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1. Introduction. Throughout this paper we shall suppose that s is
an integer > 5. Then order of magnitude considerations show that every
sufficiently large integer is expressible as a sum of s distinct non-zero squares.
In fact, E. M. Wright [Wr] proved that, if s > 5, then for large n we can
essentially prescribe the ratios of the squares in expressing n as a sum of s
squares. Thus, for each s > 5 there exists a largest integer N (s) which is not
expressible as a sum of s distinct non-zero squares. In this paper we shall
obtain asymptotic estimates for N(s).

In a recent paper [HK], Halter-Koch considered representations of inte-
gers as sums of s distinct non-zero coprime squares, and he proved among
other things the following results.

THEOREM 0 (Halter-Koch). The largest odd integer not expressible as a
sum of 4 distinct non-zero squares with greatest common divisor 1 is 157.
Moreover, if N*(s) denotes the largest integer not expressible as a sum of s
distinct non-zero squares with greatest common divisor 1, then N*(5) = 245,
N*(6) = 333, N*(7) = 330, N*(8) = 462, N*(9) = 539, N*(10) = 647,
N*(11) = 888, and N*(12) = 1036.

Halter-Koch also proved a number of related results. For example, he
showed that for s > 5,

N*(s+1) < 2(/N*(s) +2)?,
which enables one to derive an explicit (but rather crude) bound for N*(s).
Of the two quantities N(s) and N*(s), the former is the more natural
one, and we shall express our results in terms of N(s). Trivially, we have
N*(s) > N(s) for all s > 5, and we shall show in Theorem 5 that the
two functions are in fact identical. Thus, the coprimality condition in the
definition of N*(s) does not affect the results in any way.
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Since any sum of s distinct positive squares must be greater than or
equal to the sum of the first s positive squares, namely
S
P(s) =) i =s(s+1)(2s +1)/6,
i=1
we have the trivial lower bound N(s) > P(s) — 1. In fact, N(s) must be
strictly larger than P(s) since, for example, P(s) + 1 is not expressible as
a sum of s distinct squares. Our principal result (Theorem 1) shows among
other things that N(s) is asymptotically equal to this lower bound P(s) and
gives a fairly precise estimate for the difference

R(s) = N(s) — P(s).
In order to state this main theorem, we define Ay > 0 by

A2 = 2max(||v2s|, [|V2s —1/2])),

where || - || denotes the distance to the nearest integer. It is easy to see that
(1.1) A2 =1/2+||vV8s —1/2.

We further set, for any non-negative real number z,
te
L, = loglogmax(z,e®), t,=[Ly/log2|, f(z)= Z:v2 "
i=0

THEOREM 1. (i) We have the asymptotic formula

(1.2) R(s) = 25{V/25 + \,(25)Y/* + O(s/®)}.
(ii) We have the upper estimate
(1.3) R(s) < 25{f(v35) + O(L2)}.

(iii) The bound (1.3) is best possible in the sense that there exists an
increasing sequence {si} of positive integers such that

(14) R(si) > 25:{/(v/2s1) + O(Ls, )}

An example of such a sequence is given by taking s; = 1 and s, = 2s3_| +
Sk_1 for k> 2.

The estimate (1.2) shows in particular that R(s) < 1/P(s). The second
main term on the right-hand side of (1.2) involves the oscillatory quantity
As, which depends on how 8s is situated relative to the sequence of squares.
From the representation (1.1) of A, it is clear that 1/v/2 < A, < 1 and that
these bounds are best possible. Specifically, A; will be near its maximal value
1if 8s is close to a square; and As will be near its minimal value 1/ V2 when
8s is roughly midway between two consecutive squares, for example, when
s has the form m(8m £ 1). Thus, R(s) = N(s) — P(s) oscillates between
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the limits (25)%/2 + (25)%/4//2 and (2s)3/2 + (25)5/4, up to an error term
O(s%/8).

The inequality (1.3) gives a universal upper bound for R(s) which sharp-
ens that of (1.2) when 8s is close to a square and which by (1.4) is best
possible.

The remainder of this paper is organized as follows. In Section 2 we
give an explicit polynomial upper bound for N(s), namely N(s) < (s —1)°
for s > 5 (Theorem 2), which will be needed as a basis for the subsequent
arguments. In Section 3 we reformulate the problem of determining N (s) and
state a result (Theorem 3) about a related extremal problem. This problem
concerns the minimum @(m) of 2221 a; for all representations of the integer
m in the form m = 22:1 g;a?, where g; = +1 for all i and ay,...,a; are
distinct positive integers. Theorem 3 gives estimates for QQ(m) parallel to
those of Theorem 1 and forms the principal ingredient in the proof of that
theorem, but is also of some interest for its own sake. In Sections 4 and 5 we
prove Theorem 3, and in Sections 6 and 7 we prove Theorem 1. In Section 8,
we give the explicit upper bound (Theorem 4)

(1.5) N(s) < P(s) + 25V2s + 44s°/* + 1085 (s > 166),

which is useful for various purposes. In particular, we use (1.5) to show that
the function N (s) is monotonic for s > 7; this answers a question of Erdés.
(Note, however, that the function R(s) = N(s) — P(s) is not monotonic,
since (1.2) gives R(8m?) > R(8m? + m) for all large m.) In Section 9, we
prove the above remark that N(s) = N*(s) for every s > 5; in fact, we show
(Theorem 5) that if a positive integer is expressible as a sum of s > 5 distinct
non-zero squares then it is also expressible as a sum of s distinct non-zero
squares with greatest common divisor 1. In Section 10 we make some remarks
on the more general problem of expressing an integer as a sum of s distinct
positive kth powers. Using the results of Hardy and Littlewood on Waring’s
problem, we show (Theorem 6) that if Ny (s) denotes the largest integer not
expressible in this form, then

Sk—i—l

T k1
In the final section, we discuss the computation of N(s) and we give two
tables of numerical data.

Ni(s) +0(sh).

2. An initial upper bound. Using the result of Halter-Koch on four
squares mentioned in the preceding section, we obtain the rough bound
N(s) < (s — 1), which will be needed later on.

THEOREM 2. If s > 5 and if n > (s — 1), then n is expressible as a
sum of s distinct non-zero squares.
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Proof. It is convenient to prove the assertion of the theorem under the

slightly weaker assumption n>(s—1)%(s—3). Fori=1,2,...,s—5 we put

|v/n/(s —3)| +1; we also put as 1= [v/n/(s—=3)] +s—4+ 0, where

6 € {0 1} is chosen so that r = n—a} —a% —...—a?_, is odd. (When s = 5,

only as_4 is needed.) Then a? > n/(s—3) for each i and thus r < n/(s—3).
Moreover,

s—5 2 2
an—Z( 823—{—2’) —< 823—{—5—3) = fs(n),

i=1

say. A simple calculation gives

fo(n) = (2= Ts+ 14) n 5 — (25° — 215 + 855 — 126) /6.
S — S —

Clearly fs(n) is an increasing function of n provided \/n/(s —3) > (s? —
75+ 14)/2. This condition is satisfied if s > 5 and n > (s —1)*(s — 3). Thus,
if n > (s —1)4(s — 3), we have

14 101
o e Wiy

> fi(n) = folls = 1)(s =3)) = 3 5 5
The polynomial on the right-hand side here is an increasing function of s
for s > 5 and hence

14 101
r> —5° 3952+i5+8_188
3 6
Since r is odd and greater than 157, Theorem 0 shows that r is expressible
as a sum of four distinct non-zero squares. Since each of these four squares

is less than
2 2 2
r<n/(s—3)<ai<a;<...<a;_,

and since n = r +a? +a3 +...+a?_,, the assertion of the theorem follows.

3. An extremal problem. In this section we rephrase the problem of
estimating N (s) in a form which is more suitable when dealing with integers
that are close to P(s), and we state a result (Theorem 3), which will form
the principal ingredient in the proof of Theorem 1. The underlying idea is
that if n is an integer close to P(s) = Y.;_, i? which has a representation
n=>3y."_,a? as a sum of s distinct squares, then the set {a; : i < s} can be
expected to be “close” to the set {i:i < s}.

To make this idea precise, we note that any set {a; : i < s} of distinct
positive integers can be obtained from the set {i : i < s} by replacing some
of the integers ¢ < s, say s — h;, © < t, by distinct integers > s, say s + k;,
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2

i < t. The associated representation n = ;_, a? can then be written as

s t t
(3.1) n=> =Y (s—h)?+ ) (s+k)
i=1 i=1 i=1
t t
=P(s)+25 Y (hi+ki)+ > (k7 — 1),
i=1 i=1
where the numbers h; and k; satisfy
(3.2) h; distinct, 0 < h; < s,
(3.3) k; distinct, k; > 1.

Conversely, any integer n expressible in the form (3.1) with the conditions
(3.2) and (3.3) is a sum of s distinct positive squares. Therefore, R(s) =
N(s) — P(s) is the largest integer r not expressible in the form

t

(3.4) r=2s> (hi+k)+ > (k—h?)

with integers h; and k; satisfying (3.2) and (3.3).

The above formulation leads naturally to the problem of minimizing the
sum Zzzl(hi + k;), subject to the conditions (3.2) and (3.3), while holding
the sum Zle(sz — h?) fixed. However, this extremal problem is somewhat
awkward to deal with directly, as the conditions (3.2) and (3.3) are not
symmetrical and depend on the parameter s. We therefore consider the
following related, but simpler and more natural problem, which is sufficient
for the application to the proof of Theorem 1 and also is of some intrinsic
interest. For m # 0 set

(3.5) Q(m) = min { iai : isia? = m},

where the minimum is taken over all sets {a; : i < t} of distinct positive
integers satisfying 2221 g;a? = m with suitable numbers ¢; € {1}, and
define Q(0) = 0. The quantity Q(m) may be viewed as a measure for how
“economically” m can be represented as a difference of sums of distinct
squares. The following result gives precise upper and lower bounds for Q(m)
that are largely parallel to those of Theorem 1. Since m = ((m + 10)/2)? —
((m + 8)/2)% — 32 for even positive integers m and m = ((m + 17)/2)? —
((m+15)/2)% — 42 for odd positive integers m, every non-zero integer m has
indeed a representation m = Zle g;a? of the above form, so that Q(m) is
well-defined. Halter-Koch’s result that N*(5) = 245, along with Schwarz’s
inequality, shows that trivially Q(m) < v/5m for m > 246.
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THEOREM 3. (i) We have the asymptotic formula

(3.6) Q(m) = V/Jm[ + v/20), [m|'* + O(Im|'/®),
where 0, = ||\/z]|.
(ii) We have the upper estimate

(3.7) Q(m) < f(VIm]) + O(Lym)),
where f(x) and L, are defined as in Theorem 1.

(iii) The inequality (3.7) is best possible in the sense that if the sequence
{my} is defined by mo =1 and my = m3i_| +mg_1 for k > 1, then we have

(3:8) Q(mx) = f(Vmr ) + O(Lm,).
(iv) The upper bounds in (3.6) and (3.7) remain valid if in the definition
(3.5) of Q(m), t is restricted by the condition

where C' is a suitable absolute constant.

4. Proof of Theorem 3; upper bounds. Call a representation m =
St eia? admissible if €; € {#1} and the numbers a; are distinct positive
integers. To obtain the upper bounds of Theorem 3 (in the stronger form
claimed in the last part of Theorem 3), we need to construct an admissible
representation with ¢ < C'L),,| for which the sum 22:1 a; is bounded by
the right-hand sides of (3.6) and (3.7). Our construction is essentially that
obtained by the greedy algorithm, supplemented by a direct argument for
the first few values of m. We first dispose of the case of small m with the
following lemma.

LEMMA 4.1. If 0 < |m| < 37, then m has an admissible representation
m = Y"i_, eia? such that a; <5 for all i.

Proof. The identities 1 = 12,2 =42 —32 —22 - 12,3 =22 12, 4 = 22,
5=22412,6=32-224+12,7=42-32,8=32-12,9=32,10=3%2+12,
11 =42 -22 - 12,12 =42 — 22, and 13 = 3% 4 22 show that every m with
0 < m < 13 has a representation of the required form with a; < 4. Replacing
€; by —e; in each of these representations, we see that the same is true for
—13 < 'm < 0. In the remaining range 13 < |m| < 37 the result follows by
writing m = &5% +m’ with ¢ € {£1} and |m/| < 12 and representing m’ in
the above form using squares a? with a; < 4.

The lemma shows that for 0 < |m| < 37, Q(m) is well-defined and
satisfies the bounds (3.6) and (3.7) trivially, provided the O-constants are
suitably chosen. The same is true for m = 0, since by definition Q(0) = 0. To
deal with the general case, we begin with the following observation. Given
an arbitrary integer m, let ¢ = |+/|m|], so that ¢ < |m| < ¢* + 2¢, and
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set a = (y/|m|), where (z) denotes the nearest integer to z. (Note that,
since y/|m| cannot be half an odd integer, there is no ambiguity in the
definition of (y/[m[).) Then a = ¢ if ¢> < |m| < ¢> + ¢, a = ¢ + 1 if
@ +q+1<|m| <q¢*+ 2q, and in either case we have m = ea? + r with
e = sign(m) (with the convention sign(0) = 1) and |r| < ¢ = [\/m]].

Iterating this procedure, we obtain, for any given integer m, sequences
of integers {a;} and {r;} defined by

(4.1) ro=m, a; = (\/|ri-1]), € = sign(ri—1), ri-1 = 51(1?4—73 (i >1),
such that

(4.2) ral < [Vlrical] - (@ =1).

We then have for any k£ > 1 the representation

k
(4.3) m = Zsia? + Tk.
i=1

In fact, for sufficiently large k& we have the exact representation m =
Zle g;a?, since it is easily seen that the sequence {r;} must be eventu-
ally zero; however, in order to ensure that the numbers a; are distinct, we
need to work with the truncated version (4.3) in which the term 7 is not
necessarily 0.

Assume now that |m| = |rg| > 37. Then

ar = (v/Iml) > (37) > 6.

Moreover, if ¢ > 2 and a; > 3 then (4.2) and (4.1) imply that

3<a; = (V|rical) < (Jricel*) < (VIrizal) = ai_1,

since any real number x with (z) > 3 must be at least equal to 5/2 and
hence satisfies z < 2% — 1 and (z) < (2?). Therefore, defining k to be the
maximal index such that a; > 6, we have

ay>az > ...>ar > 6> ags1.

Furthermore, by (4.1) we have (\/|ry|) = ax41 < 5, so that [ry| < (5 +
1/2)? < 36. If rp, = 0, then (4.3) gives an admissible representation of m.
Otherwise we have 0 < |rg| < 36 and we can therefore apply Lemma 4.1 to
represent rj in the form

t
TR = Zsia?, 5> ag41 > ... >ap > 1.
i=k-+1
Combining this representation with (4.3) we obtain again an admissible
representation of m involving ¢ < k + 5 squares. In either case we obtain
the inequality
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t k 5 k
(4.4) Qm) <> ai <Y ai+ Y i=Y a;+15.
=1 =1 =1 =1

To bound the sum Zle a;, we first observe that by (4.2) and induction
we have for each i > 1,

il < Irol?* " = |m[* .
Together with (4.1), this implies
(4.5) ai = (VD) < Imf? " +1/2
and, in particular,

6 <ap< \m|27k +1/2.

The last estimate implies

4. k<
(4.6) - log2

Lim)s

which in view of the inequality ¢ < k 4 5 shows that the representation
constructed above satisfies the additional restriction (3.9) stated in part
(iv) of the theorem. Moreover, (4.5) and (4.6) yield

k k _
Sa <Y (m +1/2) < S/ + O(Ljm).

In view of (4.4) this establishes the bound (3.7).
To prove the upper bound in (3.6), we observe that if y/|m| = a+9 with
|9 < 1/2, then we have a = (\/|m|), [J] = 0),,| and
Ir1| = [|Im| — a®| = [(a + 9)* — a®| = 2a|9| + O(1) = 26,,,,)\/|m| + O(1
Using this estimate together with (4.4), (4.5), and ( .6), we obtain

<Zaz+0 \/170+\/|71+Z|m|2 +1/2) +0(1)
—F+\/W\mll/4+0|m\”8)

which is the desired estimate.
5. Proof of Theorem 3; lower bounds. We begin with a lemma which
supplies the key step in the proof.

LEMMA 5.1. (i) For any integer m, we have Q(m) = Q(|m|) > +/|m|.
(ii) If m is a sufficiently large positive integer, then we have

(5.1)  Q(m)=min{g+Q(m—¢*),q+1+Q(m—(¢+1)*)},

where ¢ = [\/|m]].
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Proof. (i) The identity Q(m) = (|m]) follows immediately from the

definition of Q(m). The bound Q(m) > +/|m| holds trivially for m = 0,
since Q(0) = 0. If m # 0, then any representatlon of the form

t
(5.2) m = Zeia?, g, €{xl}, a1 >as>...>a > 1,

satisfies

Zaz_( ai>1/2>‘26a 1/2: |m.
=1
By the definition of Q(m) this implies Q(m) > /|ml|.

(ii) We first show that Q(m) is bounded from below by the right-hand
side of (5.1). Suppose that m is a positive integer and fix a representation
of the form (5.2) such that Q(m) = 3i_, a;. If t = 1 in (5.2), then |m| =
a? = ¢%, and (5.1) holds trivially. Assume therefore that ¢ > 2. By (5.2),
2522 g;a? is an admissible representation for the number m — g1a%, and we

therefore have Q(m — e1a3) < 3°'_, a;. Tt follows that

(5.3) Q(m) =a + Zai > a1 + Q(m — e1a?).

=2

Thus, to obtain the lower bound in (5.1), it suffices to show that ey = 1 and
a1 = q or a1 = q + 1 whenever m is sufficiently large.
Suppose first that a; < y/m/2. Then (5.2) implies

t
Ea>—§a ‘§5<a2
(R T = 1Y
a ay | “—
=1

- > V2m,
ai

which contradicts the upper bound of (3.6) if m is sufficiently large. If a; >
v/m/2 and €1 = —1, then (5.3) and part (i) of the lemma give

Q(m) = a1 +/m+af = \/m/2+/3m/2,
which again yields a contradiction to the upper bound of (3.6).

Finally, suppose that a1 > \/m/2, e = 1, but a1 ¢ {q,q + 1}. In this
case we obtain from (5.3) and part (i) of the lemma the bound

(5.4) Q(m) > a ++/|m — a?|.

Now, note that the function z + /|m — x?| is decreasing for \/m/2 < x
< y/m and increasing for > y/m. Since ¢ < \/m < g + 1, it follows that
over the ranges \/m/2 < a; < ¢— 1 and a1 > ¢+ 2 the right-hand side of
(5.4) is minimal when a; = ¢—1 or a; = ¢+ 2, and in either case is bounded
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from below by
¢ —1+min(y/m — (¢ —1)%,/(q +2)2 —m)
> g— 14 \fm— (Vim - 1)? = i +vV2m'/* 4 O(1).

Since this bound exceeds the upper bound (3.6) for large enough m, we
conclude that for sufficiently large m, a; must be equal to either q or ¢+ 1,
as we wanted to show.

To obtain the reverse inequality, it suffices to note that under the con-
ditions Q(m — ¢?) < q and Q(m — (¢ + 1)?) < ¢+ 1 we obtain admissible
representations of m by adding ¢? to any admissible representation of m —¢?
or by adding (¢ + 1)? to any admissible representation of m — (¢ + 1)? and
therefore have Q(m) < min(q¢ + Q(m — ¢®),q¢+ 1+ Q(m — (¢ + 1)?)). In
view of the inequalities 0 < m — ¢?> < 2g and 0 < (¢ +1)2 —m < 2¢+ 1
and the bound Q(m) < /|m|, the two conditions are satisfied provided m
is sufficiently large.

Remark. The recurrence formula (5.1) could be used in principle to
evaluate Q(m) for any m to within an error term O(1), but it is unlikely
that it would lead to a simple explicit expression for Q(m) or provide a
simple algorithm for computing Q(m) for any particular value of m without
the knowledge of the prior values of the function (). The reason for this
is that it seems hard to decide a priori, which of the two terms on the
right of the formula achieves the minimum; in particular, since the function
Q(m) is not monotonic, the minimum is not necessarily attained (or even
approximately attained) at the term in which the argument of Q (i.e., m—q?
or m — (g + 1)?) has smaller absolute value.

Proof of (3.6), lower bound. In view of part (i) of Lemma 5.1
we may assume that m is sufficiently large and positive. Writing 8 = 6,,, =

|v/m| and g = |\/m], we have /m = q+0if ¢> <m < ¢*+q, /m = q¢+1-0
if 2 +q+1<m<(¢g+1)?% and in any case

min(jm — ¢?|,[m — (¢ +1)?|) = 2¢6 + O(1).
Applying Lemma 5.1, we therefore obtain
Q(m) > ¢+ min(y/|m — ¢%|, /[m — (¢ + 1)?)
> g+ /290 + O(1) > vVm +V20m'* + 0(1),

which proves the lower bound of (3.6).

Proof of (3.8). We first note that the recurrence relation mj =
mi_y + my_1 implies |/mg] = [v/my +1] = my_y. Thus, if m = my
or m = my + 1, then we have, in the notation of Lemma 5.1, ¢ = my_1.
Moreover, the numbers m — ¢? and m — (¢ + 1) are equal to my_; and
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—(mg_1 + 1), respectively, if m = my, and to mr_; + 1 and —my_; if
m = my + 1. Setting
Qr = min(Q(my), Q(my, + 1))
and noting that Q(m) = Q(—m) we therefore obtain from (5.1) the inequal-
ity
Qr > mp—1+ Qr—1
for all sufficiently large k, say k > kg. Iterating this inequality, we deduce

k—1 k—1
(5.5) Qmi) = Qr > > mi+ Qro—1 = > _my_i +O(1)
i=ko—1 i=1
for k > k.
To estimate the sum on the right of (5.5), we show by induction that for
0<i<k
(5.6) M <m2 < mp_i+1-27"

For ¢ = 0, (5.6) holds trivially. Assuming (5.6) holds for some i < k — 1, we
deduce
i (3 i4+1
me > mi_; > (mi_;_1)? =mi_;_y

and

mp < (mpg—s +1 =270 = (mj_;_y +mp1 +1-27)%

<(mpo, o +200— 27 Y mysi1)? < (mpimg +1 -2

which implies (5.6) for i + 1 and completes the induction.

Applying first (5.6) with i = k — 1 we obtain

—k+1
2=my <mj  <my+1-27F1=3_ o7k

which implies k = L,,,, /log2 + O(1) = t,,, + O(1). Using this inequality
and the upper bound of (5.6) we get

k ) 2 s
me— > > (mi —1)=> mp —k+0(1)
=1 =1 =0

N b;zzmk +0(1),

since by (5.6) the terms m2 ' with i = k-+O(1) are of order O(1). Combined
with (5.5), this gives the desired estimate.

6. Proof of Theorem 1; lower bounds. Recall that R(s) is the largest
integer r not expressible in the form (3.4) with integers h; and k; satisfying
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(3.2) and (3.3). For 0 < rg < 4s let R(s, 7o) denote the largest such integer
r that lies in the residue class g modulo 4s. Then clearly
(6.1) R(s) = max R(s,rp).

0<rg<4s
We shall obtain the lower bounds of Theorem 1 by considering R(s,ro) for
suitable choices of rg.
We begin with a lemma which gives a bound for R(s, ) in terms of the
function Q(m) defined in Theorem 3.

LEMMA 6.1. We have

(6.2) R(s,r0) > 2smin{Q(2s — d),Q(2s + d)} + O(s)
where |d| < 2s is chosen so that

_ J romod 4s if ro is odd,
(6.3) d= { 2s —ro mod 4s if rg is even.

Proof. It suffices to show that any integer r = rg mod 4s which has a
representation of the form

t t
(6.4) r:232(hi+k +) (k] = hY) =253 + 5y,
3 =1

say, with integers h; and k; satisfying (3.2) and (3.3), is bounded from below
by the right-hand side of (6.2).

We first observe that, by the upper bound Q(m \/W |+ 0O \m]l/ 4
Theorem 3, the right-hand side of (6.2) is bounded from above by

2smin(v/2s — d, v/2s + d) + O(s°/*) < 25v/2s + O(s°/).

Thus, if
(6.5) r> 4532 4 0(s),
then r is bounded from below by the right-hand side of (6.2).
Next, note that under the conditions 0 < h; < s and k; > 0, which
are implied by (3.2) and (3.3), the right-hand side of (6.4) is an increasing

function of each of the variables h; and k;. Hence, for any A with 0 < A <1,
(6.4) implies

r>2s Z()\hi + ki) + Z((/\kz)z — (Ahi)?)

=1 =1
> 25AX] + A2 Xy > 250/ Xo| + A2 5s,

since trivially

t
szh2+k2 ) > | 2.
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If now |Xy| > 4s, then choosing A = +/4s/|X5| we obtain r > 45%/2 — 45 and
hence (6.5). Thus, it remains to consider the case when

(6.6) |2| < 4s.

Observe that the sums ¥; and Xy in (6.4) have the same parity, since
x = +2% mod 2 for any integer z. Hence, if r = 7y mod 4s with ry even,
(6.4) implies that both sums are even and that ro = X5 mod 4s. If 7 is odd,
both sums are odd, and in this case (6.4) yields g = X3 — 2s mod 4s. In
either case we have | Y| = 2s+d or | Y| = 2s — d with d given by (6.3). In
view of (6.6), this implies

(6.7) |3s] € {25 + ).

The conditions (3.2) and (3.3) imply that in the representation Xy =
S°t_, (k2 — h?) the numbers h; are mutually distinct and non-negative and
the numbers k; are mutually distinct and positive, although the two sets of
numbers are not necessarily disjoint. However, by dropping any pairs (h;, k;)
with h; = k; as well as 0 if it occurs among the numbers h; and relabeling
the remaining numbers h; and k; we obtain a representation of the form

in which the integers h; and k; are mutually distinct and strictly positive.
The latter representation is an admissible representation in the definition of
Q(X3), and we therefore have

t t
Q(1X:]) = Q(X2) < Zkz + Zhi < 2.
i—1 i—1

Combining this inequality with (6.7) and (6.4) yields the desired lower bound
for r.
This completes the proof of the lemma.

Proof of (1.2), lower bound. By (6.1) and Lemma 6.1 we have

(6.8) R(s) > 2s |d1|r§3<£min {Q(2s —d),Q(2s+d)} + O(s).

To bound the right-hand side, we use the bound of (3.6) of Theorem 3
together with the estimates

VoSt d— 4L o2 .
(6.9) 2sid_\/%j:2m+0( ) (|d] < V/2s),
(2s £ d)/* = (26)/* + O(s7 /%) (Id] < v2s).

We thus obtain for |d| < v/2s,
(6.10) min(Q(2s — d), Q(2s + d)) > V2s + 1/2u(25)* + O(s%/®),
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where

= s, d) = min(|v3s + dll, |V = dl).
By (6.9) we have

d
V2std| = ||[V2s £ —=| +O(s7/?
VEEd = Ve S|+ o

and therefore

6.11 ma s,d) = max min{||d +v2s|, |6 — V2s||} + O(s~/?).
(611)  mas s, d) = s min{|5+ V3], 5~ V2] } +0s2)

It is easy to see that the maximum on ¢ is attained either at § = 0 or at § =
1/2 and thus is equal to max(||v/2s||, ||v/2s — 1/2]|) = A2/2 by the definition
of \. It follows that the left-hand side of (6.11) is equal to A2/2+O(s~1/2),
which combined with (6.10) and (6.8) proves the lower bound of (1.2).
Proof of (1.4). We set s = my/2 for k > 1 with my, defined as in
part (iii) of Theorem 3. Clearly s; = 1 and s, = 2s3_; + 1 for k > 2, so
that si is an odd integer. Applying the bound of Lemma 6.1 with ro = 2s
(so that d = 0), together with the estimate (3.8) of Theorem 3, we obtain

R(Sk) > R(Sk, 2Sk;) > 2SkQ(2Sk) + O(Sk)
> 251 {f (V) + O(Lm, )} + O(si) = 251 {f (V21 ) + O(Ls,)},
which proves (1.4).

7. Proof of Theorem 1; upper bounds. To obtain the upper bounds
(1.2) and (1.3) for R(s), we need to show that if r is greater than the
right-hand side of (1.2) or (1.3) then r is expressible in the form (3.4), i.e.,

t t
(7.1) r=2s> (hitk)+> (k—hd),

=1 =1

with integers h; and k; satisfying (3.2) and (3.3). In fact, it will be convenient
to also consider such representations with (3.2) and (3.3) replaced by the
slightly stronger conditions

(7.2) 1<h; <s—1, h; distinct,
(7.3) 1<k;<s—1, k; distinct,

which have the advantage of being symmetric in h; and k;. We denote by
R.(s) the set of integers r expressible in the form (3.2)-(3.4), and by R} (s)
the set of integers expressible in the form (7.1)—(7.3). Needless to say, empty
sums are to be interpreted as zero, so that Ro(s) = Ri(s) = {0}. We
further set R(s) = U, Re(s), R*(s) = U,>oRi(s), and for any residue
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class rg mod 4s we put
Ri(s,70) = {r € Ri(s) : r = ro mod 4s},

and define R} (s,79), R(s,70), and R*(s, o) analogously. Note that R*(s) C
R(s).

The following three propositions contain the key steps of the proof and
will be proved in turn in the remainder of this section. The second and third
of these propositions will be used again in Section 9 to obtain an explicit
numerical bound.

PRrOPOSITION 7.1. For any residue class ro mod 4s there exists a non-
negative integer r € Ri(s,ro) for some t < L4 satisfying

(7.4) r < 25{V2s 4+ Xs(25)4 + O(sY/®)},
(7.5) r < 2s{f(V2s) + O(L3)}.

PROPOSITION 7.2. If s > 150 and r € R} (s) for some t < s/25, then
r 4 4sq € R*(s) for every q satisfying
(7.6) A +3<qg<|(s+5)/6]s.

PROPOSITION 7.3. Suppose that s > 50 and that R*(s — 1) contains
every integer in the interval [(s — 1)3/6,(s — 1)3/2]. Then R(s) contains
every integer > 2s3/3.

Proof of Theorem 1; upper bounds. We may clearly assume

that s is sufficiently large. The first two propositions imply that R*(s), and
hence also R(s), contains every integer r in the ranges

(7.7) 25{V/25 + \s(25)/* + ¢151/8} < r < 4|(s+5)/6]s>,
(7.8) 25{f(V2s) + 2L} < r < 4|(s +5)/6]s?,

provided ¢ and ¢y are sufficiently large absolute constants. Since for large
s the ranges (7.7) and (7.8) contain the interval [s3/6,2s3/3], it follows by
the third proposition that, if s is sufficiently large, then R(s) also contains
every integer > 2s%/3. Therefore, R(s) = max{r : r ¢ R(s)} is bounded by
the left-hand sides of (7.7) and (7.8), and we obtain the upper bounds of
(1.2) and (1.3).

Proof of Proposition 7.1. In the case rp = 0 mod 4s, » = 0 be-
longs to R{(s,0) and (7.4) and (7.5) are trivially satisfied. We can therefore
assume that ro = 0 mod 4s.

As a first step, we show that for sufficiently large s and every integer m
with 0 < m < 4s there exist integers h; and k; (1 < i < t) satisfying (7.2)
and (7.3) with

(7.9) t < Lo,
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such that
(7.10) m = (ki —h?)
=1
and
t S A+ V20,m 4+ O(ml/3),
7.11 hi + k) <
(1) 3 i+ k) {fwm)w(zm

where 6,,, is defined as in Theorem 3.
An application of Theorem 3 yields a representation

(7.12) m=> "h-Y k

with distinct positive integers h;, 1 <14 < t1, and k;, 1 < i < to, whose sum
is bounded by the right-hand side of (7.11) and such that

(7.13) t1 +to < CL,,,

where C'is the constant in (3.9). The bound (7.11) implies that the integers
h; and k; are bounded by < /m < V/4s, and hence are < s — 1 if s is
sufficiently large. The conditions (7.2) and (7.3) are therefore satisfied for
these integers, and if ¢; = to then (7.9)-(7.11) follow immediately with
t =11 =12.

If t1 # ta, we will obtain (7.9)—(7.11) by suitably enlarging the sets {h;}
and {k;} to two sets having the same cardinality ¢, while leaving the value
of ). h? — > k? unchanged. Without loss of generality, assume that t; > to
and set

=t —ty, t=1t1+1=ty+2L

By (7.13) we have t < t; +1 < 2t; < 2CL,,, so that (7.9) is satisfied. We
define additional integers h; and k; by setting

(714) ht1+i = 5a7;, kt2+i = 30@, kt2+l+i = 4ai (1 < 7 < l)

with distinct positive integers a; to be chosen later. This definition ensures

that
t
SR 0D =Dk =) R,
=1

i i=1 i=1
which in view of (7.12) yields (7.10). Moreover, if we restrict the integers a;
to the residue class 1 modulo 3, then the sets {3a;}, {4a;}, and {5a;} are
pairwise disjoint, and the numbers defined in (7.14) are therefore mutually
distinct positive integers. Thus, in order to satisfy the conditions (7.2) and
(7.3), it remains to ensure that these numbers are distinct from the numbers
hi, 1 <i<tp,and k;, 1 <i<ty, and are bounded by s — 1.
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We consider the set of positive integers a < 12CL,, + 3, where C' is
the constant in (7.13). Clearly, at least 4C'L,,, of these integers satisfy the
congruence a = 1 mod 3, and at most 3(¢1 + t2) integers can be of the form
Ahiy, 1 <i < tq, or Ak, 1 <@ < ty, with A = 1/3, 1/4, or 1/5. Since by
(7.13), 4CL,,, — 3(t1 + t2) > t1 + t2 > [, there exist [ of these integers, say
ai,...,a;, with a; =1 mod 3, such that none of the integers (7.14) is equal
to one of the numbers h;, 1 < i < ¢y, or k;, 1 < i < ty9. Moreover, since
| <ty <CL, and a; < 12CL,, + 3, the integers in (7.14) are bounded by
< Ly, < Ly (and thus are < s — 1 for large enough s), and we have

t t l
Soohit D ki< a < L2
=1

i=t1+1 i=to+1

Thus, extending the summation in Y /%, h; and 312 k; to the full range
1 <i <t increases the two sums by at most O(£2,), and therefore does not
affect the upper bound (7.11). Hence (7.9)-(7.11) hold in any case.

Now, let 79 mod 4s be a given non-zero residue class and define |d| < 2s
by the congruence

(7.15) d= {ro mod 4s  (r¢ odd),

25+ 1 (ro even).

We apply the above construction with m = m4 = 2s £+ d to obtain integers
hi and ki (1 <4 < ty) satisfying (7.2), (7.3), and (7.9)~(7.11), and set for
e==

(7.16) re = 28X, +emg,

where X, = ZE;(hf + k5). We shall show that at least one of the integers
r+ has the properties claimed in the proposition.
First note that the numbers r are both non-negative, since 0 < m4 < 4s

and X > 2. Also, both numbers lie in the residue class rg mod 4s, since by
(7.10), X. = m. = d mod 2 and therefore

re =2sd+e(2s+ed) =2s(d+ 1)+ d =1y mod 4s.

Moreover, by (7.16) and (7.10), 4 has a representation of the required form
(7.1) with ty < L, terms, and interchanging the roles of h; and k; in
(7.16) shows that the same is true for r_. Therefore, we have . € R}_(s,70)
with t. < L, and it remains to show that at least one of the integers ry is
bounded by the right-hand sides of (7.4) and (7.5).

By (7.11) and (7.16) we have

. < { 25{M.(d) + O(s"/%)},

(7.17) 2s{ f(v/25 + £d) + O(L2)},
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where

M.(d) = V25 + ed + /209514 (25 + ed) /™.

The second estimate in (7.17) together with the monotonicity of the
function f(x) immediately gives the upper bound

min(ry,r_) < 25{f(v/25) + O(£2)},
and hence the estimate (7.5) for one of the integers r = r.
The proof of (7.4) is more involved. By (7.17) it suffices to show that for
any d with |d| < 2s,
(7.18) min{ M, (d), M_(d)} < v2s + \s(25)/* + O(s'/®).

To prove this estimate, we may clearly assume that d > 0. If d > (2s)
then we have

3/4
)

d
V2s —d < V2s — <V2s — L(25)1/4,
s - s 225 2( 2

and therefore
M_(d) < V2s + 3(25)Y/4,

which implies (7.18) since A\, > 1/v/2 for all s. Thus it remains to consider
the case when 0 < d < (2s)3/4. Setting

§=d(2s)734 p=6(28)V* = d(25)7Y/2,
we have 0 < § < 1 and hence obtain by Taylor’s formula

ed d?
V2s +ed =2 - O(s~ /4
s+e s+ o5 3(2s)° +O(s™%)

=V2s+ep/2 —6%/8+ O(s~ %)

and
(25 4 ed)Y/* = (25)Y* + 0(1).
Thus,

M.(d) = V35 + (25)1/4{e8/2 4+ \ /2] V35 + en/2 — 52/8][} + O(s/%),

and to prove (7.18) it suffices to show that the coefficient of (2s)'/* here is
at most A; for at least one of the choices of ¢ = 4+ . This is a consequence
of the following lemma.

LEMMA 7.4. For € = + and real numbers 0, 0, and u, let
Ne(8,6,11) = £0/2+ /20 + e/ 2 — 578

and put
A0, 6, 1) =min {\; (0,0, 1), \_(0,0,1)}.
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Then

max X(6,0.4) = /2max(([0]. [0+ 1/2]).

Proof. Clearly
max (6,0, 1) > max(\(6,0,0),A(0,0,1)) = /2max(||0]], |6 + 1/2]]).

HER,6>0

To obtain the inequality in the reverse direction, write

e =ne (0,0, 1) = /2]|0 +ep/2 — 62/8],

so that
A(0,6, ) = min{6/2 4+ ny, —0/2+n_}.
We begin by considering 3 + 2. Clearly
e+ 02 = 2(1105 + p/2] + 105 — 1/2]),

where 65 = 6 — §2/8. The right-hand expression is maximal as a function of
w when the two terms |05 + /2| and ||0s — /2| are equal, which is the
case if and only if p is an integer. Thus, for all real p we have

n3(0,6, 1) + 02 (0,6, 1) < 4max(||6s]], |65 — 1/2])) = 0%,

say, where o = o(f, §) satisfies 0 < o < /2. It follows that 1, < \/0®> — 12,
and taking the maximum over all values of n_ in the range 0 < n_ < g, we

see that
XO,0, 1) < [nax min(§/2 + /0% — v%,—=6/2 + v).
If § > p, then for any v in the interval [0, o] we have
v—08/2<0—-6/2<68/2<6/2+ /02 — 12,
so that the maximum over v occurs at v = ¢ and
MO0, 1) = 0~ 06/2 < 0/2 <1/V2 < /2max(|[4]], |6 + 1/2]]).

If 6 < p, the maximum occurs when

§/24 02 —v2 =—6/2+,
ie., when v = vy = §/2 £ /(02 — 62/2)/2. Since v_ < 0 < vy < p for

0 < o, the maximum over 0 < v < p is attained at v = v4 and is equal to
—0/2+ vy = +/(0* —%/2)/2. Since
0*/2 = 2max(||0 — 6*/8|, 10 +1/2 — 6?/8||) < 2max(||6]], |0+ 1/2]) + 52 /4,

we obtain

A0,0,1) < V/02/2 = 62 /4 < /2max([|6]], |0+ 1/2]]).

Thus Lemma 7.4 is proved, and the proof of Proposition 7.1 is complete.
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Proof of Proposition 7.2. Let u = [¢/s] so that (u—1)s < ¢ < us.

The bound 1 < ¢ < [(s+5)/6]s implies 1 <u < (s+5)/6. We shall use the
identity (cf. [PS, Problem VIIL.9))

u
C]:Z% ¢ =(g+i—1)/ul.
i=1
Since ¢, < ¢/u+1<s+1and g >q/u—1>(1—1/u)s—1, we have

1
<1—>5—1<Q1<QQ<---<Qu<S-
u

We seek to express r + 4sq in the form (7.1) with ¢ replaced by t + 2u. For
i=1,...,u we take

Nigoi—1 = kiyoic1 = my,  hipoi = kiyoi = ¢ — my

for some m; satisfying 1 < m; < ¢; — 1 and m; # ¢;/2. In order to ensure

that the numbers hq, ..., htyo, are distinct and the numbers kq, ..., ki1o,
are distinct, we choose my,...,m, in succession so that 1 < m; < ¢; — 1,
m; # q;/2, and both m; and ¢; —m; are distinct from the 2¢+2(i — 1) values
hl, cen ,ht, k‘l, ey k‘t, M1y s My—15, q1 — My qi—1 — My—1. A suitable
choice of m; is possible, provided

(7.19) g —2>4t+40—-1) (1<i<u).

We are going to show that, under the hypotheses of the proposition, this
condition is always satisfied.

Suppose first that v = 1, i.e., 4t + 3 < ¢ < s. Then the assumption
q > 4t + 3 guarantees that ¢ — 2 > 4t, so that (7.19) holds.

Next, suppose that 2 < u < s/15. In view of the hypothesis ¢t < s/25 we
then have

A+ 43— 1) < 4t — 4+ du < 4s/25 + 4s/15 < 4s/9
and
¢G—2>1—-1/u)s—3>s/2—-3>4s/9
fori=1,...,u, which gives again (7.19).

Finally, suppose that s/15 < u < (s+5)/6. Since by hypothesis s > 150,
we have u > 10. Thus, in this case

g —2>(1—-1/u)s—3>9s/10 —3 > 5s5/6
and
At +4(i — 1) < 4t + 4u — 4 < 4s/25 + 45 /6 < 55 /6,
and (7.19) follows.
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With my, ..., m, chosen as above, we have
t t u
r+4sq = 2s Z(hi + ki) + Z(k‘f —h3) + 482 qi
i=1 i=1 i=1
t+2u t+2u

= 2s Z(hl-i—k’z)‘{' Z(kj?—h?),
i=1 i=1

so that r + 4sq € R*(s) as asserted.

Proof of Proposition 7.3. Suppose s > 50 and that every integer
in the interval [(s — 1)3/6, (s — 1)3/2] belongs to R*(s — 1). Let 7 > 2s3/3
be given and set n = r + P(s). If n > s® then n > N(s) by Theorem 2
and therefore r > R(s), i.e., 7 € R(s). We may therefore assume that
P(s)+25%/3 <n < s° Now choose a positive integer a so that n; = n — a?
satisfies

(7.20) P(s—1)+(s—1)*/6<n; < P(s—1)+ (s —1)%/2.

This is possible, since the maximum difference between consecutive squares
less than n is less than 2/n < 25°/2 < (s — 1)3/3 for s > 50. Moreover, the
bounds on n and n; imply that

a>=n—ny > P(s)+253/3 — (P(s — 1) + (s — 1)3/2) > s3/6 > (25).

By (7.20) we have n; — P(s — 1) € [(s — 1)3/6,(s — 1)3/2] and hence
n1—P(s—1) € R*(s—1). By the definition of R*(s—1) (see (3.1), (3.4), (7.2)
and (7.3)) this means that n; is expressible as a sum of s — 1 squares of dis-
tinct positive integers a;, ¢ = 1,...,s— 1, which satisfy either 1 < a; < s—1
orl <a;—(s—1) < s—1 and thus in any case are bounded by 2(s—1). Since
a > 2s,n = ny+a? is a sum of s distinct non-zero squares, i.e., r = n— P(s)
belongs to the set R(s). This proves Proposition 7.3.

8. An explicit upper bound for N(s). In this section we will prove the
following result, which gives an explicit upper bound for N(s) for s > 166.
While this bound is weaker asymptotically than the bounds of Theorem
1, such a specific upper bound is needed in order to show that N(s) is
strictly increasing for s > 7 and in proving the “redundancy of coprimality”
in the next section. It is also useful for computing the values of N(s), as
it substantially reduces the number of cases that have to be checked in
determining N(s).

THEOREM 4. For s > 166 we have
N(s) < P(s) + 2sV/2s + 44s°/* + 108s.
COROLLARY 1. For s > 166 we have N(s) < 1.033P(s).
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Proof. If s > 166, then
25V/2s + 445°/* 41085 < s3{2v/2-16673/2 + 44 - 166~ 7/* + 108 - 1662}
< 0.0115% < 0.033P(s).
The result now follows from Theorem 4.
COROLLARY 2. If s > 7, then N(s) < N(s+1).
Proof. For s > 360, Theorem 4 gives
N(s) < P(s) + s*{2v2 - 3607 /% 4+ 44 - 360~3/* +108 - 360~}

<P(s)+s*<P(s+1)<N(s+1).

For the range 7 < s < 359, the monotonicity of N(s) follows from the table
in Section 11 (which also shows that the inequality N(s) < N(s + 1) fails
at s =6).

To prove Theorem 4, we shall use Propositions 7.2 and 7.3, as well as
the following explicit version of Proposition 7.1.

PROPOSITION 8.1. If s > 165, then for any residue class ro modulo 4s
there exists a positive integer r € Rf(s,ro) for some t < 6 satisfying

(8.1) r < 25V/2s 4 445°/4.

Proof. We will show that for any integer m with |m| < 2s there exist
positive integers h; and k; (1 < i <t) with ¢ = 5 or t = 6 satisfying (7.2)
and (7.3), such that

t

(8.2) Z(hz’ +k;) < V2s + 21511
and
(8.3) > (k] —hi) =m.
The integer
r=2s i(hz + ki) + i(kf — 1)
i=1 i=1

then belongs to R;(s) and satisfies (8.1). Moreover, if 79 mod 4s is a given
residue class, then choosing m so that m = rg mod 4s if ry is even and
m = rog + 2s mod 4s if rg is odd, we have r = ry mod 4s and therefore
r € Ri(s,rp). Thus it remains to prove the above claim.

By interchanging the roles of h; and k;, we see that it suffices to consider
the case when 0 < m < 2s.
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Suppose first that 0 < m < 25./s. We then take hy =4 and h; =i+ 4
for i = 2,3,4,5. The integers h; clearly satisfy (7.2) if s > 10. Moreover,
since by Theorem 0

5 5
m+ > hi >N h=246 > N*(5),
i=1 i=1
we may choose distinct positive integers k1, ..., ks such that

5 5
dkI=m+> b
i=1 i=1
Our assumptions m < 25/s and s > 165 imply

5
D k7 <255+ 246 < /5{25 + 246 - 165~ /%} < 45/,
=1

1/4

so that kq,..., ks are positive integers less than v/45s*/* < s and therefore

satisfy (7.3). Moreover,

i=2 i=1
< 34+ /5-45\/s = 34+ 15s'/4,
which implies the bound (8.2) with ¢ = 5.
Now suppose that 25\/s < m < 2s. In this case we take h; = 1 and
k1 = [/m], so that
(Vm—1)?*=m—2¢ym+1<ki <m < 2s,

and, in particular, k1 < 1/2s < s. Setting d = m — (k% — h?) = m + 1 — ki,
we have

1<d<2ym<2V2s.

The assumptions m > 25,/s and s > 165 give

2
2 _ - _ 2 =
(8.4) ki >m—2ym m(l \/>> > 25\/§<1 T

Next, we take ho =4 and h; = 3 + i for 3 < i <6, so that

6 6
> hi=34, Y h=246.
=2 =2

Applying again Theorem 0, we obtain distinct positive integers ko, ..., kg
such that

) > 22¢/s.



372 P. T. Bateman et al.

that is

Clearly,
6
D kP <2V2s+ 246 < /s{2V2+ 246 - 1657 1/7} < 221/,
=2

which by (8.4) implies that the integers ko, ..., k¢ are less than k; and
hence also less than s. The integers h; and k; therefore satisfy (7.2) and
(7.3). Moreover, we have

6 6
S(hi+ k) =k +Y ki +35 <k +

=1 =2

6
5> k2435
=2

< Vm++/5-22/5 4 35 < V2s + sY/4{V/110 + 35 - 165 1/4},
which again gives (8.2).

This completes the proof of Proposition 8.1.

Proof of Theorem 4. First suppose that s > 165. By Proposition
8.1, for any residue class 7o mod 4s there exists an integer r < 2sv/2s4+445%/4
which belongs to R} (s, 7o) for some ¢t < 6. By Proposition 7.2, it follows that
r 4+ 4sq € R*(s) for any ¢ satisfying

4-6+3<q<|(s+5)/6]s.
Since r +4[(s +5)/6]s? > 253/3 and
F4 (464 3)ds < 25v/2s + 445°/* + 108s,
we conclude that every integer in the interval [251/2s +445°/4 4-108s, 25 /3]
belongs to R*(s). Furthermore, since for s > 165,
25v/25+445°/4 41085 < 5{2v/2-1657%/2+44-165"7/* 41081652} < 5°/6,

this interval contains the interval [s3 /6,253 /3] and we can apply Proposition
7.3 to deduce that for s > 165+1 = 166, R(s) contains every integer > 2s3/3.
Hence, for s > 166, we have

R(s) = max{r : 7 ¢ R(s)} < 25v/2s + 44s°/* + 108s,

as claimed.

9. Redundancy of coprimality. We have stated and proved our main
results in terms of the function N (s), whereas Halter-Koch stated his results
(as quoted in Theorem 0) in terms of the function N*(s). (Recall that N*(s)
is defined like N(s), except that only representations by sums of coprime
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squares are to be considered.) In this section we show that the two functions
are identical. In fact, we prove the following more precise result.

THEOREM 5. If s > 5 and if n is expressible as a sum of s distinct
non-zero squares, then n is also expressible as a sum of s distinct non-zero
squares having no non-trivial common factor.

Remark. The same result holds for s = 4 if we restrict attention to
the positive integers not divisible by 8. It also holds for s = 3 if we restrict
attention to the positive integers not divisible by 4 (cf. [Ka], Satz 9).

Proof of Theorem 5. For s = 5 the assertion of the theorem follows
easily from Halter-Koch’s result that N*(5) = 245 (see Theorem 0). For,
since 22 +42 462 + 82 +122 > 245, the only integer not exceeding 245 which
is expressible as a sum of 5 distinct non-zero squares having a non-trivial
common factor is 220 = 22 + 42 + 62 + 82 + 10?, which has also the coprime
representation 220 = 12 4+ 32 + 52 + 82 + 112,

Theorem 0 also shows that N*(s) < 4P(s) for 6 < s < 12. Thus every
integer > 4P(s) = >_7_,(2i)? is expressible as a sum of s distinct non-zero
squares having no non-trivial common factor. If an integer less than 4P(s) is
expressible as a sum of s distinct non-zero squares, these squares necessarily
have g.c.d. 1. Indeed, otherwise the common factor of these squares would be
at least 22, and dividing each term by this factor would yield a representation
of an integer less than P(s) = > 7 ;% as a sum of s distinct squares, which
is impossible. Thus the assertion of the theorem holds for 6 < s < 12.

Now suppose that s > 12. As before, if n < 4P(s) and if n is expressible
as a sum of s distinct non-zero squares, then these squares necessarily have
g.c.d. 1. On the other hand, if n > 3(3 + /N (s — 2) + 14)?, we claim that
n is always expressible as a sum of s distinct non-zero squares having no
non-trivial common factor. For if a = |/n/3+1] and if ny = n—a?—(a+1)2,
then

n >n—(/n/3+1)* = (/n/3+2)°=(y/n/3-3)> —14> N(s - 2),

and so n; is expressible as a sum of s — 2 distinct non-zero squares. Since a
and a+ 1 are coprime and a > \/n/3 > \/nq, it follows that n is expressible
as a sum of s distinct non-zero squares having no non-trivial common factor.

To complete the proof it suffices to observe that

3(3+ /N(s—2) + 14)% < 4P(s)

for s > 12. For 12 < s < 168 this follows from the computed values of N(s)
(see Section 11). For s > 168 we have by the first corollary to Theorem 4

N(s—2) <1.033P(s — 2) < 0.35(s — 1),
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and hence
33+ /N(s—2)+14)> =3N(s — 2) + 69 + 18y/N(s — 2) + 14
<4P(s—2)+4(s—1)* +18\/4(s — 1)3/9
< 4P(s—2)+4(s —1)% +4s5* = 4P(s).

Thus the theorem is proved.

10. A result for kth powers. Throughout this section, k will be a fixed
positive integer greater than 1. Let Rg(n) denote the number of solutions
to oF + 2% + ... + 2% = n in non-negative integers z1,..., ;. Hardy and
Littlewood proved that there is a positive integer so = so(k) depending only
on k such that if s > sg and n is any positive integer, then

bsns/kfl < Rs(n) < BsnS/kflj
where bs; and By are positive numbers depending only on s and k (see, e.g.,
Chapter 2 in [Va]).

LEMMA 10.1. There ezist positive constants C' and D (depending on k)
such that if m is a given positive integer and n is a positive integer greater
than (Cm + D)¥, then n is expressible as a sum of so(k) + 2 distinct k-th
powers each of which is > mF.

Proof. Let F(n) denote the number of solutions of 2§ +...+a% , =n

in integers x1,..., 25,42 such that x; > m for each 7 and x; # x; for i # j.
Then

m—1

F(n) = RSO+2(n> - (80 + 2) Z Rso+1(n - Zk)
i=0
L(n/2)*/*)]
S0+ 2 .
() o
i=m

> bgypont®0tD/E=Y (55 4 2Ym By, (S0t /E-1

1/k
B <30;-2> (Z) By n*/51 > 0,
provided

begran'/® > (50 4 2)Bsyr1m + (50 +2)(so + 1)27 17V B, .
Since the latter condition holds if n'/* > Cm + D with suitable constants
C and D depending on k, the assertion of the lemma follows.

Let Ni(s) denote the largest positive integer not expressible as a sum
of s distinct kth powers of positive integers. The preceding lemma (with
m = 1) shows that Ni(s) exists for s > sg(k) + 2.
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THEOREM 6. Ni(s) = s*T1/(k 4+ 1) + O(s*) for s > so(k) + 2.

Proof. First we note that 1+ >_;_, i* cannot be expressed as a sum of
s distinct positive kth powers, so that

+ O(s").

S . 8k+1
Ni(s) > Zz =il
i=1

On the other hand, we show that if s > sg(k) + 2 and if
n>(s—so— )"/ (k+1)+ (C(s — 50 — 1) + D),

where C' and D are as in the lemma, then n is expressible as a sum of s
distinct positive kth powers. For then

s—8p—2

n> Y i*+(C(s—s0—1)+D)"
=1

and so by the lemma with m = s — sy — 1 we obtain that n — >.7_7°" %% is

expressible as a sum of so(k) + 2 distinct positive kth powers each of which
is greater than (s — sg — 2)*.

11. Numerical data. We have calculated N(s) for 5 < s < 400 and
for some isolated values greater than 400. In order to carry out these com-
putations we needed some a priori bound L(s) for N(s), so that it suffices
to test the integers in the interval [P(s), L(s)] for expressibility as a sum
of s distinct non-zero squares. (Recall that P(s) = 12 + 22 + ... 4+ s? is
the smallest integer expressible as a sum of s distinct non-zero squares.)
Given such a bound L(s), we used the following algorithm: First, an array
a[P(s)],a[P(s) + 1],...,a[L(s)] is initialized to zero and a variable L is set
to L(s). Then s-tuples (x1,...,xs) of integers such that 0 < x1 < ... < x4
and 22 + ...+ 22 < L are generated, and the value of a[z? + ...+ z?] is set
to 1. Whenever it occurs that z? + ... + 22 = L exactly, then we replace
L by the largest integer L’ such that a[L’] = 0. This device results in a
dramatic reduction of the number of cases to be investigated compared to
a brute force approach. The algorithm terminates when there is no tuple
(21,...,25) left satisfying 0 < 7 < ... <z, and 2% + ... + 22 < L. The
number N(s) is then equal to the current value of L.

The efficiency of this algorithm clearly depends on the length of the array
a[n] and it is therefore desirable to have a numerical bound L(s) which is
as close to P(s) as possible. For our computations of N(s) for 5 < s < 400
we used the bound given by the following proposition. While this bound
is inferior asymptotically to the bound given by Theorem 4, it is better
numerically for values of s less than 8000, say, as a result of the large size
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of the coefficients on the right-hand side of the inequality of Theorem 4.
The inequality of Proposition 11.1 has the disadvantage that it requires a
knowledge of N (s — 1) and so is useful primarily for calculating a complete
table of values of N(s) up to some point. For calculating an isolated value
of N(s) we must use the bound of either Theorem 4 or Corollary 1.

PROPOSITION 11.1. For s > 6, we have N(s) < L(s), where

L(s) =2N(s—1) — P(s —2) + 6 +4y/N(s — 1) — P(s — 2) + 2.
Remark. From (1.2) it follows that
L(s) =2P(s — 1) — P(s — 2) + 2(2(s — 1))*% + O(s°/*)

+4y/P(s — 1) — P(s — 2) + O(s°/?)
= P(s) +2(25)%2 + O(s°/*).

On the other hand, we have
N(s) = P(s) + (25)%/2 + O(s°/*).
Thus, N(s) lies near the midpoint of the interval [P(s), L(s)] for large s.

Proof of Proposition 11.1. Replacing s by s + 1, we see that it
suffices to show that if s > 5 and

(11.1) n>2N(s) — P(s— 1) + 6+ 4y/N(s) — P(s — 1) + 2,

then n is a sum of s+ 1 distinct positive squares. We first note that (11.1)
implies

n>2N(s)—P(s—1)>2P(s) —P(s—1) > P(s — 1)
and so n—P(s—1) > 0. Let gs(n) denote the smallest integer strictly greater

than /(n — P(s — 1))/2. To prove that n is a sum of s+ 1 distinct non-zero
squares it suffices to show that

(11.2) n—g2(n) > N(s).
For if (11.2) holds, then

n—gi(n)=af+...+a3,
for integers 0 < x1 < ... < x5 and further

a2=n—gin)—ai—...—a2_, <n-gi(n)— P(s—1) < gi(n),

the last step resulting from the definition of g4(n). Now
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gs(n) <14 +/(n—P(s—1))/2,

and so to prove (11.2) it suffices to show that (11.1) implies

n—{1++/(n—P(s —1))/2}* > N(s),

that is,
;L+P(”°‘2_1) 1 N(s)>2/(n— P(s — 1))/2
(11.3) t>2yt—P(s—1)+ 1+ N(s),
where
(11.4) t_;+P(S2_1)—1—N(s).

Now (11.1) implies that certainly ¢ > 2. Hence (11.3) is equivalent to
t2>4(t — P(s—1)+ 1+ N(s))

or to

t2 — 4t +4 > 4(N(s) — P(s — 1) +2)
or to
(11.5) t—2>2y/N(s)— P(s — 1)+ 2.

But, in view of (11.4), (11.5) is equivalent to (11.1), and hence (11.3) and
(11.2) hold. This completes the proof of Proposition 11.1.

We conclude with two tables of numerical values for N(s). Table I lists
all values of N(s) up to s = 400 and substantially extends the table given in
[HK]. Table II gives the values for N(s) for s = 20,40,...,1000, along with
the polynomial approximation P(s), the difference R(s) = N(s)— P(s), and
the approximation Ry(s) = 2s(v/2s + A\;(25)'/4) to R(s) given by formula
(1.2) of Theorem 1. It is apparent from this table that P(s) is very close to
N(s), the difference R(s) = N(s)— P(s) being roughly of size y/N(s). On the
other hand, the agreement between R(s) and Ry(s) is rather poor. The ratio
R(s)/Ro(s) between the two quantities, which by (1.2) is asymptotically
equal to 1, falls roughly between 1.15 and 1.4 for the computed values with
180 < s < 1000. This, however, is not surprising, since the error term in (1.2)
is only by a factor O(s~/®) smaller than the main term. In fact, a careful
analysis of the proof reveals that this error term oscillates in a manner
similar to the term \,(2s)/4, with amplitudes of size O(s~'/®) relative to
the main term.
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Table I. Values of N(s) for 5 < s < 400

s | N(s) | N(s+50) | N(s4+100) | N(s+150) | N(s+200) | N (s+250) | N(s+300) | N (s+350)
1 47668 | 353301 | 1167858 | 2739627 | 5319763 | 9157781 | 14503694
2 50373 | 364021 | 1191142 | 2780495 | 5384828 | 9249353 | 14629010
3 53097 | 374678 | 1214987 | 2821768 | 5447969 | 9342342 | 14752167
4 56253 | 385598 | 1238763 | 2864188 | 5512557 | 9433610 | 14877763
5| 245 59522 | 396675 | 1261760 | 2906277 | 5577097 | 9527815 | 15003868
6| 333| 62502 | 407899 | 1286868 | 2948021 | 5643262 | 9620543 | 15130352
7| 330 65842 | 419464 | 1311577 | 2990934 | 5709383 | 9714648 | 15258213
8| 462 69203 | 431180 | 1336601 | 3035034 | 5776983 | 9809808 | 15386457
9| 539 72044 | 443298 | 1362318 | 3078779 | 5843172 | 9905365 | 15516778
10| 647| 76356 | 455265 | 1387602 | 3122187 | 5910676 | 10001541 | 15646462
11| 888| 80337 | 467574 | 1413583 | 3167131 | 5979037 | 10098102 | 15776703
12| 1036| 84025 | 480234 | 1439887 | 3212141 | 6047753 | 10196742 | 15907827
13| 1177| 88073 | 492983 | 1466892 | 3257508 | 6116994 | 10294787 | 16038472
14| 1445| 92211 | 506103 | 1493472 | 3303853 | 6187750 | 10392475 | 16172428
15| 1722| 96663 | 519304 | 1521133 | 3350142 | 6257059 | 10491524 | 16305557
16| 1990| 101047 | 533848 | 1548373 | 3396371 | 6327887 | 10591708 | 16438389
17| 2311| 105604 | 546629 | 1576322 | 3444923 | 6398667 | 10693257 | 16573002
18| 2672| 110048 | 560553 | 1604486 | 3492519 | 6471144 | 10793473 | 16709866
19| 3047| 114876 | 574818 | 1633723 | 3539648 | 6543577 | 10895090 | 16844903
20| 3492| 120057 | 589270 | 1662187 | 3588112 | 6617561 | 11000162 | 16983287
21| 4093| 125146 | 604963 | 1691864 | 3636957 | 6690062 | 11100903 | 17119604
22| 4613| 130334 | 619907 | 1721508 | 3686305 | 6764463 | 11204407 | 17257940
23| 5138| 135755 | 634512 | 1751617 | 3735729 | 6840727 | 11310052 | 17397277
24| 5718| 141003 | 650532 | 1781833 | 3786418 | 6914895 | 11414120 | 17538653
25| 6379| 146872 | 665338 | 1812662 | 3837542 | 6989564 | 11519601 | 17679362
26| 7123| 152752 | 681113 | 1843178 | 3888183 | 7066848 | 11626173 | 17820822
27| 7952| 158753 | 697473 | 1874567 | 3939399 | 7142517 | 11734378 | 17961603
28| 8676| 164793 | 714162 | 1906687 | 3993688 | 7219969 | 11842042 | 18104567
29| 9537| 171150 | 730855 | 1938932 | 4044409 | 7298930 | 11950139 | 18249728
30(10393| 177622 | 748447 | 1971412 | 4097381 | 7376258 | 12058131 | 18394212
31[11558| 184231 | 765020 | 2004237 | 4150806 | 7455387 | 12167768 | 18538009
32(12602| 190959 | 782064 | 2036877 | 4204630 | 7536043 | 12279288 | 18683837
33[13743| 197940 | 800901 | 2070922 | 4258959 | 7616208 | 12390257 | 18832238
34(14863| 205288 | 818048 | 2104898 | 4314847 | 7696940 | 12500665 | 18978927
35(16252| 212317 | 836570 | 2139171 | 4370144 | 7777169 | 12614070 | 19128087
36(17528| 219737 | 855758 | 2173283 | 4424940 | 7859037 | 12727174 | 19277167
37(18957| 227354 | 874587 | 2208688 | 4481632 | 7942558 | 12840823 | 19426163
38(20481| 235170 | 893691 | 2244272 | 4537885 | 8025578 | 12055147 | 19577648
39(22042| 243139 | 913448 | 2280073 | 4596062 | 8108466 | 13069884 | 19728777
40(23678| 251555 | 932732 | 2316237 | 4652746 | 8193351 | 13185828 | 19880957
41(25347| 259616 | 952017 | 2352742 | 4711887 | 8278108 | 13301917 | 20032714

I
S

27207| 268233 972897 | 2389498 | 4770523 | 8363192 | 13419077 | 20187950
29092 276777 993782 | 2427007 | 4828644 | 8449113 | 13536802 | 20342319
31228| 285685 1014202 | 2464707 | 4889252 | 8535765 | 13654110 | 20497803
33297| 295070 1034591 | 2502812 | 4949349 | 8622718 | 13774483 | 20653912
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Table I (cont.)
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s | N(s) | N(s + 50) | N(s4100) | N(s+150) | N (s4200) | N (s+250) | N(s+300) | N (s+350)
46|35289| 304338 | 1056663 | 2541621 | 5009368 | 8710678 | 13894279 | 20810636
47|37653| 313747 | 1078332 | 2579933 | 5070898 | 8798963 | 14014592 | 20968325
4840042 323272 | 1099592 | 2619433 | 5132474 | 8887116 | 14135652 | 21126114
4942487 333123 | 1122933 | 2659421 | 5194122 | 8977320 | 14256960 | 21284758
50|45023| 343296 | 1145117 | 2699146 | 5256211 | 9067396 | 14379001 | 21446362

Table II. Comparison between R(s) = N(s) — P(s)
and Ro(s) = 2s(v/2s + )\5(23)1/4)

s | N(s) P(s) | R(s) | Ro(s) |R(s)/Ro(s)
20 3492 2870| 622)|334.029| 1.86212
40 23678 22140| 1538|941.071| 1.63431
60 76356 73810| 2546(1693.18| 1.50368
80 177622 173880 | 3742(2500.56| 1.49646
100 343296 338350| 4946 |3464.73| 1.42753
120 589270 583220| 6050(|4655.05| 1.29966
140 932732 924490| 8242|5521.97| 1.49258
160| 1387602| 1378160| 9442|6917.42| 1.36496
180 1971412 1960230(11182|8356.78| 1.33807
200| 2699146| 2686700|12446|9788.85| 1.27145
220| 3588112 3573570|14542(11196.1| 1.29884
240| 4652746| 4636840(15906(12548.1| 1.26761
260| 5910676| 5892510|18166|13792.5| 1.31709
280 7376258| 7356580(19678|15484.1| 1.27085
300 9067396 9045050(22346|17651.3| 1.26597
320| 11000162| 10973920|26242|18676.9| 1.40505
340 13185828| 13159190 (26638|20926.8| 1.27291
360| 15646462| 1561686029602 |22362.5| 1.32373
380| 18394212 18362930|31282|24660.5| 1.26851
400| 21446362| 21413400 32962|25835.5| 1.27584
420| 24820272| 24784270(36002| 28789| 1.25055
440| 28527862 | 28491540|36322|30029.4| 1.20955
460 | 32590736| 32551210(39526|32030.6| 1.23401
480| 37020622| 36979280|41342|35001.3| 1.18116
500| 41836864 | 41791750|45114|36507.2| 1.23576
520 | 47051574| 47004620 |46954|37723.2| 1.24470
540| 52686788 | 52633890|52898(40770.3| 1.29746
560| 58748358 | 58695560 |52798(43740.1| 1.20708
580 | 65260300| 65205630 (54670|45867.6| 1.19191
600| 72238998 72180100 |58898(47553.7| 1.23856
620| 79695548 | 79634970|60578|49233.6| 1.23042
640 | 87651558| 87586240(65318|51494.2| 1.26845
660| 96114808| 96049910 |64898|54439.4| 1.19211
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Table II (cont.)
s N(s) P(s) | R(s) | Ro(s) |R(s)/Ro(s)
680 |105111458{105041980| 69478| 57337| 1.21175
700 |114650008|114578450| 71558(60199.9| 1.18867
720 124748958 |124675320| 73638|63034.6| 1.16822
740 135427128 |135348590| 78538| 65844 | 1.19279
760 | 146694958 |146614260| 80698 |68628.9| 1.17586
780 | 158574168 |158488330| 85838| 71388| 1.20241
800 | 171074942 (170986800 88142|74119.3| 1.18919
820 | 184215972 |184125670| 90302|76819.2| 1.17551
840 | 198016654 [ 197920940 | 95714|79483.2| 1.20420
860 |212483472(212388610| 94862|82105.5| 1.15537
880 |227644810(227544680|100130| 84679| 1.18247
900 |243507824 (243405150 102674 |87194.8| 1.17752
920 |260091014 [259986020|104994|89641.3| 1.17127
940 |277414216(277303290|110926| 92004| 1.20567
960 |295486262 295372960 113302|94262.8| 1.20198
980 |314326668 314211030 115638{96389.7| 1.19969
1000|333951594 | 333833500 118094 |99427.2| 1.18774
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