integers satisfying 0 < a < b < q— 1.
Forr >0, set

T __ 1 T __ 1
nr:bqq_l and mr:aqq_l.
Then for r > 0,
(o)
AL = (1) (—p) () Ly(1+ny)
Ny_1 I'y(14+m) (1 +n, —m,)
mr—1

_ (vl Laeme) Ty (my — i)
(—p) ) _

Proof. From Proposition 1(2), we have

I,(1+n,) = (=1)Ziza /2], = (Sl o /p 1=t /p']) I1 .

j=1
qtj
and from
IIi= ( H])( H(qj)>,
j=1 =1 j=1
qtj
we have
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Hence

(o)

Ny my 1 Nyp—Mmy 1
; — <qn7‘71 H j) (gmrfl H j) <an71_mv‘71 H J)
r—1 j=1 j=1 j=1
My_1 atj atj qti
= (—1)“p° Lol + mv) :
Iy(14+m) (1 +n, —m,)
where
=1 . el
1D LIS B =L
i—o LP i—o LP i=0 p
' n L m
ey = LAy "
=3 -5
e R R
—~ p p p p

From simple calculations, we can show that e; = up((Z)) +t¢ (mod 2), and

e2 = 1p((g))-

Also from Proposition 1(4),

Iy(l+mn,) = (_1)t71+Rt(7nr)Fq(_nr>il = (_1)t71+q7qu(_n7’)71
and similar identities hold, so we get the result. m

The following corollary has been given in [10] in a more general form.

COROLLARY 3 ([10], Theorem 2.2 and Corollary 2.3). With the same
notations and assumptions as in Proposition 2, for r > 0,

()

Proof. Since

= J(wia,wafb) (mod ptr—(t—l)—&—up((z)))'

and

a
My — Ny = 71 (IIlOd qr)’

from Proposition 1(1) we get

ri-n) =12

Hence the result follows from Remark 2 after Proposition 1. m

) (mod p"~*=Y) " and so on.
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Remark. From Proposition 2, for
g -1 q"—1

n,.=>=o

with 0 <a <b<q—1,

Note also that from v,(n!) = (n —s(n))/(p —
b
yp<<a>> =0 < s(b) =s(a)+s(b—a).
As in [1] and [9], for a in Z, we define o’ and p, as follows:
pa’ —a=p, €{0,1,....,p—1}.
Also for i > 1, we define
o = (@Y and  pY = pg0.
Then the following properties hold:

LIf—a=)7, a;p’ is the p-adic expansion of —a, then
pd =a; and o =— Zajpj_i = —hi(—a).
j=i

2. Fora=a/(qg—1) With()gazz;t;éaipi <q-—-1,
a; + aj+1p + ...+ (lj_lpt71
qg—1
with j € {0,1,...,t— 1}, and a¥ = q.
3. Forn, =a(q" —1)/(g—1) with0<a<q—1, (—n,)® = —n,_;.

p =a;, oW = ifi =3 (mod t)

The generalized hypergeometric function pFj(aq,as,...,ak; b1, B2, ...

.., B1; X) is defined by

Qi,0,. .., 08 = (@)s(a2)s e (an)s oy
kFl( ﬁ1’627"‘7ﬁl ’X> _; (51)s(ﬁ2)s~'(5l>s'8!X ’

where (o), = a(a+1)...(a+n—1) for n >0 and (a)g = 1.
For ¢ > 0, define

(1) (@) (4)
. oy s’
F(z)<a1,042,~-704k ;X>: F< 150 5 ;X).
" B, B2, .., B o fl), éz),..., l(’)
Also as in [9], we denote by

t) [ 1,Q2,...,0k
F; 7 X
ol < ﬁl?ﬁ%“')ﬂl )
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the analytic element which extends the ratio

kﬂ(al,az,...,ak 'X)

ﬂlvﬂQa"'aﬂl ’
() [ A1,02,...,0Fk
F ; X1
a < /81762)"'7ﬁl )

For a series F(X) = Y20 A(s)X*, set F(X) = S o A(s) X",
PROPOSITION 4. Let o and (8 be elements of Z, such that if —a =

Yoo aipt and —3 =32 b;p" are p-adic expansions, then

(4.1) a; +b; <p  for anyi.

Then

wlaB N\ L)L)
271 < 1 ’1>‘ T,(a+8)

Proof. Let
S ={(o,7) € Z, x Zy | p-adic expansions of — o and — 7 satisfy (4.1)}.

Note that if (o,7) € S, then (¢/,7) € S, so (¢(?,7() € S for any i.
From Theorem 2 in [3],

L, ()1, (89)
I+ p0) 7

where ©(c0, 7; X) is the analytic element which extends the ratio

o, T
2F1( 1 §X>

2F1(1) <J’17 ; X”)

O(al, 50:1) =

Then we have

t—1

a4+ 89 = (a+B)P  for any i, H (e = (),
t—1 ' t—1 = '

HFp(ﬂ(Z)) =I,(8) and HFp((O‘WLB)(Z)) = Iy(a+B).
i=0 1=0

t—1
a, i i
gfl(t)< L 1> =[] 6. 59:1),

the result follows. m
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Remark. Let a = Zﬁ;é a;p’ and b = Zf;é b;p’ be p-adic expansions of
a and b satisfying 0 < a,b<g—landa+b<qg—1.1If a; + b; < p for any i
with 0 <7 <t —1, then

a b
O a=1> a1 e
A (E ) st

(cf. (3.3) in [9]).

Set « =a/(qg—1) and 8 =b/(¢—1). Then («,3) € S and Vp((azrb)) =0,
so the statement holds from Remark 2 after Proposition 1 and Proposition 4.

In order to use a uniform convergence argument as in [9], we seem to

need not only Dwork’s theorem (Theorem 1.1 in [2], Theorem 2.3 in [9]) but
also a “truncated” version of it, which is the following:

THEOREM 5. For an integer r > 0, let A" (m) and g,(m) take values in
Z,, for non-negative integers m. Moreover, suppose that A" and g, satisfy
the following:
L. |[A™(0)| = 1;
2. A (m) € g,(m)Z, for m > 0;
3. For a positive integer ¢ with p* < ¢ < p"*t', L > 0,
A (m) #£0  and  g(m) #0  form < he(c);

4. For integers s and r with 0 <r < L—-1and 0<s< L —r—1, and
for integers a, p and m with 0 < a <p, 0 < p < p® and m > 0, we have

Al (a+pp+ mps+1) A(r-ﬁ-l)('u + mp®) it Gsrra1(m) .

A (a + pp) A+ () gr(a + pp)
Then for 0 < s < L —1 and m > 0, we have

F(X)Gm,s(XP) = G(XP)Fpp s11(X) (mod gs+1(m)ps+1[[X]]),

where
F(X)=> ADmX", G(X)=>Y AYmn)x",
n=0 n=0
(m+1)p°—1 (m+1)p°—1
FrnoX)= Y A9m)X" and Gu.(X)= >  AD(n)X"
n=mp?* n=mp?*

Notice that under our assumptions on the A(") the denominators in
hypothesis 4 are non-zero. The proof of Theorem 1.1 in [2] works as well in
this case.

THEOREM 6. Let 01,...,0, and 01,...,0,-1 be elements of QNZ,, and
suppose that none of the o; are zero or negative integers, o; # 1 for 1 <1
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<q¢ ando; =1 fori>q. Set

F(X):nFnl( Hl’.“?en;X)
1 1

OlyveyOpe

> A(m)X™.

m=0
Suppose further that
(1) |0'](-V)| =1for1<j<¢q andv>0;
(2) for a positive integer c with p* < ¢ < p**1 L >0,
=0 form>c,

(6.1) A(m) { 20 form<e

i.e., for some i we have 0; = —c;
(3) for each fized i with 0 < i < L, supposing that the indices are rear-

ranged so that uéil) <...< ,uéi) and uffl) <...< uﬁfj,, we have /‘Sf? > ,ué?ﬂ

forj=1,....q¢;
(4) for i with 0; = —c, ug) % ug) for L and r with 1 <1 < ¢ and
1<r<L.

Set

n (s) s
A(s)(m) _ Hi:l(lei ()v)n d  gs(m)= ,A( )(m) o
m! H;L:_1 (Ujs Jm 3:1(m + Ujs )
Then conditions of Theorem 5 are satisfied and we get, for s and m with
0<s<L-1andm >0,

F(X)Fy, (X?) = F'(XP)Fps1(X) (mod gasr(m)p**{[X])),

(6.2)

where
01,...,0,
F'(X) = anfjl( bt X>.
O1y.-+90n—1
Notice that from assumption (2) we have

(6.1) A {20 G e

Proof of Theorem 6. This is a truncated version of Theorem 3.1
of [2] which was proved by using Lemma 1 of [1], and Lemmas 2.1, 2.2, 3.1
and 3.2 of [2]. Here we only give corresponding statements without proofs
except for Lemma A.
For an integer a in {0,1,...,p — 1} and 6 in Z,, we define a function
o0 by
(1 ifa> py,
o(a,0) = {O otherwﬁitse.
Also we use g(a+,x) to denote the limit of o(b,x) as b approaches a from
the right (cf. [2]).
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LEMMA A ([1], Lemma 1). Let 6 be an element of Q N Z, and let a, p,
m and s be integers such that 0 < a < p and p,m,s > 0.

(1) _[f (9)a+pu+mps+l # 0, th@n

(9)a+pu+mp$+1 = (‘9)mps+1 ) (a)aﬂm <1+ mp
(9/)u+mp5 (el)mps (al)u 0+

where we define

S

o(a,0)
) o1 p,

mps Q(ave)
<1+9/+H> =1 for the case 8’ + =0,

and

() ps+1

(0") mps

(2) If (@)a+pu # 0, then
Vp < (9)7“)“) = p+ (L+vp(u+6))o(a,0),
(0")

where we define (14 v,(1n+6"))o(a,0) =0 for p with p+ 6 = 0. (We show
in the proof that when 4+ 60" =0, g(a,0) =0.)

(=p)™"" (mod 1+ p*t1).

Proof. When 6 is not zero nor a negative integer, this is Lemma 1 in
[1]. For # =0, we have a = p=m = 6’ = 0, so the lemma holds.

For a negative integer 6, the proof of (1) goes exactly in the same way as
that of Lemma 1, so we only prove (2). Let 8/ —1 = Y2 | 3,p® be the p-adic
expansion and « be such that 6 —1 = « (mod p), a« € {0,1,...,p—1}. Then

oo
O=1+a+) B.p*th

s=0

For an integer r > 2, set

r—2 r—1
GT:1+a+Zﬁ5ps+l and 0;:1+Zﬂsps.
s=0 s=0

As 0, and 0, approach 6 and ¢’ respectively as r — oo, and as (0)q4pu # 0,
there exists N such that for r > N,

Vp((0r)atpu) = Vp((0)aspu) and  v,((07),) = Vp((e/)u)-
We take N so large that for r > N, 83 =p— 1 for any s > r — 1. As in the
proof of Lemma 1 of [1], the left side of (2) equals

(*)=pil{a+a+(p—1)u—ﬁr_1—s(0r+a+pu—1)+8(9£+u—1)},

where for a non-negative integer n with the p-adic expansion n = Zf:o nip,

s(n) = Yo i
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1.If a+ a < p, then g(a,d) =0, and
Or+a+pu—l=a+a+pAd, O, +p—-1=A+p_1p" ",
where A = ZZ;(Q) Bsp® + p.
Suppose that A > p"~!. Then for r > N,

r—2

0:1+a+2ﬂ3p5+1—

s=0
and
0+ (a+pu—1)=a+a+pA—p" >a+a>0.

This means that (0),4p, = 0, which contradicts our assumption. Hence
A < p"~! and we have

s, +a+pu—1)=a+a+s(A) and s@. +pu—1)=s(4)+ 81,

so (*) = p as desired.
2. If a4+« > p then g(a,0) =1, and
Or+a+pu—1=(a+a—p) +pB, 0, +p=DB+p_1p" ",
where B:u+1+zz;§ﬁsps =A+1.
Suppose that B > p"~!. Then as before we get a contradiction. So B <

p" 1 and

s, +a+pu—1)=a+a—p+s(B) and s(0.+ u)=s(B)+ Br_1.

If p4 6" # 0, then the same proof as for Lemma 1 of [1] works. If 46" =0,
then

O+a+pu—1=pd —pg+a+pu—1=a—pg—1<0,

since (6)q4pu # 0, hence o(a,0) =0. =

For Lemmas B through E, let 64,...,0, and 01,...,0,_1 be elements of
QNZ,, and suppose that none of the o; are zero or negative integers, o; # 1
for 1 <i< ¢ and o; =1 for i > ¢'. Let g5 be defined by (6.2). We put for
v >0,

0(a,0"), Ny (cH—):Z o(a+,0"),

I
.M:

Ny (a)

2

q

€

Q

+

MQ i
—

fb

Q

+

S

q/
N, (a) = Z o(a, Uj”

In particular, we put

Ng(a) = Ngwy(a) and Ny(a+) = N, (a+).
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LEMMA B ([2], Lemma 2.1). For integers a and p with 0 < a < p and
p >0, if go(a+ pu) # 0, then

(45)

q
:Ng(a)—NU(cH—)—i-ZQ(aQ Wwp(p+07) —i—Z (1= olat,05))vp(u+ 0}),
=1 j:l

where we define o(a,0;)vy(p+0;) =0 if p+ 6, =0. (Note that in this case
Q(aa 01) = 0)

LEMMA C ([2], Lemma 2.2). Suppose that the following conditions are
satisfied:

(1) |O'](-V)|:1f0T1§j§q/,0§V§L+1;

(2) Ngw)(a) > Nywy(a+) for0<v <L and 0 <a <p.
Then for v with 0 <v < L+ 1 we have

g(n) €Z, for0<n< pl—vHL,

Remark. Suppose that go(n) = 0 for n > ¢ with ¢ such that p* < ¢ <

pttL. Then g,(n) = 0 for n > h,(c) for 0 g v < L,and also for v > L+1 we

have g, (n) =0 for n > 0 and g, (0) = ( ;1 L J(V)
(1) is satisfied for any v > 0, then

gv(n) € Z, for any v >0 and n > 0.

)~1. Hence if the condition

LEMMA D ([2], Lemma 3.1). Suppose that ]aj(.s)| =1for1<j<q. For
an integer p with 0 < 1 < p®, we have vy(o; +p) < s for1 < j<d'.

LeEMMA E ([2], Lemma 3.2). Let s be a non-negative integer. Suppose
that the following conditions are satisfied:
(1) for integers i and v with 0 <i <p and 0 <v < s,
Ny (i) > Ny (i+) + x(Nyo (i4)),

where x denotes the characteristic function of the set of strictly positive real
numbers;

(2) for1<j<dq, o™ =1.

Then for non-negative integers a,p,m with 0 < a < p and p < p°, if
go(a+pp+mp*tt) # 0, then

N go(a + pp + mp*th)
(1) - gs+1(m)
(ii) (a,0;) =0 (mod p) for1<i<n,

€ 7,

u
mp* + 1 6,°
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where we define the left side to be zero if mp® + p+ 0, = 0 (in this case
Q(aa 01) - 0)7

(iii) M_fagg(a,aj) =0 (mod p) for1 <j<¢.
From the above lemmas we can prove that the hypotheses of Theorem 5
are satisfied except for hypothesis 4 when A (a + pu + mp*t') = 0 and
AT (1 + mp®) # 0.
Suppose that A (a4 pu+mp*t1) = 0 and ATTY (4 mp®) # 0. Then
from (6.1),

a+pu+mp"tt>h(c) and  p4mp® < heya(e).
Ife=>,_, c;p' is the p-adic expansion of ¢, then
(%) ¢ —a<0 and p+mp® = hyi(c).

For i with 0; = —c, we have ,ué:) = ¢, so o(a, QZ(T)) =1 and

Ngm(a) > No.(r) (a+) + 1.

Also from (%), 4t = 41 + Cryop + ... + cs1rp® L, hence from Lemma B we
have
(gr(a +pp)

gr+1 (ﬂ)

From assumption (4), u + Ul(rH)

)25—1—1.

€ Zs,, 80

gr+1 (,u)
ACHD ()

As AUTD (5 mp®) /g1 (p +mp®) and g1 (i +mp®)/gsrry1(m) are ele-
ments of Z, by the definition and Lemma B, we have
ACHD (4 mp*)

AT ()

_ AUt mp®) gra(ptmp®) ge(atpp)  grar(p)  gserra(m)
Gra1(p+mp®)  gspryr(m) gra1(p)  ACTD(u)  gr(a+ pp)
s+1 gstrt1(m)

gr(a + pu)

€7,

EDp Lyp. m

Remark. For m = 0, we get
F(X)F/(X?) = F/(XP)F,11(X) (mod p*™[[X]]) for0<s<L—1.
But from conditions on the A(m),
F.(X)=F(X) forr>L+1 and F.(X)=F\(X) forr' > L.
Hence for s > L,
F(X)FI(X?) = F(X)F/(X?) = Fyy1 (X)F/(X7),
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so for s > 0 we have
F(X)F/{(X?) = F'(X?)Fe1(X) (mod p**[[X])).
Similarly, for ¢ > 0, we have
FOX) PO (xP) = FORD(XP) P (X) (mod p™H[[X])).

Hence from these congruences we can show just as in Theorem 3 of [1]
that F(X)/F'(XP) can be prolonged to an analytic element f of support

D={zeZ,: |F1(Z)(:L‘)| =1 for ¢« > 0}, where
(r1) f(@) = Foyr(2)/F{(2") (mod p*'Zy).

Suppose further that sequences \;(r) and v;(r) of elements of Q N Z,
converge respectively to ¢; and o;. Consider

)\1(7’),...,)\”(7‘) ) B o0 . .
(r)y ... vp—1(r) ’X> - ZTB( )X

m=0

If the A;(r) and the v;(r) satisfy the conditions of Theorem 6, then , H(X)/
»H'(XP) can be prolonged to ,h of support D, = {s € Z,, : |erZ) ()] =1
for ¢ > 0}. Then for z € D,

TH(X) :n-Fnl<l/1

f(z) = lim ,h(zx).

T—00

This follows from (r.1) and a continuity argument as in [3] and [9].
THEOREM 7. Let a = Zf;é a;p', b = Z:;é bip', ¢ = Zf;é cipt, d =
i 1dz and e = S i1 e;p" be p-adic expansions of a,b,c,d and e, respec-
ZZ 0 p 1=0 p p 4 sy Uy Ly ) D
tively. Assume that for each 1,

aitbi+ci=di+e—(p—1) and aibic; <die;.
Then

f‘(ﬂ( - ’Ll’ qil 1)_ (q—)
4, qTeI (d a

Proof. For r > 1, let

L ‘

F(dab)
T

(=0T, (=4 7, (b

‘&

q- 1
= d—b
q" —1
=(g—1-0b
ny = (q )q—l
q-—1
Sr=a ,
qg—1
q-—1

=(q—14+c—d .
(g—1+c )q_1

Note that d —b, ¢ —1 — b and ¢ — 1 4+ ¢ — d are all positive.
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The following identity holds (cf. [8] and Proof of Theorem 3.2 in [9]):

my\ [Ny

nr+17 —Spy N — My — Up Sp Uy
3y ;1) = :
ny+1—5s, —u, n, +1—m, < Ny )(nr—i—sr—m,n)

Sy + Uy

Under our assumptions on a, b, ¢, d and e, we have

() = ((757)
“((2) =)

nr"‘l’ —Spy N — My — Uy
F 1) eZr.
32<nr—|—1—sr—ur,nr—i—1—mr > p

Leta=n.+1,8=—-s,,y=n—mp —Up, 0 =0, +1— 5, —u, and
7=mn,+1—m,. Then
(N(oj)al‘g)?ﬂg),:ug)’“s})) = (bj7ajacjaejadj)
for i < tr—1 and i=j (mod t) with j € {0,1,...,t — 1}, and also for
1 <tr—1,
ol = hi(n,) 41, 5(i) = _hi(sr)a V(i) = hi(n,) — hi(mr) - hi(ur)a
o @ =hi(n.) +1—=hi(s;) = hi(u), 79 = hi(n,) +1 = hi(m,).

Hence
hl(mr) hz (nr)
a® B0~ hi(sr) hi(uy)
3F2 . . , 1 — :
g'(l)77'(@) ( hZ(TLT) > <h1 (nr) + hi(Sr) - hz(mr))
hi(ST) + hz (Ur) hi(Sr)
Under our assumptions on a, b, ¢,d and e, we have

Hence

; +1,—s,n—Myq —u
71 F(z) Ty 5 ry Top r r 1
(7.1)  |sF3 np+1—5,—u,n.+1—m,’
(1) ﬁ(i) (1)

_ a ) 7,}/ . .
- 3F2< o), () ’1)’—1

for any 1.

Set
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Then the conditions in Theorem 6 are satisfied for GU)(X) with ¢ =
min{h;(s,), —h;(n.)+h;(m.)+hj(u,)} and L =tr—1—jfor 0 <j <t—1,
and we get, in particular,

GO (x) = ¢ (x7)GY (X) (mod p[X)).

Hence from (7.1), ]Ggi)(l)] =1 for any 4. So by continuity, ]Fl(l)(l)\ =1 for
any 4.

As for F(X), Dwork’s theorem (Theorem 2.3 of [9]) holds and the ratio
F(X)/F(X?) can be prolonged to X = 1. From Remark after Theorem 6,
its value is

) _a_ b _c

)| q—17 q—17 g—1 |

3-7:2 d e ,1
—1° q—1

Tt
Ny +1, =8, Ny —Myp —u
— lim f(t) T ’ ry T r r ;1
r—co > 2 ny+1—s—u,n.+1—m,

F2< nr+17_sr7nr_mr_ur 1>
— lim 3 Np+1—58. —up, np+1—m, "’

r=oe (DO (=)0, (0 =y —u)®
o (nr—i_]‘_ST_uT)(t); (nr+1_mr)(t) ’

<mr> <nr> ( Ny—1 > (nr—l + Sr—1 — mr—l)
. Sp U Sp—1+ Up—1 Sr—1
= lim
r—00 ( Ny ) (nr + 8r — mr) (mrl) (nrl)
I Sp Sr—1 Upr—1

Ly (5e) T (52 Lo (327°) Lo (55

_ q—1 q—1 q—1 a=1)
Ly () Lo (20) Ta (E5) Ty (=)

Remark. The condition “a;, b;, ¢c; < d;, e;” in Theorem 7 can be slightly
weakened so as to satisfy the hypotheses of Theorem 6 for GU)(X) with
0<j<t—1.

THEOREM 8. Let a = Zf;é a;p’, b = Zf;é bip' and ¢ = Zf;é cipt be
p-adic expansions of a,b and c, respectively. Assume that for each i,

(Da;+b;<(p—1)/2,¢; < (p—1)/2 and a; # ¢,

(2) if fi = max{2a;,2b;,¢;} and g; = max{{2a;,2b;,c;} — {fi}}, then

-1 —1
fi<max{p2+ai—|—bi,26i} and gi<min{p2—|—ai+bi,26i}.

Then

® 2a 2b c
) ¢—1’ g—17 g—1 |
3f2 a+b 2c ) 1

1
2 + qg—1’ g—1




Generalized p-adic hypergeometric functions 159
a+b
F(%>F(%+ LG+ )L+ 5257)
L(3+35) Lz + %)( ”)(%"’)
Proof. For r > 0, let
q- —1 1 q-—1

—+d
M =g AT
with d = (¢ —1)/2 — b and v = ¢/(¢ — 1). From Watson’s theorem (cf. [7]
and Proof of Theorem 3.4 in [9]),

— 2Ny, 2Myp, 7y
(81) 3F2< 1 N 1)
2 + my — Ny, 27
LG+ NG +me —n)L(5 + 7+ ne —my)

T TG )G A m) (G ) DG+ —me)
Here
I'(3)
(8.2) —
F(§—nr)
Moy 1 Ty 1 Ny 1 F(l)
ST () T (e
1=1 <2 =1 \2 =1 N2 I(z = nr-1)
af1/2-1 al1/2-1 af1/2-1

From Proposition 1(3), for any v in Z,,

Q(;w+gz{<1ﬁ“mamwﬁuﬂw if 1, (1/2—v) =k < t,

(1), (1/2 =) if vp(1/2 —v) > t.
Hence
]' tx tre_ - ]‘ -
Iy 9 = (=) g (=) H hi—q 5_3
Vp(1/2]—:j1):t—1
v T 1 1
..{(—1) ]1;[1 h0<2—]>}Fq<2—nr>,
vp(1/2—3)=0
where

O f#H1<i<n,, (121 =4} for0<j<t-1,
TITV#1<1<n,, v,(1/2-1) >t} forj=t.

If v,(1/2 — j) > k, then hy(1/2 — j) = p~*(1/2 — j). So

1 ety -2 [ 1T [ 1
()= ()l

=1
qt1/2-1
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Hence from (8.2) we have

1 1 1
(8.3) F(g)/F(g —ny) . (_1)23.;;(j+1)zj+mtqn,r_lng;ijxj Fq(i

T/ T — ) i
Similarly,
F(% +mr)/F(% +m, —n;)
(8.4) T T
F(g + mr_l)/F(§ + Myp_1 — nT_l)
1
= (—1)Zmo Ut Dty g1 255 Ly(g +ma)

Fq(% +my —n,)’
It +v+n.)/I(35+7)

(8.5)
T+ 7+ /D5 +7)
1
_ (_1)zj;é(j+1)zj+tztqn,,._lpxz;}jzj Iy(z +v+n.)
Fq(% +7)
and
(8.6) I(3+y+n—m)/T(5+~—m)
F(% + Y + Np_1 — mr_l)/F(% + Y — mr_l)
_ (71)E;;é(j+1)uj+tut an._lpE;;ijuj Fq(% +v+n,— mr)
Fq(% +7v—my)
where

LI <ng, (124 my = 1) =4} for 0<j <t -1,

BT\ #U 1 <U<n, v(1/24+m, —1) >t} for j=t,

I <ng, (124 y+n, —1) =4} for0<j<t—1,

TT\#U < I<ng, vp(1/24 740, =) >t} forj=t,
#{|1<1<n,, v,(1)24+~v+n, —m, —1) =j}

uj; = for0<j<t-—1,
#{|1<l<n,, v(1/)24+~v+n, —m, —1) >t} forj=t.

As for the computation of z;,

1 1+ pf

i—lEO(modpj) & l= 5 (mod p’).
So
e for j =t,
(8.7) Tj= { hj(ng) — hjy1(n,) for0<j<t—1.
Similarly,

RV B for j =t,
(8.8) y]_Z]_uJ_{hj(nr)—hj+1(nr) for 0 <j<t—1.
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Since

=20y, 2my, 7y
(89) 3F2<1 ) 1)
5+ my —np, 2y

_H{ S (3 )(F(é+’y+ns)/F(§+,Y))>1

/F*—ns DAL (5 + 7+ ne-1)/T(5 +

X( I(5 +my)/T(5 +ms —ny) )>‘1

F(% +ms—1)/r(2 + Mmg—1 —Ns—1

(3 +v4ns—mg)/I(5+~—my) }
F(%+'7+7’L5_1—m5_1)/1—1(2 +v— ms—l)

we see from (8.3)—(8.8) that the exponent of p in the right hand side of (8.9)

is zero, so
=20, 2my, *
sfa| 1) ez,
2 + my _nr727

Also for i < tr — 1, we have

(3 +me =)@ = 1+ L@m)O + 1(=20) @, (29)® =290,

Hence we can show similarly

() = 2ny, 2my, 7y * .
3By ;1) €Z, foranyi>0.
5 +my —ny, 2y
Since for ¢ < tr — 1 we have

(() @ @ 0 (@)

p—1
B2, B3, s 5 B0 Ty H2y) = <2aj,2bjacj=2+aj+bj720j>

where i = 5 (mod t) with j € {0,1,...,¢t— 1}, the conditions in Theorem 6
are satisfied for 3F2(’)( —2n,,2mp,y

L4m,—n, 2y X) with ¢ = hi(2n,) and L =tr —1—i
for0<i<t-—1.

So as in Theorem 7, for

the ratio F/(X)/F(XY) can be prolonged to X = 1, and its value is
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c
— QTLT, 2mr, —1 .
3F2 1 2¢O’ 1
5 My — Ny, -1

= lim o
r—00 (—27'Lr)(t) (2’[7’L (t) ( )
3by @ 1
( +mr_nr (t) (
T R T )
Iy(5+ 3%55) a5 + 325) T (% =41 ( =)

Remarks. 1. Conditions on a,b and ¢ in Theorem 8 are satisfied if for
each 1,

1 p—1
th< ol <P
2 =T
and
ci>a; >0 1faz§bu
ci>bi>0andci7éai if a; > b;.

2. From the condition (1), ¢; cannot be equal to a; for any i. If ¢; = a;
for some i and ¢; # b; for any j, then by interchanging a and b, we still get
the same result.

As in [9], from the above theorems we obtain some identities among F’s.

(1) Forazzz_o a;p', b_21_0 b;p* andc—zz;é c;ipt with a;, b, ¢; <
p—landa;+b;+c=p—1for0<i<t-—1,

_a_ b _c _a_ _b_ 2
() ()

This follows from Proposition 4 and Theorem 7 (cf. (3.27) in [9]).

(2)Forazzlo a;p’ andb—zloblp with 0 < a; +b; < (p—1)/2
andmax{a“b}<( —1)/2for0<i<t—1letd; =a;+b+(p—1)/2
and d = Zz o dip*. Then

This follows from Theorems 7 and 8 (cf. (3.28) in [9]).
(3) From Proposition 1(1), Proposition 2 and Theorem 3.2 of [10], we get
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for a = Zz;é a;p’ with 0 < a; < (p—1)/3 and for m, = a(¢" — 1)/(q — 1),

=

(o) o)

2a_ 20 _2a_
= (—1)a3.7-"2(t) < q-1’ ‘i*i’ a1 . 1) (mod pg"™1)

3m, 1 2my 1
2my My—1

(3.24) in [9)).
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