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Let k be a number field of degree n over Q. We denote by ok, d and E
the ring of integers of k, the discriminant of k and the group of units of k,
respectively. Let K be a quadratic extension of k or K = k × k. We call a
subring of K with 1 an order of K if it is a free Z-module of rank 2n. In this
paper, we consider orders of K with ok-module structure. We call such an
order a quadratic order over ok. We shall study the following Dirichlet series:

(0.1) Zk(s) = |d|2s
∑

O

|D(O)|−s,

where O runs over all quadratic orders over ok and D(O) is the absolute
discriminant of the order O. If k = Q, then it is easy to see that

(0.2) ZQ(s) = (1− 2−s + 21−2s)ζ(s),

where ζ(s) is the Riemann zeta function. The purpose of this paper is to
generalize this formula to an arbitrary number field k. We shall describe
Zk(s) in terms of the partial zeta functions of k. As an application, we shall
give another proof of the density formula for the quadratic extensions of k,
which was established by D. J. Wright (see Theorem 4.2 of [1]).

1. Quadratic orders. In this section, we shall study the structure of
quadratic orders over ok. The structure of finitely generated ok-modules is
well known. We need the following three lemmas (see, for example, Narkie-
wicz [3], Chapter 1, §3).

Lemma 1.1. Every non-zero fractional ideal of k is a projective ok-
module.

Lemma 1.2. Let A be a finitely generated torsion free ok-module. Then
there exists a fractional ideal a of k and an integer m ≥ 0 such that

A ∼= omk ⊕ a

as ok-modules.

[229]



230 J. Nakagawa

Lemma 1.3. Let Ii, Jj (1 ≤ i ≤ l, 1 ≤ j ≤ m) be non-zero fractional
ideals of k and put

A1 = I1 ⊕ . . .⊕ Il, A2 = J1 ⊕ . . .⊕ Jm.
Then A1 and A2 are isomorphic if and only if l = m and I1 . . . Il =
(a)J1 . . . Jm for some a ∈ k.

Let O be a quadratic order over ok. Since O is an ok-module and con-
tains 1, we have the inclusion ok ⊂ O. Hence we have the following short
exact sequence of ok-modules:

0→ ok →O→O/ok → 0.

Since O/ok is a finitely generated torsion free ok-module, Lemma 1.2 implies
that

O/ok ∼= omk ⊕ b

for some fractional ideal b of k and some integer m ≥ 0. Computing the
ranks of these modules over Z, we have m = 0 and O/ok ∼= b. We denote
by g and π the isomorphism of b onto O/ok and the natural homomorphism
of O onto O/ok, respectively. Lemma 1.3 implies that the ideal class of b is
uniquely determined by O. It also implies that we may assume ok ⊂ b. By
Lemma 1.1, b is a projective ok-module. Hence there exists a homomorphism
f : O/ok →O such that π · f = id. Put θ = f · g(1). Then we have

O = ok + bθ (direct sum).

Since O is a ring, θ satisfies a quadratic equation

(1.1) qa(x) = x2 + a1x+ a2 = 0,

where a = (a1, a2) ∈ b× ok. For any t, s ∈ b, we have tθ, sθ ∈O. Hence

(tθ)(sθ) = −a2ts− a1tsθ ∈O.

This implies that a1 ∈ b−1 and a2 ∈ b−2. We note that b−1 is an integral
ideal since ok ⊂ b. If O is an order of a quadratic extension of k, then qa(x)
is irreducible over k. If O is an order of k × k, then qa(x) is reducible over
k with two distinct roots.

Let a be an integral ideal of k and let a = (a1, a2) ∈ a × a2. If qa(x) is
irreducible over k, then we define an associated ok-module by

O(a, a) = ok + a−1θ ⊂ k(θ),

where θ is a root of the quadratic equation (1.1). If qa(x) is reducible over
k with two distinct roots θ1, θ2, then we consider the ok-module

O(a, a) = oke+ a−1θ ⊂ k × k,
where e = (1, 1) and θ = (θ1, θ2) ∈ ok × ok. It is easy to see that O(a, a) is
a quadratic order over ok in both cases.
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We say that two quadratic orders O1,O2 over ok are ok-isomorphic
if there exists a ring isomorphism of O1 onto O2 which is trivial on ok.
Let a = (a1, a2), b = (b1, b2) ∈ a × a2. Assume that there exists an ok-
isomorphism

f : O(a, b)→O(a, a).
Then f(θb) = tθa − s for some t ∈ a−1 and s ∈ ok, where θa and θb are the
θ for O(a, a) and O(a, b), respectively. Since f is an ok-isomorphism, we
have

ok + a−1(tθa − s) = ok + a−1θa.

This implies that t ∈ E and s ∈ a. Further, we have

(t−1θb + t−1s)2 + a1(t−1θb + t−1s) + a2 = 0,

θ2
b + (2s+ ta1)θb + (s2 + a1st+ a2t

2) = 0.

Hence
b1 = 2s+ ta1, b2 = s2 + a1st+ a2t

2.

So far we have shown the following proposition.

Proposition 1.1. Let ai (i = 1, . . . , h) be a complete set of repre-
sentatives of the ideal classes of k, consisting of integral ideals. Then any
quadratic order O over ok is ok-isomorphic to O(ai, a) for some i and some
a ∈ ai×a2

i . Further , O(ai, a) ∼= O(aj , b) if and only if i = j, b1 = 2s+a1t
and b2 = s2 + a1st+ a2t

2 for some t ∈ E and some s ∈ ai.

Let a be an integral ideal of k. We denote by E(a) the subgroup of E
consisting of all units ε with ε ≡ 1 (mod a). For any a = (a1, a2) ∈ a× a2,
put

Qa(x, y) = y2qa(x/y) = x2 + a1xy + a2y
2,

∆(Qa) = a2
1 − 4a2

and denote by Q(a) the set of all Qa(x, y) (a ∈ a × a2) with ∆(Qa) 6= 0.
We denote by G(a) (resp. G′(a)) the subgroup of GL2(ok) consisting of all
matrices of the form

(1.2) γ =
(

1 0
s t

)
, s ∈ a, t ∈ E (resp. t ∈ E(2)).

The action of γ on Q(a) is defined by

(γ ·Qa)(x, y) = Qa(x+ sy, ty).

We denote by [Qa] (resp. [Qa]′) the G(a)-equivalence (resp. G′(a)-equivalen-
ce) class of Qa. Then we can rewrite the previous proposition as follows:

Proposition 1.2. Let ai (i = 1, . . . , h) be as in Proposition 1.1. Then
the mapping Qa 7→ O(ai, a) induces a bijection of

⋃h
i=1G(ai)\Q(ai) onto

the set of ok-isomorphism classes of quadratic orders over ok.
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Now we determine a complete set of representatives for G(a)\Q(a). Take
a complete set of representatives α1, . . . , α2n ∈ a − {0} of the quotient
module a/2a and put

Q(a, αj) = {Qa(x, y) ∈ Q(a) : a1 ≡ αj (mod 2a)} (j = 1, . . . , 2n).

Then Q(a) =
⋃2n

j=1Q(a, αj) (disjoint union). It is obvious that the subgroup
G′(a) acts on each Q(a, αj).

Lemma 1.4. Each G(a)-equivalence class of Q(a) consists of exactly
[E : E(2)] G′(a)-equivalence classes.

P r o o f. If E =
⋃l
ν=1 tνE(2), then G(a) =

⋃l
ν=1G

′(a)γν , where

γν =
(

1 0
0 tν

)
.

Hence for any Qa ∈ Q(a), we have [Qa] =
⋃l
ν=1[γν ·Qa]′. Assume [γµ ·Qa]′ =

[γν ·Qa]′. Then ∆(γµ ·Qa) = u2∆(γν ·Qa) for some u ∈ E(2). This implies
that tµ/tν = ±u ∈ E(2). Hence µ = ν.

Lemma 1.5. Let Qa, Qb ∈ Q(a). Then Qa is G′(a)-equivalent to Qb if
and only if Qa, Qb ∈ Q(a, αj) for some j and ∆(Qb) = t2∆(Qa) for some
t ∈ E(2).

P r o o f. The necessity is obvious. To prove the sufficiency, assume
Qa, Qb ∈ Q(a, αj) for some j and ∆(Qb) = t2∆(Qa) for some t ∈ E(2).
Put s = (b1 − ta1)/2. Then we have

2s = (b1 − αj) + (αj − a1) + (1− t)a1 ∈ 2a,

hence s ∈ a and b1 = ta1 + 2s. Since ∆(Qb) = t2∆(Qa), we have

b2 = {b21 − t2(a2
1 − 4a2)}/4 = s2 + a1st+ a2t

2.

Hence γ ·Qa = Qb, where γ is an element of G′(a) defined by (1.2).

Proposition 1.3. The mapping Qa 7→ ∆(Qa) induces a bijection

G′(a)\Q(a, αj)↔ (α2
j + 4a2)′/E(2)2,

where (α2
j + 4a2)′ = (α2

j + 4a2)− {0} ⊂ k.

P r o o f. Lemma 1.5 implies the injectivity of the mapping. The surjec-
tivity is obvious.

For any integral ideal a of k, we denote by N(a) the absolute norm
of a. Then the following formula is easily deduced from the definition of the
discriminant.

Lemma 1.6.

D(O(a, a)) = d2N(∆(Qa)a−2).



Orders of quadratic extensions 233

This lemma implies that D(O)d−2 is a rational integer for any quadratic
order O over ok. We denote it by D(O; ok). For any quadratic extension
K of k, we denote by OK the ring of integers of K. Then we have

|D(OK ; ok)| = N(DK/k),

where DK/k is the relative discriminant of the quadratic extension K/k.
Using this notation, the Dirichlet series Zk(s) is written as follows:

(1.3) Zk(s) =
∑

O

|D(O; ok)|−s.

Now it follows from Propositions 1.2, 1.3, Lemma 1.4 and the above equation
(1.3) that

Zk(s) =
h∑

i=1

∑

Q∈G(ai)\Q(ai)

N(∆(Q)a−2
i )−s(1.4)

=
1

[E : E(2)]

h∑

i=1

∑

Q∈G′(ai)\Q(ai)

N(∆(Q)a−2
i )−s

=
1

[E : E(2)]

h∑

i=1

2n∑

j=1

∑

Q∈G′(ai)\Q(ai,αij)

N(∆(Q)a−2
i )−s

=
1

[E : E(2)]

h∑

i=1

2n∑

j=1

∑

δ∈(α2
ij

+4a2
i
)′/E(2)2

N((δ)a−2
i )−s,

where (α2
ij + 4a2

i )
′ = (α2

ij + 4a2
i )−{0}. To calculate the innermost sum, we

shall introduce the partial zeta functions of k in the next section.

2. Dirichlet series of discriminants of quadratic orders. We use
the same notations as in the previous section. Let r1, r2 be the numbers
of real and imaginary primes of k, respectively. Hence r1 + 2r2 = n. We
denote by Mr the set of real primes of k. If v ∈ Mr, we denote by σv the
corresponding embedding of k into R. For any subset S of Mr, we denote
by hS the product of the real primes in S. Further, we denote by kS the
subset of k× consisting of all elements γ ∈ k× satisfying σv(γ) > 0 for all
v ∈ S. For any subset A of k, put AS = A∩kS . If O = O(a, a) is a quadratic
order over ok, then ∆(O) = ∆(Qa) is determined up to multiplication by an
element of E2. Using these notations, we define the Dirichlet series Zk,S(s)
as follows:

(2.1) Zk,S(s) =
∑

O

|D(O; ok)|−s,
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where O runs over all quadratic orders over ok with ∆(O) ∈ kS . We note
that if S is the empty set, then Zk,S(s) coincides with Zk(s).

Let f be a non-zero integral ideal of k. We denote by I(f) the multi-
plicative group consisting of all non-zero fractional ideals of k which are
relatively prime to f. We denote by P (fhS) the subgroup of I(f) consisting
of all principal fractional ideals (δ) with δ ∈ kS and δ ≡ 1 (mod∗ f). Here
δ ≡ 1 (mod∗ f) means that δ = α/β for some α, β ∈ ok satisfying (αβ, f) = 1
and α ≡ β (mod f). We call the quotient group I(f)/P (fhS) the group of
ray classes modulo fhS and denote it by H(fhS). For any b ∈ I(f), we de-
note by [b, fhS ] the class in H(fhS) represented by b. Now the partial zeta
function of c ∈ H(fhS) is defined by

(2.2) ζk,fhS (s, c) =
∑

b

N(b)−s,

where b runs over all integral ideals belonging to the ray class c. We need
some lemmas to give an expression of our Dirichlet series Zk,S(s) in terms
of the partial zeta functions of k. We put E(fhS) = E(f) ∩ kS .

Lemma 2.1. Let a be a non-zero integral ideal of k and let α be a non-
zero element of a. Put g = (αa−1, 2) and f = (2)g−1. Then

∑

δ∈(α2+4a2)S/E(2)2

N((δ)a−2)−s = [E(f2hS) : E(2)2]N(g)−2sζk,f2hS
(s, c2),

where c is the ray class in H(f2hS) represented by the integral ideal
(α)a−1g−1.

P r o o f. Let δ ∈ (α2 + 4a2)S and put b = (δ)a−2g−2. Then b is an
integral ideal prime to f. Since δα−2 ≡ 1 (mod∗ f2) and δα−2 ∈ kS , the
integral ideal b belongs to the ray class c2. Conversely, if b is an integral
ideal belonging to the ray class c2, then b = (β)(α2)a−2g−2 for some β ∈ kS
with β ≡ 1 (mod∗ f2). Hence b = (δ)a−2g−2 with δ = βα2 ∈ (α2 + 4a2)S .
Let δ1, δ2 ∈ (α2 + 4a2)S and denote by b1 and b2 the ideals corresponding
to δ1 and δ2, respectively. Then b1 = b2 if and only if δ1/δ2 ∈ E(f2hS). Now
the desired formula follows immediately.

For any f | 2, and for any fractional ideal c of k relatively prime to f, put

%f([c, f]) = [c2, f2hS ].

Then %f is a well defined homomorphism of H(f) to H(f2hS).

Lemma 2.2. If the order of the group H(f2hS) is odd , then %f is an
isomorphism of H(f) onto H(f2hS).

P r o o f. The assumption implies that any element of H(f2hS) can be
written as [c, f2hS ]2 for some ideal c. Hence %f is surjective. On the other
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hand, we have the natural surjective homomorphism of H(f2hS) onto H(f).
Hence %f must be an isomorphism.

The order of the group H(fhS) is given by the following lemma (see
Lang [2], Chapter VI, Theorem 1).

Lemma 2.3. For any non-zero integral ideal f,

#H(fhS) =
hϕ(f)2#S

[E : E(fhS)]
,

where ϕ is the Euler function of k.

Now we are ready to prove our main theorem.

Theorem 1.

Zk,S(s) = 2r1+r2−2ns
∑

f|2

N(f)2s

[E(f) : E(f2hS)]

∑

c∈H(f)

ζk,f2hS
(s, %f(c)).

In particular , if the order of H(4hS) is odd , then

Zk,S(s) = 2r1+r2−#S−2nsζk(s)
∑

f|2
N(f)2s−1

∏

p|f
(1−N(p)−s),

where ζk(s) is the Dedekind zeta function of k.

P r o o f. Let αi1, . . . , αi2n ∈ ai−{0} be a complete set of representatives
of the quotient module ai/2ai. Then in the same way as when deducing the
equation (1.4), we get

(2.3) Zk,S(s) =
1

[E : E(2)]

h∑

i=1

2n∑

j=1

∑

δ∈(α2
ij

+4a2
i
)S/E(2)2

N((δ)a−2
i )−s.

By Lemma 2.1 and the above equation (2.3), we have

Zk,S(s) =
h∑

i=1

2n∑

j=1

[E(f2hS) : E(2)2]
[E : E(2)]

N(g)−2sζk,f2hS
(s, %f(cij)),

where g = (αija−1
i , 2), f = (2)g−1 and cij = [(αij)a−1

i g−1, f]. For any g | 2,
we consider the sum

Tg =
∑

ζk,f2(s, c2ij),

where the summation is taken over all i, j with (αija−1
i , 2) = g. Then

(2.4) Zk,S(s) =
∑

g|2

[E(f2hS) : E(2)2]
[E : E(2)]

N(g)−2sTg.

Now we claim that the ray class cij in Tg represents every element of H(f)
exactly [E : E(f)] times. To prove this, for any c ∈ H(f), take an integral
ideal b relatively prime to f such that c = [b, f]. Since a−1

1 g−1, . . . ,a−1
h g−1 is
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a complete set of representatives of the ideal classes of k, b = (γ)a−1
i g−1 for

some i and γ ∈ k×. Since b is integral, we have γ ∈ aig ⊂ ai. Hence γ ≡ αij
(mod 2ai) for some j. Now the fact that (b, f) = 1 implies (αija−1

i , 2) = g
and γα−1

ij ≡ 1 (mod∗ f). Hence [b, f] = cij . It is easy to see that ci′j′ = cij
if and only if i′ = i and αi′j′α

−1
ij ≡ ε (mod∗ f) for some ε ∈ E. This proves

our claim, and hence we have established the following equation:

(2.5) Tg = [E : E(f)]
∑

c∈H(f)

ζk,f2hS
(s, %f(c)).

It is clear that

(2.6)
[E(f2hS) : E(2)2][E : E(f)]

[E : E(2)]
=

[E(2) : E(2)2]

[E(f) : E(f2hS)]
.

Dirichlet’s unit theorem and the fact that ±1 ∈ E(2) imply

(2.7) [E(2) : E(2)2] = 2r1+r2 .

By (2.4)–(2.7), we have

Zk,S(s) = 2r1+r2
∑

g|2

N(g)−2s

[E(f) : E(f2hS)]

∑

c∈H(f)

ζk,f2hS
(s, %f(c))(2.8)

= 2r1+r2−2ns
∑

f|2

N(f)2s

[E(f) : E(f2hS)]

∑

c∈H(f)

ζk,f2hS
(s, %f(c)).

Now we assume that the order of H(4hS) is odd. Then the order of H(f2hS)
is odd for any f | 2. By Lemma 2.2, %f is an isomorphism of H(f) onto
H(f2hS). Hence the inner sum of the right hand side of (2.8) is equal to

(2.9)
∑

c∈H(f2hS)

ζk,f2hS
(s, c) = ζk(s)

∏

p|f
(1−N(p)−s).

On the other hand, the fact that H(f) ∼= H(f2hS) and Lemma 2.3 imply

(2.10) [E(f) : E(f2hS)] = 2#SN(f).

Now the second formula of the theorem follows from (2.8)–(2.10).

Corollary 1. The Dirichlet series Zk,S(s) converges absolutely for
Re s > 1 and can be analytically continued to a meromorphic function on
the whole complex plane. Its only singularity is a simple pole at s = 1 with
residue

2r1−#Sπr2Rh

w
√
|d| ,

where R is the regulator of k and w is the number of roots of unity contained
in k.
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P r o o f. The first statement is obvious because the corresponding one
for the partial zeta functions holds. It is well known that the residue of the
partial zeta function ζk,f2(s, c) at s = 1 does not depend on the ray class c.
Hence

(2.11) Ress=1ζk,f2hS
(s, c) =

Ress=1ζk(s)

#H(f2hS)

∏

p|f
(1−N(p)−1).

By Theorem 1, Lemma 2.3 and the above equation (2.11), we have

Ress=1Zk,S(s) = 2r1+r2−2n
∑

f|2

N(f)2

[E(f) : E(f2hS)]

#H(f)

#H(f2hS)
(2.12)

× Ress=1ζk(s)
∏

p|f
(1−N(p)−1)

= 2r1+r2−#S−2nRess=1ζk(s)
∑

f|2
ϕ(f)

= 2−r2−#SRess=1ζk(s).

It is well known that

(2.13) Ress=1ζk(s) =
2r1+r2πr2Rh

w
√
|d|

(see, for example, [2], Chapter VIII, Theorem 5). Now the desired formula
for the residue of Zk,S(s) at s = 1 follows from (2.12) and (2.13).

Corollary 1 and the Ikehara theorem imply

Corollary 2.

#{O : ∆(O) ∈ kS , |D(O; ok)| ≤ X} ∼ 2r1−#Sπr2Rh

w
√
|d| X as X →∞.

Corollary 3. Assume that the order of the group H(4hS) is odd. Put

A = 2−r1π−n/2|d|1/2,

Gk,S(s) = 2nsAsΓ
(
s

2

)r1
Γ (s)r2Zk,S(s).

Then Gk,S(s) satisfies the functional equation

Gk,S(1− s) = Gk,S(s).

P r o o f. Let (2) = pe11 . . .p
eg
g be the prime ideal factorization of 2 in k.

For any f | 2, put

ψ(s, f) = N(f)2s−1
∏

p|f
(1−N(p)−s)
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and
f(s) =

∑

f|2
ψ(s, f).

Since ψ(s, f) is multiplicative, we have

f(s) =
g∏

i=1

fi(s),

where fi(s) =
∑ei
r=0 ψ(s,pri ). Then

fi(1− s) = N(pi)
ei(1−2s)fi(s), i = 1, . . . , g.

Hence f(s) satisfies

(2.14) f(1− s) = f(s)
g∏

i=1

N(pi)
ei(1−2s) = f(s)2n(1−2s).

Now the functional equation of the Dedekind zeta function (see [2], Chap-
ter XIII, Theorem 2) and (2.14) imply Gk,S(1− s) = Gk,S(s).

3. Quadratic extensions. Let S be a subset of Mr. In this section, we
study the following Dirichlet series:

ξk,S(s) =
∑

K

N(DK/k)−s,

where K runs over all quadratic extensions of k which are unramified at any
v ∈ S. Wright studied this Dirichlet series in [4] and [5] by class field theory
and by developing the theory of Iwasawa–Tate zeta function, respectively.

Let K be a quadratic extension of k. Then OK is a quadratic order over
ok. Hence OK = O(ai, a) for some i and a ∈ ai × a2

i . If θ is a root of the
quadratic equation qa(x) = 0, then OK = ok + a−1

i θ. Let O be a quadratic
order over ok contained in K. Since O ⊂ OK , {λ ∈ a−1

i : λθ ∈ O} is a
fractional ideal of k contained in a−1

i . Hence O can be written

(3.1) O = ok + a−1
i bθ

for some integral ideal b of k. Conversely, the ok-module defined by (3.1) is
obviously a quadratic order over ok contained in K. Hence

(3.2)
∑

O⊂K
|D(O; ok)|−s =

∑

b

N(DK/k)−sN(b)−2s = N(DK/k)−sζk(2s).

Let K = k× k and denote by OK the maximal order of K. Then OK =
oke + okθ with e = (1, 1) and θ = (0, 1). Any quadratic order contained in
K is of the form oke+ bθ for some integral ideal b of k. Hence

(3.3)
∑

O⊂K
|D(O; ok)|−s =

∑

b

N(b)−2s = ζk(2s).
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By Corollary 1, the Dirichlet series Zk(s) converges absolutely for Re s > 1.
Hence the equations (3.2) and (3.3) imply

(3.4) Zk,S(s) = ζk(2s) + ζk(2s)ξk,S(s).

By (3.4) and Theorem 1, we have given another proof of the following
theorem which is a special case of Wright’s theorem.

Theorem 2.

ξk,S(s) =
2r1+r2−2ns

ζk(2s)

∑

f|2

N(f)2s

[E(f) : E(f2hS)]

∑

c∈H(f)

ζk,f2hS
(s, %f(c))− 1.

Corollary 4. Denote by cS(X) the number of quadratic extensions K
of k with |N(DK/k)| ≤ X which are unramified at any v ∈ S. Then

cS(X) ∼ 2r1−#Sπr2Rh

w
√
|d|ζk(2)

X as X →∞.

By Corollary 4 and an elementary argument on counting cardinality, we
have

Corollary 5. Denote by c′S(X) the number of quadratic extensions K
of k with |N(DK/k)| ≤ X which are unramified at any v ∈ S and ramified
at any v ∈Mr − S. Then

c′S(X) ∼ πr2Rh

w
√
|d|ζk(2)

X as X →∞.
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