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Rational quartic reciprocity

by

Franz Lemmermeyer (Heidelberg)

In 1985, K. S. Williams, K. Hardy and C. Friesen [11] published a reci-
procity formula that comprised all known rational quartic reciprocity laws.
Their proof consisted in a long and complicated manipulation of Jacobi sym-
bols and was subsequently simplified (and generalized) by R. Evans [3]. In
this note we give a proof of their reciprocity law which is not only consider-
ably shorter but also sheds some light on the raison d’être of rational quartic
reciprocity laws. For a survey on rational reciprocity laws, see E. Lehmer [7].

We want to prove the following

Theorem. Let m ≡ 1 mod 4 be a prime, and let A, B, C be integers
such that

A2 = m(B2 + C2), 2 |B,
(A,B) = (B,C) = (C,A) = 1, A+B ≡ 1 mod 4.

Then, for every odd prime p > 0 such that (m/p) = +1,

(1)
(
A+B

√
m

p

)
=
(
p

m

)

4
.

P r o o f. Let k = Q(
√
m); then K = Q(

√
m,
√
A+B

√
m) is a quartic

cyclic extension of Q containing k, as can be verified quickly by noting that
A2 −mB2 = mC2 = (

√
mC)2 and

√
mC ∈ k \ Q. We claim that K is the

quartic subfield of Q(ζm), the field of mth roots of unity. This will follow
from the theorem of Kronecker and Weber once we have seen that no prime
6= m is ramified in K/Q. But the identity

(2) 2(A+B
√
m)(A+ C

√
m) = (A+B

√
m+ C

√
m)2

shows K = k(
√

2(A+ C
√
m)), and so the only odd primes that are possibly

ramified in K/k are common divisors of A2 −mB2 = mC2 and A2 −mC2

= mB2. Since B and C are assumed to be prime to each other, only 2 and
m can ramify. Now

√
m ≡ 1 mod 2 (since m ≡ 1 mod 4) implies B

√
m ≡

B mod 4, and we see A+B
√
m ≡ A+B ≡ 1 mod 4, which shows that 2 is

not ramified in K/k (and therefore not ramified in K/Q).

[387]
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The reciprocity formula will follow by comparing the decomposition laws
in K/Q and Q(ζm)/Q: if (m/p) = +1, then p splits in k/Q; if f > 0 is the
smallest natural number such that pf ≡ 1 mod m (here we have to assume
p > 0), then p splits into exactly g = (m− 1)/f prime ideals in Q(ζm), and(

p

m

)

4
= 1 ⇔ p(m−1)/4 ≡ 1 mod m⇔ f divides 1

4 (m− 1) = 1
4fg

⇔ g ≡ 0 mod 4

⇔ the degree of the decomposition field Z of p

is divisible by 4

⇔ Z contains K (because Gal(Q(ζm)/Q) is cyclic)

⇔ p splits completely in K/Q
⇔ p splits completely in K/k (since p splits in k/Q)

⇔
(
A+B

√
m

p

)
= 1.

This completes the proof of the theorem.

Letting m = 2 and replacing the quartic subfield of Q(ζm) used above by
the cyclic extension Q(

√
2 +
√

2 ) contained in Q(ζ16) yields the equivalence

(3)
(
A+B

√
2

p

)
= 1 ⇔ p splits in Q

(√
2 +
√

2
) ⇔ p ≡ ±1 mod 16,

stated in a slightly different way in [11].
Formula (1) differs from the one given in [11], which reads

(4)
(
A+B

√
m

p

)
= (−1)(p−1)(m−1)/8

(
2
p

)(
p

m

)

4
,

where A,B,C > 0, B is odd and C is even. Formula (2) shows that(
A+B

√
m

p

)
=
(

2
p

)(
A+ C

√
m

p

)
,

and so, for B even and C odd, (4) is equivalent to

(5)
(
A+B

√
m

p

)
= (−1)(p−1)(m−1)/8

(
p

m

)

4
.

Now A ≡ 1 mod 4 since A2 = m(B2 + C2) is the product of m ≡
1 mod 4 and of a sum of two relatively prime squares, and we have A+B ≡
1 mod 4⇔ 4 |B ⇔ m ≡ 1 mod 8. The sign of B is irrelevant, therefore

(−1
p

)B/2
= (−1)(p−1)(m−1)/8.

This finally shows that (1) is in fact equivalent to (4).
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Another version of (1) which follows directly from (5) is

(6)
(
A+B

√
m

p

)
=
(
p∗

m

)

4
,

where A,B > 0 and p∗ = (−1)(p−1)/2p.
Formula (1) can be extended to composite values of m (where the prime

factors of m satisfy certain conditions given in [11] ) in very much the same
way as Jacobi extended the quadratic reciprocity law of Gauss; this exten-
sion, however, is not needed in deriving the known rational quartic reci-
procity laws of K. Burde [1], E. Lehmer [6, 7] and A. Scholz [9]. These
follow from (1) by assigning special values to A and B, in other words: they
all stem from the observation that the quartic subfield K of Q(ζm) can be
generated by different square roots over k = Q(

√
m).

The fact that (1) is valid for primes p |ABC (which has not been proved
in [11]) shows that we no longer have to exclude the primes q | ab in Lehmer’s
criterion (as was necessary in [11]), and it allows us to derive Burde’s reci-
procity law in a more direct way: let p and q be primes ≡ 1 mod 4 such that
p = a2 + b2, q = c2 + d2, 2 | b, 2 | d, (p/q) = +1, and define

A = pq, B = b(c2 − d2) + 2acd, C = a(c2 − d2)− 2bcd, m = q.

Then 2 |B, B ≡ 2d(ac + bd) mod q (since c2 ≡ −d2 mod q), the sign of A
does not matter (since q ≡ 1 mod 4), and so formula (1) yields

(
q

p

)

4
=
(
A+B

√
p

q

)
=
(
B

q

)(
p

q

)

4
,

and the well-known
(

2d
q

)
= +1 implies Burde’s law

(7)
(
p

q

)

4

(
q

p

)

4
=
(
ac− bd

q

)
.

A rational reciprocity law equivalent to Burde’s has already been found
by T. Gosset [5], who showed that, for primes p and q as above,

(8)
(
q

p

)

4
≡
(
a/b− c/d
a/b+ c/d

)(q−1)/4

mod q.

Multiplying the numerator and denominator of the term on the right
side of (8) by a/b+ c/d and observing that c2/d2 ≡ −1 mod q yields

(
q

p

)

4
=
(
a2/b2 + 1

q

)

4

(
a/b+ c/d

q

)
=
(
p

q

)

4

(
b

q

)(
a/b+ c/d

q

)

=
(
p

q

)

4

(
a+ bc/d

q

)
=
(
p

q

)

4

(
d

q

)(
ad+ bc

q

)
,

which is Burde’s reciprocity law since
(

2d
q

)
= +1.
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A more explicit form of Burde’s reciprocity law for composite values of
p and q has been given by L. Rédei [8]; letting n = pq = A2 + B2 in [8, §5,
(17), (19)], we find A = ac − bd, B = ad + bc, and his reciprocity formula
[8, (23)] gives our formula (7).

Yet another version of Burde’s law is due to A. Fröhlich [4]; he showed

(9)
(
p

q

)

4

(
q

p

)

4
=
(
a+ bj

q

)
=
(
c+ di

p

)
,

where i and j denote rational numbers such that i2 ≡ −1 mod p, j2 ≡
−1 mod q. Letting i = b/a and j = d/c and observing that

(
a
p

)
=
(
c
q

)
= +1

we find that (9) is equivalent to (7).
The reciprocity law of Lehmer [6, 7] is even older; it can be found in

Dirichlet’s paper [2] as Théorème I and II; Dirichlet’s ideas are reproduced
in the charming book of Venkov [10] and may be used to give proofs for
other rational reciprocity laws using nothing beyond quadratic reciprocity.
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