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Bounds for exponential sums and their applications
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Harald Niederreiter (Wien)

1. Introduction. Let Fq be the finite field of order q, where q is an
arbitrary prime power, and let F ∗q denote the set of nonzero elements of Fq.
We define c = c−1 ∈ F ∗q for c ∈ F ∗q and c = 0 ∈ Fq for c = 0 ∈ Fq. If
q ≥ 3, then we may equivalently put c = cq−2 for c ∈ Fq. We are primarily
interested in complete exponential sums of the form

E(χ; d, e) :=
∑

n∈Fq
χ
( s∑

j=1

djn+ ej

)
,

where s is a positive integer, χ is a nontrivial additive character of Fq, and
d = (d1, . . . , ds) ∈ F sq and e = (e1, . . . , es) ∈ F sq are s-tuples of elements
of Fq on which we will occasionally place minor restrictions to avoid trivial
cases. For q = p a prime, we will also consider the corresponding incomplete
exponential sums

EN (χ; d, e) :=
N−1∑
n=0

χ
( s∑

j=1

djn+ ej

)
for 1 ≤ N ≤ p.

These exponential sums arise, for instance, in the analysis of a new method
for pseudorandom number generation, the so-called explicit inversive con-
gruential method, which will be described in Section 4.

In Section 2 we will deduce an upper bound for the exponential sums
E(χ; d, e) from the Bombieri–Weil bound. The corresponding incomplete
exponential sums will be treated in the wider context of exponential sums
with rational functions in their arguments. The average values (in the mean-
square sense) of the complete and incomplete exponential sums will be calcu-
lated and lower bounds for the exponential sums will be derived in Section 3.
The applications of our results to the analysis of pseudorandom numbers
generated by the explicit inversive congruential method will be presented in
Section 4.
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2. Upper bounds for the exponential sums. We use the Bombieri–
Weil bound (see [1]) in the following convenient form given by Moreno and
Moreno [4, Theorem 2]. We write F q for the algebraic closure of Fq and
F q(x) for the rational function field over F q.

Lemma 1. Let Q/R be a rational function over Fq which is not of the
form Ap − A with A ∈ F q(x) and p the characteristic of Fq. Let s be the
number of distinct roots of the polynomial R in F q. If χ is a nontrivial
additive character of Fq, then∣∣∣∣

∑

n∈Fq
R(n)6=0

χ

(
Q(n)
R(n)

)∣∣∣∣ ≤ (max(deg(Q),deg(R)) + s∗ − 2)q1/2 + δ,

where s∗ = s and δ = 1 if deg(Q) ≤ deg(R), and s∗ = s + 1 and δ = 0
otherwise.

On the basis of this result, we can now establish an upper bound for the
exponential sums E(χ; d, e) under conditions that prevent these sums from
being trivial.

Theorem 1. Let d ∈ F sq with d 6= 0 and let e = (e1, . . . , es) ∈ F sq be
such that e1, . . . , es are distinct. If χ is a nontrivial additive character of Fq,
then

|E(χ; d, e)| ≤ (2s− 2)q1/2 + s+ 1.

P r o o f. If W = Fq \ {−e1, . . . ,−es}, then

(1) |E(χ; d, e)| ≤ s+
∣∣∣
∑

n∈W
χ
( s∑

j=1

djn+ ej

)∣∣∣ = s+
∣∣∣∣
∑

n∈Fq
R(n) 6=0

χ

(
Q(n)
R(n)

)∣∣∣∣,

where Q/R is the rational function over Fq given by

Q(x)
R(x)

=
s∑

j=1

dj
x+ ej

with R(x) =
s∏

j=1

(x+ ej).

We claim that Q/R is not of the form Ap −A with A ∈ F q(x). For suppose
we had

Q

R
=
(
K

L

)p
− K

L

with polynomials K,L over F q and gcd(K,L) = 1; then

(2) LpQ = (Kp−1 − Lp−1)KR.

From gcd(K,L) = 1 it follows that Lp divides R, but since R has only simple
roots, this can hold only if L is a nonzero constant polynomial. Since at least
one dj is nonzero, the uniqueness of the partial fraction decomposition for
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rational functions implies that Q 6= 0. Then a comparison of degrees in (2)
yields deg(Q) ≥ deg(R), and this contradiction proves the claim. Thus we
can apply Lemma 1, which together with (1) establishes the theorem.

Now we prove an upper bound for incomplete exponential sums over a
finite prime field Fp with rational functions in their arguments.

Theorem 2. Let p be a prime, let Q/R be a nonzero rational function
over Fp, and let s be the number of distinct roots of the polynomial R in F p.
Furthermore, let χ be a nontrivial additive character of Fp and 1 ≤ N < p.
If deg(Q) < deg(R), then

∣∣∣∣
N−1∑
n=0

R(n)6=0

χ

(
Q(n)
R(n)

)∣∣∣∣ < ( deg(R) + s)p1/2
(

4
π2 log p+ 0.38 +

0.64
p

)

+
N

p
((deg(R) + s− 2)p1/2 + 1).

If deg(Q) ≥ deg(R) + 2, then
∣∣∣∣

N−1∑
n=0

R(n)6=0

χ

(
Q(n)
R(n)

)∣∣∣∣ < (deg(Q) + s− 1)p1/2
(

4
π2 log p+ 0.38 +

N + 0.64
p

)
.

P r o o f. We can assume that deg(Q) < p, deg(R) < p, and p ≥ 5, since
the result is trivial otherwise. If SN is the exponential sum in the theorem,
then

SN =
p−1∑
n=0

R(n)6=0

χ

(
Q(n)
R(n)

)N−1∑
r=0

1
p

p−1∑
u=0

χ(u(n− r))

since the sum over r is equal to 1 for 0 ≤ n ≤ N − 1 and equal to 0 for
N ≤ n ≤ p− 1. By rearranging terms, we get

SN =
1
p

p−1∑
u=0

(N−1∑
r=0

χ(−ur)
)( ∑

n∈Fp
R(n)6=0

χ

(
Q(n)
R(n)

+ un

))

=
1
p

p−1∑
u=1

(N−1∑
r=0

χ(−ur)
)( ∑

n∈Fp
R(n)6=0

χ

(
Q(n)
R(n)

+ un

))

+
N

p

∑

n∈Fp
R(n)6=0

χ

(
Q(n)
R(n)

)
,
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and so

|SN | ≤ 1
p

p−1∑
u=1

∣∣∣
N−1∑
r=0

χ(ur)
∣∣∣
∣∣∣∣
∑

n∈Fp
R(n)6=0

χ

(
Q(n)
R(n)

+ un

)∣∣∣∣(3)

+
N

p

∣∣∣∣
∑

n∈Fp
R(n)6=0

χ

(
Q(n)
R(n)

)∣∣∣∣.

For fixed u ∈ Fp we consider the rational function

Qu(x)
R(x)

=
Q(x)
R(x)

+ ux.

We want to prove that Qu/R is not of the form Ap − A with A ∈ F p(x).
Suppose we have

Qu
R

=
(
K

L

)p
− K

L

with polynomials K,L over F p and gcd(K,L) = 1. Then

LpQu = (Kp−1 − Lp−1)KR.

From gcd(K,L) = 1 it follows that Lp divides R. Since deg(R) < p, this is
possible only if L is a nonzero constant polynomial. Thus

(4) Qu = (αKp + βK)R

for suitable α, β ∈ F p with αβ 6= 0. We note that Qu(x) = Q(x) + uxR(x),
and so Q 6= 0 implies that Qu 6= 0 if either deg(Q) < deg(R) or deg(Q) ≥
deg(R)+2. Then (4) shows that deg(Qu)−deg(R) is a nonnegative multiple
of p. Since deg(Q) < p, this can hold only if deg(Qu) = deg(R), but in
both cases deg(Q) < deg(R) and deg(Q) ≥ deg(R) + 2 this is seen to be
impossible.

Thus, Lemma 1 can be applied to the complete exponential sums in (3).
If deg(Q) < deg(R), then this yields

|SN | ≤ 1
p

p−1∑
u=1

∣∣∣
N−1∑
r=0

χ(ur)
∣∣∣(deg(R) + s)p1/2 +

N

p
((deg(R) + s− 2)p1/2 + 1).

Now
p−1∑
u=1

∣∣∣
N−1∑
r=0

χ(ur)
∣∣∣ =

p−1∑
v=1

∣∣∣∣
sin(πvN/p)
sin(πv/p)

∣∣∣∣ <
4
π2 p log p+ (0.38)p+ 0.64

by an inequality of Cochrane [2, Theorem 1], where we used p ≥ 5. This
establishes the bound in the theorem for deg(Q) < deg(R). The bound for
deg(Q) ≥ deg(R) + 2 follows analogously.
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Corollary 1. Let p be a prime, let d ∈ F sp with d 6= 0, and let e =
(e1, . . . , es) ∈ F sp be such that e1, . . . , es are distinct. If χ is a nontrivial
additive character of Fp and 1 ≤ N < p, then

|EN (χ; d, e)|
< 2sp1/2

(
4
π2 log p+ 0.38 +

0.64
p

)
+
N

p
((2s− 2)p1/2 + 1) + s.

P r o o f. Proceed as at the beginning of the proof of Theorem 1 and use
the bound in Theorem 2 for the case deg(Q) < deg(R).

3. Average values and lower bounds for the exponential sums.
For the applications in Section 4 we need special cases of the following results
on the average values (in the mean-square sense) of the exponential sums
introduced in Section 1.

Theorem 3. Let 1 ≤ k ≤ s and e ∈ F sq . Then for every nontrivial
additive character χ of Fq we have

∑

d1,...,dk∈Fq
|E(χ; d, e)|2 = qk+1,

where d = (d1, . . . , ds) with fixed dk+1, . . . , ds ∈ Fq.
P r o o f. With e = (e1, . . . , es) we get
∑

d1,...,dk∈Fq
|E(χ; d, e)|2

=
∑

d1,...,dk∈Fq

∑

n,m∈Fq
χ
( s∑

j=1

dj(n+ ej −m+ ej)
)

=
∑

n,m∈Fq
χ
( s∑

j=k+1

dj(n+ ej −m+ ej)
)

×
k∏

j=1

( ∑

d∈Fq
χ(d(n+ ej −m+ ej))

)

=
∑

n,m∈Fq
n=m

qk = qk+1,

where we used the orthogonality relations for additive characters in the
penultimate step.

Corollary 2. Let e = (e1, e2) ∈ F 2
q with e1 6= e2 and d = (d1, d2) ∈ F 2

q

with fixed d2 ∈ F ∗q . Let χ be a nontrivial additive character of Fq. Let 0 <
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t ≤
√
q/(q − 1) and

Aq(t) :=
q2 − (q − 1)qt2

(2q1/2 + 3)2 − qt2 .

Then there exist more than Aq(t) values of d1 ∈ F ∗q with

|E(χ; d, e)| ≥ tq1/2.

P r o o f. Suppose that there exist at most Aq(t) values of d1 ∈ F ∗q with
|E(χ; d, e)| ≥ tq1/2, i.e., there exist at least q − 1−Aq(t) values of d1 ∈ F ∗q
with |E(χ; d, e)| < tq1/2. Now an application of Theorem 1 (with s = 2)
implies that |E(χ; d, e)| ≤ 2q1/2 + 3 for every d1 ∈ F ∗q . Hence, observing
that E(χ; d, e) = 0 for d1 = 0, we obtain

∑

d1∈Fq
|E(χ; d, e)|2 =

∑

d1∈F∗q
|E(χ; d, e)|2

< (q − 1−Aq(t))t2q +Aq(t)(2q1/2 + 3)2 = q2,

which contradicts Theorem 3 (with s = 2 and k = 1).

Theorem 4. Let p be a prime, 1 ≤ N < p, and 1 ≤ k ≤ s. Then for
every e ∈ F sp and every nontrivial additive character χ of Fp we have

∑

d1,...,dk∈Fp
|EN (χ; d, e)|2 = Npk,

where d = (d1, . . . , ds) with fixed dk+1, . . . , ds ∈ Fp.

P r o o f. With e = (e1, . . . , es) we get
∑

d1,...,dk∈Fp
|EN (χ; d, e)|2

=
∑

d1,...,dk∈Fp

N−1∑
n,m=0

χ
( s∑

j=1

dj(n+ ej −m+ ej)
)

=
N−1∑
n,m=0

χ
( s∑

j=k+1

dj(n+ ej −m+ ej)
) k∏

j=1

( ∑

d∈Fp
χ(d(n+ ej −m+ ej))

)

=
N−1∑
n,m=0
n=m

pk = Npk,

where we used again the orthogonality relations for additive characters in
the penultimate step.

Corollary 3. Let p be a prime, e = (e1, e2) ∈ F 2
p with e1 6= e2, and

d = (d1, d2) ∈ F 2
p with fixed d2 ∈ F ∗p . Let χ be a nontrivial additive character
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of Fp. Let N be an integer with

1
p

(
2p1/2

(
4
π2 log p+ 0.38 +

0.64
p

)
+ 2
)2

< N < p,

let

τN :=
p

p− 1
− 1
N(p− 1)

(
2p1/2

(
4
π2 log p+ 0.38 +

0.64
p

)
+ 2
)2

,

and for 0 < t ≤ √τN put

AN (t) :=
N(p− 1)(τN − t2)(

4p1/2
(

4
π2 log p+ 0.38 + 0.64

p

)
+ N

p (2p1/2 + 1) + 2
)2 −Nt2

.

Then there exist more than AN (t) values of d1 ∈ F ∗p with

|EN (χ; d, e)| ≥ tN1/2.

P r o o f. Suppose that there exist at most AN (t) values of d1 ∈ F ∗p with
|EN (χ; d, e)| ≥ tN1/2, i.e., there exist at least p−1−AN (t) values of d1 ∈ F ∗p
with |EN (χ; d, e)| < tN1/2. Now an application of Corollary 1 (with s = 2)
implies that

|EN (χ; d, e)| < 4p1/2
(

4
π2 log p+ 0.38 +

0.64
p

)
+
N

p
(2p1/2 + 1) + 2

for every d1 ∈ F ∗p . Moreover, we can deduce from Corollary 1 (with s = 1)
that

|EN (χ; d, e)| < 2p1/2
(

4
π2 log p+ 0.38 +

0.64
p

)
+ 2

for d1 = 0. Hence, we obtain∑

d1∈Fp
|EN (χ; d, e)|2

<
∑

d1∈F∗p
|EN (χ; d, e)|2 +

(
2p1/2

(
4
π2 log p+ 0.38 +

0.64
p

)
+ 2
)2

< (p− 1−AN (t))Nt2

+AN (t)
(

4p1/2
(

4
π2 log p+ 0.38 +

0.64
p

)
+
N

p
(2p1/2 + 1) + 2

)2

+
(

2p1/2
(

4
π2 log p+ 0.38 +

0.64
p

)
+ 2
)2

= Np,

which contradicts Theorem 4 (with s = 2 and k = 1).
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Corollary 4. Let p be a prime and e ∈ Fp. Let χ be a nontrivial additive
character of Fp. Let 1 ≤ N < p, 0 < t ≤

√
(p−N)/(p− 1), and

BN (t) :=
N(p−N)−N(p− 1)t2(

2p1/2
(

4
π2 log p+ 0.38 + 0.64

p

)
+ N

p + 1
)2 −Nt2

.

Then there exist more than BN (t) values of d ∈ F ∗p with

|EN (χ; d, e)| ≥ tN1/2.

P r o o f. Suppose that there exist at most BN (t) values of d ∈ F ∗p with
|EN (χ; d, e)| ≥ tN1/2, i.e., there exist at least p−1−BN (t) values of d ∈ F ∗p
with |EN (χ; d, e)| < tN1/2. Now an application of Corollary 1 (with s = 1)
implies that

|EN (χ; d, e)| < 2p1/2
(

4
π2 log p+ 0.38 +

0.64
p

)
+
N

p
+ 1

for every d ∈ F ∗p . Hence, observing that EN (χ; 0, e) = N , we obtain
∑

d∈Fp
|EN (χ; d, e)|2

=
∑

d∈F∗p
|EN (χ; d, e)|2 +N2

< (p− 1−BN (t))Nt2

+BN (t)
(

2p1/2
(

4
π2 log p+ 0.38 +

0.64
p

)
+
N

p
+ 1
)2

+N2

= Np,

which contradicts Theorem 4 (with s = 1 and k = 1).

Theorem 5. Let p be a prime and 1 ≤ N < p. Then for every e =
(e1, e2) ∈ F 2

p with e1 6= e2 and every nontrivial additive character χ of Fp
we have ∑

d∈Fp
|EN (χ; (d,−d), e)|2 ≥ p(2N − 1).

P r o o f. We get
∑

d∈Fp
|EN (χ; (d,−d), e)|2

=
∑

d∈Fp

N−1∑
n,m=0

χ(d(n+ e1 − n+ e2 −m+ e1 +m+ e2))
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=
N−1∑
n,m=0

∑

d∈Fp
χ(d(n+ e1 − n+ e2 −m+ e1 +m+ e2))

= p#{(n,m) ∈ {0, 1, . . . , N − 1}2 : n+ e1 − n+ e2 = m+ e1 −m+ e2}
≥ p#{(n,m) ∈ {0, 1, . . . , N − 1}2 : n = m or n = −(m+ e1 + e2)}
≥ p(2N − 1),

where we used once more the orthogonality relations for additive charac-
ters.

Corollary 5. Let p be a prime, 1 ≤ N < p, and e = (e1, e2) ∈ F 2
p with

e1 6= e2. Let χ be a nontrivial additive character of Fp, let

σN := 1 +
(p−N)(N − 1)

(p− 1)N
,

and for 0 < t ≤ √σN put

CN (t) :=
N(p− 1)(σN − t2)(

4p1/2
(

4
π2 log p+ 0.38 + 0.64

p

)
+ N

p (2p1/2 + 1) + 2
)2 −Nt2

.

Then there exist more than CN (t) values of d ∈ F ∗p with

|EN (χ; (d,−d), e)| ≥ tN1/2.

P r o o f. Suppose that there exist at most CN (t) values of d ∈ F ∗p with
|EN (χ; (d,−d), e)| ≥ tN1/2, i.e., there exist at least p− 1−CN (t) values of
d ∈ F ∗p with |EN (χ; (d,−d), e)| < tN1/2. Now an application of Corollary 1
(with s = 2) implies that

|EN (χ; (d,−d), e)| < 4p1/2
(

4
π2 log p+ 0.38 +

0.64
p

)
+
N

p
(2p1/2 + 1) + 2

for every d ∈ F ∗p . Hence, observing that EN (χ; 0, e) = N , we obtain
∑

d∈Fp
|EN (χ; (d,−d), e)|2

=
∑

d∈F∗p
|EN (χ; (d,−d), e)|2 +N2

< (p− 1− CN (t))Nt2

+ CN (t)
(

4p1/2
(

4
π2 log p+ 0.38 +

0.64
p

)
+
N

p
(2p1/2 + 1) + 2

)2

+N2

= p(2N − 1),

which contradicts Theorem 5.
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4. Applications to pseudorandom numbers. In Niederreiter [6], [7]
the following explicit inversive congruential method for generating parallel
streams of uniform pseudorandom numbers was introduced on the basis of
an earlier proposal of explicit inversive methods for pseudorandom number
generation by Eichenauer-Herrmann [3]. Let p be a prime, let a1, . . . , as ∈
F ∗p , and let b1, . . . , bs ∈ Fp be such that b1a1, . . . , bsas ∈ Fp are distinct. We

identify Fp with the set {0, 1, . . . , p−1} of integers. Let y(j)
n = ajn+ bj ∈ Fp

and x
(j)
n = y

(j)
n /p for 1 ≤ j ≤ s and n ≥ 0. Then the sequences (x(j)

n )n≥0,
1 ≤ j ≤ s, can be viewed as s parallel streams of pseudorandom numbers
in the interval [0, 1). The statistical independence of these streams, which
is of crucial importance for stochastic simulations, can be assessed by the
discrepancy of the s-tuples

xn = (x(1)
n , . . . , x(s)

n ) ∈ [0, 1)s, n ≥ 0.

For N arbitrary points t0, t1, . . . , tN−1 ∈ [0, 1)s the discrepancy is defined
by

DN (t0, t1, . . . , tN−1) = sup
J
|GN (J)− V (J)|,

where the supremum is extended over all subintervals J of [0, 1)s, GN (J) is
N−1 times the number of 0 ≤ n ≤ N −1 with tn ∈ J , and V (J) denotes the
s-dimensional volume of J . Subsequently, for 1 ≤ N ≤ p the abbreviation

D
(s)
N = DN (x0,x1, . . . ,xN−1)

is used. It has been proved in [7, Theorems 2 and 3] that

D(s)
p = O(p−1/2(log p)s)

and

D
(s)
N = O(N−1p1/2(log p)s+1) for 1 ≤ N < p.

It should be observed that upper bounds of the same form can also be derived
from Theorem 1, Corollary 1, and [5, Corollary 3.11]. In this section, lower
bounds for the discrepancies D(s)

N with 1 ≤ N ≤ p will be established.
First, for s ≥ 2 an application of [5, Corollary 3.17 with h=(1, 1, 0, . . . , 0)

∈ Zs] implies that

D
(s)
N ≥

1
2(π + 2)N

∣∣∣
N−1∑
n=0

e(x(1)
n + x(2)

n )
∣∣∣

=
1

2(π + 2)N

∣∣∣
N−1∑
n=0

χ(a1n+ b1 + a2n+ b2)
∣∣∣

=
1

2(π + 2)N
|EN (χ; d, e)|
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with d = (a1, a2) ∈ F 2
p and e = (b1a1, b2a2) ∈ F 2

p , where e(t) = e2πit

for t ∈ R and χ(u) = e(u/p) for u ∈ Fp. Similarly, it follows from [5,
Corollary 3.17 with h = (1, 0, . . . , 0) ∈ Zs] that for s ≥ 1 we have

D
(s)
N ≥

1
2N
|EN (χ; a1, b1a1)|.

Therefore, the following results are immediate consequences of Corollaries 2,
3, and 4.

Corollary 6. Let a2 ∈ F ∗p , b2 ∈ Fp, and c ∈ Fp \ {b2a2} be fixed.
Let 0 < t ≤

√
p/(p− 1), and let Ap(t) be defined as in Corollary 2 (with

q = p). Then there exist more than Ap(t) values of a1 ∈ F ∗p such that for any
corresponding explicit inversive congruential pseudorandom numbers with
b1 = a1c and s ≥ 2 we have

D(s)
p ≥

t

2(π + 2)
p−1/2.

Corollary 7. Let a2 ∈ F ∗p , b2 ∈ Fp, c ∈ Fp \ {b2a2}, and an integer N
with

1
p

(
2p1/2

(
4
π2 log p+ 0.38 +

0.64
p

)
+ 2
)2

< N < p

be fixed. Let τN and AN (t) for 0 < t ≤ √τN be defined as in Corollary 3.
Then there exist more than AN (t) values of a1 ∈ F ∗p such that for any
corresponding explicit inversive congruential pseudorandom numbers with
b1 = a1c and s ≥ 2 we have

D
(s)
N ≥

t

2(π + 2)
N−1/2.

Corollary 8. Let c ∈ Fp and 1 ≤ N < p be fixed. Let 0 < t ≤√
(p−N)/(p− 1), and let BN (t) be defined as in Corollary 4. Then there

exist more than BN (t) values of a1 ∈ F ∗p such that for any corresponding
explicit inversive congruential pseudorandom numbers with b1 = a1c and
s ≥ 1 we have

D
(s)
N ≥

t

2
N−1/2.

Finally, the statistical independence of successive pseudorandom num-
bers within one stream will be assessed by the discrepancy of the s-tuples

xn = (xn, xn+1, . . . , xn+s−1) ∈ [0, 1)s, n ≥ 0,

where xn = yn/p and yn = an+ b ∈ Fp for n ≥ 0 with a ∈ F ∗p and b ∈ Fp.
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For 1 ≤ N ≤ p the abbreviation

D
(s)
N = DN (x0,x1, . . . ,xN−1)

is used once again. It has been proved in [3, Theorems 1 and 2] that

D(s)
p = O(p−1/2(log p)s),

and that this upper bound is in general best possible up to the logarithmic
factor. Moreover, it follows from [7, Theorem 3] that

D
(s)
N = O(N−1p1/2(log p)s+1)

for 1 ≤ N < p. We now establish a lower bound for the discrepancy D
(s)
N

with 1 ≤ N < p.
First, for s ≥ 2 an application of [5, Corollary 3.17 with h = (1,−1, 0, . . .

. . . , 0) ∈ Zs] implies that

D
(s)
N ≥

1
2(π + 2)N

∣∣∣
N−1∑
n=0

e(xn − xn+1)
∣∣∣

=
1

2(π + 2)N

∣∣∣
N−1∑
n=0

χ(an+ b− an+ b+ a)
∣∣∣

=
1

2(π + 2)N

∣∣∣EN (χ; (a,−a), (ba, ba+ 1))
∣∣∣,

where again χ(u) = e(u/p) for u ∈ Fp. Therefore, the following result is an
immediate consequence of Corollary 5.

Corollary 9. Let c ∈ Fp and 1 ≤ N < p be fixed. Let σN and CN (t)
for 0 < t ≤ √σN be defined as in Corollary 5. Then there exist more than
CN (t) values of a ∈ F ∗p such that for the corresponding explicit inversive
congruential pseudorandom numbers with b = ac and s ≥ 2 we have

D
(s)
N ≥

t

2(π + 2)
N−1/2.
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