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1. Introduction. In [5], [6] W. Jehne has introduced and investigated
the fundamental notion of Kronecker equivalence. Two extensions K|k and
K ′|k of number fields are called Kronecker equivalent over k (K ∼k K ′) iff
the sets D(K|k) of all primes of k which have a divisor of first degree in K
and D(K ′|k) coincide up to at most finitely many exceptions (there are as
a matter of fact no exceptions at all).

Kronecker equivalent fields have been studied by several authors (e.g.
R. Guralnick, N. Klingen, Ch. E. Praeger, J. Saxl, V. Schulze), but only
recently [12] we found a new characterization of Kronecker equivalence. Let
P (k) denote the set of finite primes of k. Then K and K ′ are Kronecker
equivalent over k iff for all ℘ ∈ P (k),

(1) Nf1 + . . .+ Nfr = Nf ′1 + . . .+ Nf ′s.

Here we assume ℘ to have decomposition type (f1, . . . , fr) in K, e.g. ℘ pos-
sesses exactly r prime divisors P1, . . . ,Pr of degrees f1 := fK|k(P1) ≤ . . . ≤
fr := fK|k(Pr) in K. Let N |k be a Galois extension which contains K.
G = G(N |k) acts on the left cosets of U = G(N |K) and for unramified
℘ ∈ P (k) and any Frobenius automorphism σ corresponding to a divisor of
℘ in N the following statements are equivalent:

(a) ℘ has decomposition type (f1, . . . , fr) in K.
(b) σ acts on the left cosets of U as a product of r disjoint cycles of

lengths f1 ≤ . . . ≤ fr (the cycle type of σ is (f1, . . . , fr)).

From (1) we conclude that for all ℘ ∈ P (k),

(2) gcd(fK|k(P) | P ∈ P (K) ∧ P|℘) = gcd(fK′|k(P) | P ∈ P (K ′) ∧ P|℘).

We call K and K ′ weakly Kronecker equivalent over k iff (2) holds for (al-
most) all ℘ ∈ P (k). A first interesting result on the notion of weak Kronecker
equivalence is the following number theoretic theorem.
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Theorem 1. K and K ′ are weakly Kronecker equivalent over k iff
(NK|k(K∗) : NK|k(K∗) ∩ NK′|k(K ′∗)) and (NK′|k(K ′∗) : NK|k(K∗) ∩
NK′|k(K ′∗)) are finite.

A proof of Theorem 1 was published in another paper (*). Theorem 1
together with the results of the present paper give some interesting class
field theoretic theorems.

It is well known that abelian number fields are uniquely determined by
their idele class norm groups. Theorem 1 (together with Theorem 10) shows
that Galois extensions K of k are characterized—among all Galois exten-
sions of k—by their group of global norms. Further, extensions of degree n
with group An>5 or Sn are characterized among all extensions of k by their
group of global norms. Thus (see [22]) “almost all” extensions of algebraic
number fields are characterized by their group of global norms. Although
there is no description of the extensions of k in terms of k, as given for
abelian extensions by class field theory, the above results may be seen as a
partial generalization of class field theory.

In addition weakly Kronecker equivalent fields (different from the ground
field) contain the same Galois extensions of k and their degrees are not co-
prime (Theorems 13, 14). The weak Kronecker class of the ground field is
trivial.

The absence of exceptional primes allows us to find explicit bounds for
the index (NK|k(K∗) : NK|k(K∗) ∩ NK′|k(K ′∗)) if it is finite. This bound
involves class numbers, the order of the group of roots of unity contained in
K, degrees and unit ranks.

But Kronecker equivalence has also attracted the interest of group the-
orists. Let K|k and K ′|k be number fields contained in a Galois extension
N |k and let G = G(N |k), U = G(N |K) and U ′ = G(N |K ′) be the respective
Galois groups. Then K and K ′ are Kronecker equivalent over k iff

(3) UG =
⋃

σ∈G
Uσ = U ′G,

e.g. iff U and U ′ are elementwise conjugate. This covering property has been
intensively studied by Ch. E. Praeger [15]–[17], J. Saxl [18] and others.

Since it is easier to look at Sylow p-subgroups Up of G, it is interesting
to investigate the following covering property:

(4)
⋃

p|#G
UGp =

⋃

p|#G
U ′Gp .

It is an amazing observation that K|k and K ′|k are weakly Kronecker equiv-
alent over k iff (4) holds. This is a second reason to study weakly Kronecker

(*)Weakly Kronecker equivalent number fields and global norms, this volume, pp. 105–
121.
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equivalent fields. A third incentive may be seen in the fact that all impor-
tant theorems for Kronecker equivalent fields also hold for weakly Kronecker
equivalent fields. The major aim of this paper is to establish these theorems.
The proofs needed here, however, are quite different from the original ones
and use group theoretical theorems, which are based upon the classification
of finite simple groups. But one question remains open: for which groups G
with subgroups U , U ′ does

⋃
p|#G U

G
p =

⋃
p|#G U

′G
p imply UG = U ′G?

2. Group theoretical and representation theoretical description

Definition 2. Let π be a set of prime numbers. Two extensions K|k and
K ′|k are called π-Kronecker equivalent (K ∼π,k K ′) over k iff for almost all
℘ ∈ P (k) and for all p ∈ π,

min{νp(fK|k(P)) | P ∈ P (K) ∧ P|℘}
= min{νp(fK′|k(P)) | P ∈ P (K ′) ∧ P|℘}.

Here νp denotes the usual p-adic valuation. K and K ′ are called weakly Kro-
necker equivalent over k (K ∼s,k K ′) if π is the set P of all prime numbers.

Let G be a finite group. For a subgroup U of G, ΦU = 1GU is the character
of G induced from the trivial representation of U . Given a prime divisor of
#G, we define np by

#G = pνp(#G) · np.
Further, let {p1, . . . , pl} be the set of prime divisors of #G. We identify
N{p1,...,pl} with Nl. For i ∈ Nl we define

ΨU,π,i : G→ N, σ 7→
∏

π3p|#G
ΦU (σnp·p

ip
).

By [20, Exc. 9.3], ΨU,π,i is a virtual character of G. We abbreviate ΨU,P,i =
ΨU,i, ΨU,π,0 = ΨU,π and ΨU = ΨU,0. For n ∈ N, ψn(ΦU ) denotes the virtual
character σ 7→ ΦU (σn).

The next theorem contains as a special case descriptions of π-Kronecker
equivalence and of weak Kronecker equivalence.

Theorem 3. Let K|k and K ′|k be contained in a Galois extension N |k
of k with group G. For a prime divisor p of #G, Kp denotes the fixed field
of a Sylow p-subgroup Up of U = G(N |K). Similar notation is adopted for
K ′. Given a set π of prime numbers the following conditions are equivalent :

(i) There is a subset M ⊂ P (k) of Dirichlet density 0 so that for all
℘ ∈ P (k)\M and for all p ∈ π,

min{νp(fK|k(P)) | P ∈ P (K) ∧ P|℘} = 0

⇒ min{νp(fK′|k(P)) | P ∈ P (K ′) ∧ P|℘} = 0.
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(ii) For all ℘ ∈ P (k) and for all p ∈ π,

min{νp(fK|k(P)) | P ∈ P (K) ∧ P|℘}
≥ min{νp(fK′|k(P)) | P ∈ P (K ′) ∧ P|℘}.

(iii)
⋃
p∈π

UGp ⊂
⋃
p∈π

U ′Gp .

(iv)
∧
p∈π

D(Kp|k) ⊂ D(K ′p|k).

(v)
∧

σ∈G

[ ∧
p∈π

ΦU (σnp) > 0⇒
∧
p∈π

ΦU ′(σnp) > 0
]
.

(vi) For all φ =
∑
nσσ ∈ Q[G] with nσ ≥ 0 and for all i ∈ Nl,

ΨU,π,i(φ) > 0⇒ ΨU ′,π,i(φ) > 0.

(vii)
∧

℘∈P (k)

[ ∏
p∈π
p|#G

( ∑

fi|np
fi

)
> 0⇒

∏
p∈π
p|#G

( ∑

f ′
i
|np

f ′i
)
> 0
]
.

(viii)
∧

℘∈P (k)

∧

i∈Nl

[ ∏
p∈π
p|#G

( ∑

fi|np·pip
fi

)
> 0⇒

∏
p∈π
p|#G

( ∑

f ′
i
|np·pip

f ′i
)
> 0
]
.

Remark 4. (i) In Theorem 3 it is possible to replace ΨU,π,i by
Ψ̂U,π,i =

∏
π3p|#G ΦUp(σnp·p

ip ) and to replace
∏
π3p|#G(

∑
fi|np·pip fi) by∏

π3p|#G(
∑
fi,p|np·pip fi,p), where fi,p runs through the residue degrees of

the divisors of ℘ in Kp.
(ii) In Theorem 3 it is sufficient to consider only the primes p ∈ π

dividing #G.

The proof of Remark 4 is left to the reader.

P r o o f o f T h e o r e m 3. Given ℘ ∈ P (k) and a divisor P of ℘ in N
we define

(5) FN |k(P) =
1

eN |k(P)

∑

τ∈TN|k(P)

στ,

where TN |k(P) is the inertia group of P|℘, eN |k(P) the ramification index of
P|℘ and σ any of the Frobenius automorphisms corresponding to P. If P|℘
is unramified then FN |k(P) is the Frobenius automorphism corresponding
to P|℘. In [12] we calculated

(6)
∧

j∈N+

ΦU (FN |k(P)j) =
∑

fi|j
fi.

This fact is fundamental for the proof of Theorem 3. The equivalence of (iii),
(iv) and (v) is well known (cf. [7]).

(vi)⇒(v) is trivial, namely just specialization i = 0 and φ = σ.
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(iii)⇒(vi). For σ ∈ G we see that

ΨU,π,i(σ) > 0⇔
∏
p∈π
p|#G

ΦU (σnp·p
ip

) > 0

⇔
∧
p∈π

ΦU (σnp·p
ip

) > 0⇔
∧
p∈π

σnp·p
ip ∈ UGp

⇒
∧
p∈π

σnp·p
ip ∈ U ′Gp ⇔ ΨU ′,π,i(σ) > 0.

For φ =
∑
nσσ ∈ Q[G] with coefficients nσ ≥ 0 we now conclude

ΨU,π,i(φ) > 0⇔
∨
σ

nσΨU,π,i(σ) > 0

⇒
∨
σ

nσΨU ′,π,i(σ) > 0⇒ ΨU ′,π,i(φ) > 0.

(v)⇒(viii). Let φ =
∑
nσσ ∈ Q[G], nσ ≥ 0, p ∈ π and assume

ψnp(ΦU )(φ) > 0. Since (v)⇔(iii) we have
∨
σ

nσ · ΦU (σnp) > 0⇒
∨
σ

nσ · ΦU ′(σnp) > 0⇒ ψnp(ΦU ′)(φ) > 0.

Now the proof of (viii) is simple for unramified ℘. But the following Theo-
rem 5 allows us to give a proof which also works in the ramified case.

∏
p∈π
p|#G

( ∑

fi|np·pip
fi

)
> 0

(6)⇐⇒
∧
p∈π
p|#G

ΦU (FN |k(P)np·p
ip

) > 0

Thm.5⇐⇒
∧
p∈π
p|#G

ψnp(ΦU )(FN |k(P)np·p
ip

) > 0

⇒
∧
p∈π
p|#G

ψnp(ΦU ′)(FN |k(P)np·p
ip

) > 0

Thm.5⇐⇒
∧
p∈π
p|#G

ΦU ′(FN |k(P)np·p
ip

) > 0

(6)⇐⇒
∏
p∈π
p|#G

( ∑

f ′
i
|np·pip

f ′i
)
> 0.

(viii)⇒(ii). For ℘ ∈ P (k) we define

ip =
{

min{νp(fi)} if p ∈ π,
0 otherwise.
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Then
∏
p∈π
p|#G

( ∑

fi|np·pip
fi

)
> 0

(viii)
=⇒

∏
p∈π
p|#G

( ∑

f ′
i
|np·pip

f ′i
)
> 0

⇒
∧
p∈π
p|#G

∨

f ′
i

νp(f ′i) ≤ ip ⇒
∧
p∈π
p|#G

min{νp(f ′i)} ≤ ip.

(ii)⇒(i). Trivial.
(i)⇒(iii). Let σ ∈ UGp , p ∈ π and take ℘ ∈ π unramified such that

σ = FN |k(P0) for a divisor of ℘ in N . Then min{νp(fK′|k(P)) | P ∈
P (K ′) ∧ P|℘ } = 0. Since σ ∈ G has p-power order, at least one of the
residue degrees is 1. Hence σ ∈ U ′Gp .

(vii)⇔(i). We have
∑

fi|np
fi > 0⇔ min{νp(fK|k(P)) | P ∈ P (K) ∧ P|℘} = 0.

The importance of Theorem 3 consists in a criterion for weak Kronecker
equivalence, which we formulate explicitly for the convenience of the reader:

Theorem 3′. The following statements are equivalent for K, K ′:

(i) K and K ′ are weakly Kronecker equivalent over k.
(ii) TF (K|k) := {℘ ∈ P (k) | gcd(fK|k(P) | P ∈ P (K) ∧ P|℘) = 1} =

TF (K ′|k).
(iii)

⋃
p|#G U

G
p =

⋃
p|#G U

′G
p .

(iii′) For all p|#G, Kp ∼k K ′p.
(iv) ΨU and ΨU ′ have the same zeroes on G.

Thus TF (K|k) is an analogue of the Kronecker set D(K|k) which is
studied for Kronecker equivalent fields. Note that again there are no excep-
tions.

Theorem 5. We maintain the notation of Theorem 3. For a prime di-
visor p of #G, ip ∈ N, a prime ℘ ∈ P (k) and a divisor P ∈ P (N) of ℘,

ΦU (FN |k(P)np·p
ip

) ≤ ψnp(ΦU )(FN |k(P)np·p
ip

)

≤ eN |k(P) · ΦU (FN |k(P)np·p
ip

).

P r o o f. First we note that for arbitrary m ∈ N+,

(7) FN |k(P)m
(5)
=
(

1
eN |k(P)

∑

τ∈TN|k(P)

στ

)m
=

1
eN |k(P)

∑

τ∈TN|k(P)

σmτ.
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With (7) we conclude

ΦU (FN |k(P)np·p
ip

) = ΦU

(
1

eN |k(P)

∑

τ∈TN|k(P)

σnp·p
ip
τ

)

=
1

eN |k(P)

∑

τ∈TN|k(P)

ΦU (σnp·p
ip
τ)

≤ 1
eN |k(P)

∑

τ∈TN|k(P)

ΦU ((σnp·p
ip
τ)np)(8)

= ΦU

(
1

eN |k(P)

∑

τ∈TN|k(P)

(σnp·p
ip
τ)np

)
(9)

= ψnp(ΦU )(FN |k(P)np·p
ip

)

≤ ΦU
(

1
eN |k(P)np−1

( ∑

τ∈TN|k(P)

σnp·p
ip
τ
)np)

(10)

(7)
= ΦU (eN |k(P)FN |k(P)n

2
p·pip )

(5)
= eN |k(P)

∑

fi|n2
p·pip

fi

= eN |k(P)
∑

fi|np·pip
fi(11)

= eN |k(P)ΦU (FN |k(P)np·p
ip

).

Here (8) holds, because every fixed point of η ∈ G on G/U is a fixed point
of ηnp . (11) follows from fi|np · pip ⇔ fi|n2

p · pip . Obviously

(8) ≤ max
τ∈TN|k(P)

ΦU (σn
2
pp
ip
τ).

From (7) we conclude (10) = ΦU (
∑
τ∈TN|k(P) σ

n2
pp
ip
τ). Hence (8) ≤ (10).

The exact conditions for equality to hold in Theorem 5 are unknown.
We remark that the proof of Theorem 3 can also be accomplished by the
following fact, which holds for every p:

(12) min{νp(fK|k(P)) | P ∈ P (K) ∧ P|℘}
= min{νp(fKp|k(P)) | P ∈ P (Kp) ∧ P|℘}.

The proof of (12) is left to the reader.
Now we are prepared to describe the set TF (K|k) by the zeroes of a

virtual character.
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Theorem 6. Let N |k be a Galois extension and K be the fixed field of a
subgroup U of G(N |k). Let {p1, . . . , pl} be the set of prime divisors of #G.
For i, j ∈ Nl = N{p1,...,pl} we define i ≤ j ⇔ ∧

p|#G ip ≤ jp. Then
{
℘ ∈ P (k)

∣∣∣ gcd(f1, . . . , fr) =
∏

p|#G
pip
}

=
{
℘ ∈ P (k)

∣∣∣ i = min
{
j ∈ Nl

∣∣∣
∧

p|#G
ΦU (FN |k(P)np·p

jp
) > 0

for one (all) divisor(s) P of ℘ in N
}}

.

P r o o f. For all p |#G and for all ℘ ∈ P (k)

ip = min{νp(f1), . . . , νp(fr)}
⇔ ip = min

{
jp

∣∣∣
∑

fi|np·pjp
fi > 0

}

(5)⇐⇒ ip = min{jp | ΦU (FN |k(P)np·p
jp

) > 0}
Thm.5⇐⇒ ip = min{jp | ψnp(ΦU )(FN |k(P)np·p

jp
) > 0}.

3. Application to class groups. For an extension K|k of number
fields we investigate the norm homomorphism NK|k : Cl(K) → Cl(k) on
class groups. NK|k is induced from the norm map IK → Ik on fractional
ideals. On the set P (K) of maximal ideals NK|k is defined by P 7→ ℘fK|k(P),
where ℘ is the prime ideal below P, and extended to IK by linearity.

Theorem 7. Let K and K ′ be weakly Kronecker equivalent over k. Then

NK|k(Cl(K)) = NK′|k(Cl(K ′)).

P r o o f. Obviously NK|k(IK) = 〈℘gcd(fK|k(P)|P∈P (K)∧P|℘) | ℘ ∈ P (k)〉.
By Theorem 3′, NK|k(IK) = NK′|k(IK′). Since the norm respects principal
ideals we are done.

4. Variations and extensions of weak Kronecker equivalence.
For the following sections the deep and widely unknown group theoretical
result of Fein, Kantor and Schacher is of fundamental significance:

Theorem 8. Let G be a finite group acting transitively on a finite set X
with #X > 1. Then G contains an element of prime power order which acts
without fixed points.

P r o o f. See [1].

Two number fields are Kronecker equivalent iff the characters ΦU and
ΦU ′ possess the same zeroes; they are called arithmetically equivalent [14] iff
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ΦU = ΦU ′ . By Theorem 3′, two number fields are weakly Kronecker equiv-
alent iff ΨU and ΨU ′ have the same zeroes. This suggests investigating the
condition ΨU = ΨU ′ .

Theorem 9. Let K and K ′ be subfields of a Galois extension N |k with
groups U = G(N |K) and U ′ = G(N |K ′). Let {p1, . . . , pl} be the prime
divisors of the order of G = G(N |k).

(a) The following statements are equivalent :

(i) ΨU = ΨU ′ .
(ii) There is a subset M ⊂ P (k) of Dirichlet density 0, so that for all

℘ ∈ P (k) \M and for all p |#G,
∑

p|fi
fi =

∑

p|f ′
i

f ′i .

(iii) For almost all ℘ ∈ P (k), for all p |#G and for all i ∈ Nl,
∑

fi|np·pip
fi =

∑

f ′
i
|np·pip

f ′i .

(b) If one of the equivalent conditions of (a) holds, then K and K ′ have
the same degree over k : (K : k) = (K ′ : k), and the same normal closure
over k : K̃ = K̃ ′.

The properties mentioned in (b) are typical of arithmetically equivalent
fields. Together with the above remarks this suggests speaking of weakly
arithmetically equivalent fields.

One should also note that the condition ΨU = ΨU ′ is independent of the
Galois extension N containing K and K ′.

P r o o f o f T h e o r e m 9. Since ΨU (1) = (G : U)l the equality ΨU = ΨU ′

implies #U = #U ′. Further,

(13) ΨU = ΨU ′ ⇔
∧

p|#G
ψnp(ΦU ) = ψnp(ΦU ′).

P r o o f o f (13). “⇒” For σ ∈ GGp we calculate

(G : U)l−1 · ΦU (σnp) = ΦU ′(σnp) · (G : U)l−1.

Thus ΦU and ΦU ′ coincide on GGp . For arbitrary σ we immediately see

ψnp(ΦU )(σ) = ΦU (σnp) = ΦU ′(σnp) = ψnp(ΦU ′)(σ).

The converse holds by definition.
(i)⇔(iii). Let ℘ ∈ P (k) be unramified and P ∈ P (N) a divisor of ℘ in

N . The claim follows from (5) and (13).
(ii)⇒(i). (ii) implies (K : k) = (K ′ : k). We may assume (K : k) > 1.

The group G acts transitively on the set G/U. By the theorem of Fein,
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Kantor and Schacher (Theorem 8) there is σ ∈ G of prime power order pi

such that σ acts without fixed points. Take any unramified ℘ ∈ P (k) with
σ = FN |k(P) for a divisor P ∈ P (N) of ℘. Then

(K : k) =
∑

fi =
∑

p|fi
fi =

∑

p|f ′
i

f ′i ≤ (K ′ : k).

By symmetry (K : k) = (K ′ : k). Hence
∑
fi|np fi =

∑
f ′
i
|np f

′
i for almost all

℘. This gives ΨU = ΨU ′ .

(iii)⇒(ii). From (iii) it follows that #U = #U ′; hence we can use (iii)
with i = 0 in order to prove (ii).

(b) Let UG =
⋂
σ∈G U

σ. We already know gcd(np1 , . . . , npl) = 1, ΨU =
ΨU ′ and #U = #U ′. We calculate:

ΨU (σ) = (G : U)l ⇔
∧

p|#G
σnp ∈ UG ⇔ σ ∈ UG.

We only mention that the condition Ψ̂U = Ψ̂U ′ (cf. Remark 4) can also
be investigated. The resulting theorem is obvious. In particular, Ψ̂U = Ψ̂U ′

implies (K : k) = (K ′ : k) and K̃ = K̃ ′.
It is also possible to extend the definition of weak Kronecker equiva-

lence to m-tuples of fields. Let K1|k, . . . ,Km|k,K ′1, . . . ,K ′n|k be number
fields. The tuples (K1, . . . ,Km) and (K ′1, . . . ,K

′
n) are called weakly Kro-

necker equivalent over k if

min{νp(fKi|k(P)) | i ∈ {1, . . . ,m} ∧ P ∈ P (Ki) ∧ P|℘}
= min{νp(fK′

i
|k(P)) | i ∈ {1, . . . , n} ∧ P ∈ P (K ′i) ∧ P|℘}

holds for all prime numbers p and for (almost) all ℘ ∈ P (k). Then it is easy
to formulate analogues of Theorems 3 and 7 (cf. [11]).

5. Properties of π-Kronecker equivalence. We start with a refor-
mulation of the theorem of M. Bauer [13].

Theorem 10. Let N |k be a Galois extension and K|k an arbitrary ex-
tension with

TF (N |k)
.⊃ TF (K|k).

Then K ⊃ N .

Here
.⊂ means “contained up to at most finitely many exceptions.” See

also Theorem 3′.

P r o o f. We can apply Bauer’s theorem, since TF (N |k) .= D(N |k) and
TF (K|k) ⊃ D(K|k).
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Theorem 11. Let K|k and K ′|k be weakly Kronecker equivalent over k.
Then K and K ′ contain the same Galois extensions of k. In particular , the
groups of roots of unity contained in K and in K ′ coincide.

P r o o f. Choose a Galois extension N |k which contains K and K ′. Let
U = G(N |K), U ′ = G(N |K ′) and G = G(N |k). We consider a normal sub-
group H / G with H ⊃ U. For every p |#G we choose Sylow p-subgroups
Up, U

′
p. Then

H = HG ⊃
⋃

σ∈G
Uσp = UGp = U ′Gp ⊃ U ′p.

Hence H ⊃ U ′.
The next two theorems generalize the Reduction Theorem and the Tran-

sition Theorem of W. Jehne [5].

Theorem 12. Given a set π of prime numbers, the following assertions
hold :

(a) K ∼π,k K ′ ⇒ K ∼π,k K ′ ∩ K̃ ∼π,k K ∩ K̃ ′.
(b) The minimal fields in a π-Kronecker class have the same normal

closure over k ; there are only finitely many minimal fields.

P r o o f. (b) is a simple consequence of (a).
(a) We choose a Galois extension N |k containing K̃ and K ′ and define

G = G(N |k), V = G(N |K̃ ∩ K ′), U = G(N |K) and U ′ = G(N |K ′). The
Galois group G(N |K̃) is the maximal normal subgroup of G contained in
U ; G(N |K̃) = UG =

⋂
σ∈G U

σ.

V is the subgroup of G generated by UG and U ′. Since UG is a normal
subgroup of G it follows that V = {u · u′ | u ∈ UG, u′ ∈ U ′} = UG · U ′. For
all p ∈ π, UGp = U ′Gp holds and UGp = V Gp must be shown.

“⊂”: We choose a Sylow p-subgroup Vp of V containing U ′p. Then

V Gp ⊃ U ′Gp = UGp .

“⊃”: Let σ = u ·u′ ∈ V = UG ·U ′ be of order pn with ord(u′) = pλ ·r and
gcd(p, r) = 1. Then σr = u0 · u′r with u0 ∈ UG. Since u′r ∈ U ′ has p-power
order, we have

u′r ∈ U ′Gp = UGp ⇒ u′r = τ · u1 · τ−1 with u1 ∈ Up, τ ∈ G.
We see

σr = u0 · τ · u1 · τ−1 u0∈UG= τ · ũ0 · τ−1
︸ ︷︷ ︸

=u0

·τ · u1 · τ−1 = τ · ũ0 · u1 · τ−1 ∈ UG

and conclude σr ∈ UGp . Since p and r are coprime, σ ∈ UGp .
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Theorem 13. Let K|k, K ′|k and L|k be extensions of algebraic number
fields and π be a set of prime numbers.

(a) If L|k is Galois, then

K ∼π,k K ′ ⇒
{
KL ∼π,k K ′L,
K ∩ L ∼π,k K ′ ∩ L.

(b) If L is linearly disjoint from K and K ′ over k , then

K ∼π,k K ′ ⇒ KL ∼π,L K ′L.
P r o o f. Let N |k be a Galois extension containing K, K ′ and L, G =

G(N |k) its Galois group and U,U ′, V the corresponding subgroups. For
p ∈ π we choose Sylow p-subgroups.

(a) Our task is to show

(14) (U ∩ V )Gp = (U ′ ∩ V )Gp
and

(15) (UV )Gp = (U ′V )Gp .

For this purpose we establish

(16) (U ∩ V )Gp = UGp ∩ V Gp .
P r o o f o f (16). “⊂” is plain. “⊃”: For x = σuσ−1 = τvτ−1 ∈ UGp ∩V Gp

we calculate
u = σ−1τvτ−1σ ∈ V G = V.

Hence u ∈ (U ∩ V )Gp and therefore x ∈ (U ∩ V )Gp .
(16) together with the assumption UGp = U ′Gp yields the proof of (14):

(U ∩ V )Gp = UGp ∩ V Gp = U ′Gp ∩ V Gp = (U ′ ∩ V )Gp .

P r o o f o f (15). Let σ = uv ∈ (UV )p with ord(u) = pi · r and gcd(r, p)
= 1. As in the proof of Theorem 12 one uses the fact that V is a normal
subgroup of G in order to prove σr = ur · ṽ with ur ∈ UGp = U ′Gp and ṽ ∈ V.
Hence we may write ur = τ · u′ · τ−1 with u′ ∈ U ′p, τ ∈ G and see that

σr = τ · u′ · τ−1 · ṽ = τ · u′ · τ−1 · τ · ˜̃v · τ−1 ∈ (U ′ · V )Gp .

On the other hand, 〈σr〉 = 〈σ〉, so that σ ∈ (U ′ · V )Gp .
(b) In group theoretic terms our assumption means (V : V ∩ U) =

(G : U), hence (G : V ∩ U) = (G : U) · (G : V ). This is only possible if
G = U ·V. Hence UG = UV and U ′G = U ′V . Thus (U ∩V )Vp = (UGp ∩V )V =
(U ′Gp ∩ V )V = (U ′ ∩ V )Vp .

We have seen so far that weakly Kronecker equivalent number fields con-
tain the same Galois extensions k and there are only finitely many minimal
fields in every weak Kronecker class. We now prove that weakly Kronecker
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equivalent fields are not linearly disjoint over k and thus generalize a result
of N. Klingen [7]. Moreover, we show that the weak Kronecker class of the
ground field consists of k only; this generalizes the well known fact that the
Kronecker class of the ground field is trivial.

A third important result is that given finitely many weakly Kronecker
equivalent fields K1, . . . ,Kn (for example the minimal fields of a class) there
is a prime p which divides all degrees (K1 : k), . . . , (Kn : k). This theorem is
a far reaching generalization of a result of N. Klingen [7] who showed that the
degrees of two Kronecker equivalent fields, different from k, are not coprime.

These results may be applied to fields with “almost equal” groups of
global norms.

Theorem 14. Let K1|k be a non-trivial extension of number fields.

(a) Let K1 and K2 be weakly Kronecker equivalent over k. Then K1 and
K2 are not linearly disjoint over k.

(b) Let K1, . . . ,Km be weakly Kronecker equivalent over k. Then

gcd((K1 : k), . . . , (Km : k)) > 1.

P r o o f. We take a Galois extension N |k which contains all fields under
consideration. Within G = G(N |k) we consider the corresponding subgroups
U1, . . . , Um.

(a) We assume that K1 and K2 are linearly disjoint and choose Sylow
p-subgroups

U2,p ⊃ (U1 ∩ U2)p.

As in the proof of Theorem 13(b) we get UG1 = UU2
1 and

⋃

p|#U2

(U1 ∩ U2)U2
p =

⋃

p|#U2

(UG1,p ∩ U2)U2 .

Therefore ⋃

p|#U2

(U1 ∩ U2)U2
p =

⋃

p|#G
(UG2,p ∩ U2)U2 =

⋃

p|#U2

UU2
2,p.

By Theorem 8 and Remark 16 below we get the contradiction U1∩U2 = U2.
(b) By Theorem 8 there is σ ∈ G of prime power order pi which acts

without fixed points on G/U1. Thus p divides (K1 : k). Since UGi,p = UGj,p
(i, j ∈ {1, . . . ,m}), σ also acts without fixed points on G/Ui. Hence p divides
all degrees (Ki : k).

Theorem 15. Let k ∼s,k K. Then K = k. The weak Kronecker class of
the ground field consists of one field only.

P r o o f. One can use Theorem 14(a) or (b).

Remark 16. The following conditions are equivalent and hold by the
theorem of Fein, Kantor and Schacher :
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(a) No number field k is weakly Kronecker equivalent over k to a non-
trivial extension K|k.

(b) Every finite group G acting transitively on a finite set X with #X > 1
contains an element of prime power order , which acts without fixed points.

(c) No finite group G satisfies
⋃
p|#GG

G
p =

⋃
p|#G U

G
p with a subgroup

U 6= G of G.

P r o o f. (a)⇔(c) is contained in Theorem 3.
(c)⇒(b). Assume there is a group G for which (b) does not hold and

take as U one of the (conjugate) point stabilizers Gx. Every σ ∈ ⋃p|#GGGp
has a fixed point, hence lies in

⋃
p|#G U

G
p .

(b)⇒(c). Let (G,U) be a counterexample. G acts transitively on the set
X = G/U with #X > 1, but every σ ∈ ⋃UGp has a fixed point.

6. Rigidity. The first known field with trivial Kronecker class was the
ground field. W. Jehne worked on extensions of degree two of the ground field
and reduced the question of whether there are fields of degree two with triv-
ial Kronecker class to a statement about finite simple groups, which he used
in order to solve the problem in some cases. Thus he conjectured that fields
of degree two have trivial Kronecker class. This conjecture was finally con-
firmed by J. Saxl [18] after the classification of finite simple groups was com-
plete. Other rigidity results for Kronecker classes are due to Ch. E. Praeger
[15]–[17], N. Klingen [8], [9] and R. Guralnick [3]. It is only too natural to
ask which weak Kronecker classes are trivial. The following theorem due to
R. Guralnick [3] fits perfectly to solve the question in “almost all” (see [22])
cases. The reader should again note the application to norm groups.

Theorem 17. Let H ⊂ G be a subgroup of a finite group G with index
(G : H) = n. If U = HG satisfies

G/U ' An>5 or G/U ' Sn,
then every subgroup H ′ of G with⋃

p|#G
H ′p

G ⊃
⋃

p|#G
HG
p

contains a subgroup conjugate to H in G.

From this and Theorem 3 we get the following very important theorem
(cf. Theorem 1):

Theorem 18. Let K|k be of degree n with G(K̃|k) = Sn or G(K̃|k) =
An>5. Given an arbitrary extension K ′|k the following statements hold :

(a) TF (K|k)
δ⊂ TF (K ′|k)⇒ K ′ is conjugate over k to k or to K. (Here

δ⊂ means “contained up to a set of Dirichlet density 0.”)
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(b) If K and K ′ are weakly Kronecker equivalent over k , then K and K ′

are conjugate over k.

P r o o f. In primitive permutation groups G point stabilizers are maximal
subgroups 6= G.

Theorem 17 contains the theorem of Fein, Kantor and Schacher (n = 1)
and the following extension of Saxl’s result:

Theorem 19. Weak Kronecker classes of quadratic extensions K|k are
trivial.

P r o o f. Take n = 2.

The following rigidity result is originally due to L. Stern [21] (who uses
quite different notions). Here we present a very convincing short proof.

Theorem 20. Weakly Kronecker equivalent fields K|k and K ′|k of the
same degree (K : k) = (K ′ : k) ≤ 5 are conjugate over k.

P r o o f. n = 4: If #G(K̃|k) = 24 we are in the S4-case and done by The-
orem 18. K|k and K ′|k are extensions of prime power degree, hence they
are minimal in their weak Kronecker class and thus possess the same normal
closure over k (Theorem 22 below and Theorem 12). If (K̃ : k) < 24 and
K|k is not Galois, then the groups corresponding to K and K ′ are cyclic of
prime order, hence conjugate.

n = 2, 3, 5: K and K ′ are arithmetically equivalent over k (Theorem 23)
and conjugate by Perlis [14].

7. Special weak Kronecker classes

Theorem 21. Let π be a set of prime numbers, and p ∈ π. For π-
Kronecker equivalent fields K ∼π,k L where K|L is an extension of degree
(K : L) = p we have

p < (L : k).

P r o o f. Theorem 21 is an extension of [7], Satz 8. The original proof
only requires some simple modifications.

Theorem 22. Let K|k and K ′|k be extensions of prime power degrees
pi, qj (i, j ∈ N+) and π ⊃ {p, q} a set of prime numbers. If K and K ′ are
π-Kronecker equivalent , then

(K : k) = (K ′ : k).

In particular , fields of prime power degree are minimal in their π-Kronecker
class.

P r o o f. Let N |k be a Galois extension containing K and K ′. Since K
and K ′ obviously are weakly Kronecker equivalent over k, we see that p = q
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(Theorem 14). Let Gp be a Sylow p-subgroup of G(N |k) with fixed field kp.
kp is linearly disjoint from K and K ′ over k and Theorem 13 yields

Kkp ∼π,kp K ′kp,
hence

Kkp ∼kp K ′kp.
An (unpublished) result of N. Klingen now says (Kkp : kp) = (K ′kp : kp).
Since (Kkp : kp) = (K : k) we obtain (K : k) = (K ′ : k). The second
assertion follows from Theorem 15.

Theorem 23. Let {p, q} ⊂ π be a set of prime numbers. For π-Kronecker
equivalent fields K|k and K ′|k of degree (K : k) = p, (K ′ : k) = q the fol-
lowing statements hold :

(a) (K ′ : k) = (K : k).
(b) K and K ′ are arithmetically equivalent over k.
(c) If G = G(K̃|k) is solvable, then K and K ′ are conjugate over k.
(d) The possible degrees p and groups G(K̃|k) for which K and K ′ are

not conjugate are known by the work of W. Feit [2].
(e) In any case,

(i) Cl(K)p ' Cl(K ′)p.
(ii)

∧
n∈NKn(OK)p ' Kn(OK′)p. (Here Kn(OK)p denotes the p-

primary part of the n-th Quillen K-group of the ring of integers
of K.)

(iii) UK ' UK′ .
(iv) K̃ = K̃ ′.

P r o o f. For extensions K|k, K ′|k of prime degree p the following condi-
tions are equivalent:

(i) K and K ′ are arithmetically equivalent over k.
(ii) K̃ = K̃ ′.

(iii) K and K ′ are not linearly disjoint over k.

Indeed, (i)⇒(ii) is obvious. (ii)⇒(iii): p2 does not divide p!. (iii)⇒(i): Since
the Sylow p-subgroups of U and U ′ are conjugate (i) follows from [4].

Now by Theorem 22, (a) follows. From Theorem 12 we conclude K̃ = K̃ ′,
hence (b).

(c) U and U ′ are {p}′-Hall subgroups.
(d) See [2].
(e) (ii) comes from Komatsu [10] and contains (i). (iii) is known by [14].

As we have seen, weakly Kronecker equivalent fields of prime degree have
the same normal closure over k. In general this is false. As an example we
may take A4-extensions N |k of number fields. Here the cyclic-cubic subfield
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and every of the subfields of degree 6 are (weakly) Kronecker equivalent but
do not have the same normal closure. The theorem holds, however, if K
and K ′ can be embedded in a nilpotent extension N |k (Stern [21]). In this
case K and K ′ are Kronecker equivalent, since nilpotent groups are direct
products of their Sylow p-subgroups. If in addition there is no prime p so
that p4 divides (N : k) a simple consideration shows that K and K ′ are
conjugate. Further, one has

Theorem 24. Let K and K ′ be weakly Kronecker equivalent over k. If
there is a nilpotent extension N |k containing K and K ′ then the degrees
(K : k) and (K ′ : k) possess the same prime divisors.

P r o o f. Let p - (K ′ : k) be a prime number. Since the Sylow p-subgroup
Gp of G(N |k) is normal in G we have

Gp = U ′p = U ′Gp = U ′Gpp = UGpp ,

hence Up = Gp.

In general one can only prove that (N : K) and (N : K ′) possess the
same prime divisors.

Example 25. Let K|k be an extension with normal closure N = KL and
L|k abelian. Given a set π of prime numbers which contains all divisors of
(N : k) the following statements hold :

(a) K is minimal in its π-Kronecker class.
(b) Every subfield K ′ of N |k with K ′ ∼π,k K is also minimal and satisfies

(K ′ : k) = (K : k) and Ψ̂U = Ψ̂U ′ .

Further , U ′ = G(N |K ′) is a complement to H = G(N |L) in G0 =
UH / G, e.g. UH = U ′H and U ′ ∩H = 1.

(c) Every extension K ′|k with (K ′ : k) = (K : k) and K ′ ∼π,k K is
minimal and contained in N .

(d) As an example one may take k( n
√
a) = K with k( n

√
a, ζn) = N and

k(ζn) = L.

P r o o f. Let K ′ be a subfield of N |k with K ′ ∼π,k K. Then for all p ∈ π,
ΦUp = ΦU ′p ([7]). Hence Ψ̂U = Ψ̂U ′ . Thus (K : k) = (K ′ : k) (remark after

Theorem 13) and K̃ = K̃ ′ = KL. In group theoretic terms N = KL means
U ∩H = 1. U ′ ∩H 6= 1 would for at least one p ∈ π imply U ′p ∩H 6= 1. But
this together with UGp = U ′Gp and H /G yields the contradiction U ∩H 6= 1.

U ′H corresponds to K ′ ∩ L = K ∩ L, thus U ′H = UH.

An arbitrary field K ′ with K ′ ∼π,k K and (K : k) = (K ′ : k) contains a
minimal field. (c) follows, because all minimal fields are contained in N and
have degree (K : k).
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