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1. Introduction. In this paper we consider the diophantine equation

(1) x(x+ d1) . . . (x+ (L− 1)d1) = y(y + d2) . . . (y + (M − 1)d2)

in positive integers d1, d2, L > 1, M > 1, x, y. We assume throughout
the paper that d1 and d2 are fixed and that L/M has a given ratio. Put
k = gcd(L,M), l = L/k and m = M/k. Hence l and m are fixed and
gcd(l,m) = 1.

There are several results in the literature in case d1 = d2 = 1. In 1963
Mordell [6] proved that (1) with (L,M) = (2, 3) implies that (x, y) = (2, 1) or
(14, 5). MacLeod and Barrodale [5] showed in 1970 that (1) has no solutions
if (L,M) = (2, 4), (2, 6), (2, 8), (2, 12), (4, 8) or (5, 10) and admits only
the solution (x, y) = (8, 1) if (L,M) = (3, 6). Two years later Boyd and
Kisilevsky [1] proved that (x, y) = (2, 1), (4, 2), (55, 19) are the only solutions
of (1) if (L,M) = (3, 4). For fixed L and M = 2L, MacLeod and Barrodale
further showed that (1) admits only finitely many solutions. In 1990 Saradha
and Shorey [8] proved that there exists only one solution with M = 2L,
namely (L,M, x, y) = (3, 6, 8, 1). In 1991 they showed in [9] that (1) has
no solutions with M = 3L or M = 4L. Recently, Mignotte and Shorey
showed that this is also the case when M = 5L or M = 6L. In general, for
m > 1 and M = mL, Saradha and Shorey [10] proved that equation (1)
implies that max(L, x, y) is bounded by an effectively computable number
depending only on m.

In 1992 Saradha and Shorey [11] started the study of equation (1) for
more general pairs (d1, d2). They showed that if d1 = d2 = d and l = 1, m >
1 then there exists an effectively computable upper bound for k = L, x and
y which depends only on d and m. Later, Saradha and Shorey [12] showed
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that equation (1) implies that k is bounded by an effectively computable
number depending only on d1, d2 and m. They further showed that x and
y are bounded by such a number unless

(i) m = k = 2, d1 = 2d2
2, x = y2 + 3d2y, or

(ii) d1/d
m
2 is a product of m > 2 distinct positive integers composed of

primes not exceeding m and m ≥ α(k) where α(k) = 14 for 2 ≤ k ≤ 7,
α(8) = 50 and α(k) = exp(k log k − 1.25475k − log k + 1.56577) for k ≥ 9.

Condition (i) is necessary. In the present paper we shall show that con-
dition (ii) is superfluous.

The authors [13] studied equation (1) with L = M . Observe that in
this case d1 = d2 implies x = y. Therefore there is no loss of generality in
assuming that d1 < d2 and gcd(d1, d2, x, y) = 1. We proved that under
these assumptions L, M , x and y are bounded by an effectively computable
number depending only on d2 unless d1 = 1, d2 = 4, x = L + 1, y = 2.
Observe that

(L+ 1)(L+ 2) . . . (2L) = 2 · 6 · . . . · (4L− 2) for L = 2, 3, . . . ,

since both sides equal (2L)!/L!. Hence, in case L = M there is an infinite
class of exceptions.

The following two theorems cover all pairs (L,M) with L 6= M dealt
with in the literature up to now.

Theorem 1. Let d1, d2, L, M , x and y be as in the first paragraph of
this section. If

(2) L ∈ {2, 4} and M is odd

then max(x, y) ≤ C1 where C1 is some effectively computable number de-
pending only on d1, d2 and M .

Theorem 2. Let d1, d2, L, M , x and y be as in the first paragraph of
this section. Suppose that gcd(L,M) > 1 and L 6= M . Then

(3) max(L,M, x, y) ≤ C2

where C2 is some effectively computable number depending only on d1, d2

and L/M , unless

(d1, d2, L,M, x, y) or (d2, d1,M,L, y, x) equals (d, 2d2, 4, 2, z, z2 + 3dz)

for some positive integers d and z.

2. The proof of Theorem 1. We shall use the following lemma.

Lemma 1. Let P (X) be an odd monic polynomial with real coefficients
of degree M > 1 such that for some positive number v there are (M − 1)/2
distinct real numbers β with P (β) = v, P ′(β) = 0. Then

P (X) = a1TM (a2X)
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where TM (X) is the M-th Chebyshev polynomial cos(M arccosX) and a1

and a2 are non-zero real constants.

P r o o f. As P is odd, there are also (M − 1)/2 distinct real numbers
β with P (β) = −v, P ′(β) = 0. Since P ′ has degree M − 1, the union of
the numbers β is the set of roots of P ′ and all the roots of P ′ are simple.
It follows that every root of P ′ is a point where P has a local extremum.
Since P is monic and odd, the extremum attained for the lowest value of β
is a maximum v, then follows a minimum −v, a maximum v and so forth,
alternating and ending with a minimum −v. Observe that there is a unique
point β0, greater than the largest value where P attains a maximum, such
that P (β0) = v, P ′(β0) > 0. Of course, P (−β0) = −v, P ′(−β0) > 0. Define
P̃M (X) = β−M0 P (β0X). Then P̃M (X) is a monic polynomial of degree M
with |P̃M (X)| ≤ β−M0 v for |X| ≤ 1 and it assumes the values β−M0 v and
−β−M0 v each (M + 1)/2 times in the interval [−1, 1] in alternating way.

Put T̃M (X) = 2−M+1TM (X). Then T̃M has the smallest maximum ab-
solute value on [−1, 1] among all monic polynomials of degree M and every
monic polynomial 6= ±T̃M has a higher maximum absolute value. (See e.g.
[7], pp. 56–57.) Suppose P̃M 6= T̃M . Then β−M0 v > max−1≤X≤1 |T̃M (X)|, so
that P̃M (X)− T̃M (X) is positive at each point β with P̃M (β) = β−M0 v and
negative at each point β with P̃M (β) = −β−M0 v. Since both P̃M and T̃M
are monic, it follows that P̃M − T̃M is a polynomial of degree at most M −1
which has M sign changes in the interval [−1, 1], which is a contradiction.
Thus P̃M = T̃M , which implies that

P (X) = 2(β0/2)MTM (X/β0).

The second lemma is due to Brindza. It is proved by the method of
estimating linear forms of logarithms.

Lemma 2. Let f(X) ∈ Z[X], f(X) = a0(X − α1)r1 . . . (X − αn)rn , be
a polynomial with distinct roots α1, . . . , αn. Then there exists an effectively
computable number C3 depending only on f such that the equation z2 =
f(y) in rational integers y, z implies max(|y|, |z|) ≤ C3 unless at most two
exponents rj are odd.

P r o o f. See [2] or [15], Theorem 8.3.

P r o o f o f T h e o r e m 1. Consider equation (1) with L = 2. Since
x(x+ d1) = (x+ 1

2d1)2 − 1
4d

2
1, this implies

(4) z2 = 4y(y + d2) . . . (y + (M − 1)d2) + d2
1

where z = 2x+ d1. Now consider equation (1) with L = 4. Then

(x2 + 3d1x+ d2
1)2 − d4

1 = y(y + d2) . . . (y + (M − 1)d2)
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whence

(5) z2 = y(y + d2) . . . (y + (M − 1)d2) + d4
1

where z = x2 + 3d1x+ d2
1. We conclude that all cases of Theorem 1 can be

reduced to an equation

z2 = δy(y + d2) . . . (y + (M − 1)d2) + c2

where c is some positive rational integer and δ = 1 or 4.
We deal first with the cases with M = 3. In these cases equation (1) is

reduced to the elliptic equation

(6) z2 = δy(y + d2)(y + 2d2) + c2.

Put f(Y ) = δY (Y + d2)(Y + 2d2) + c2. According to Lemma 2 we have
max(|y|, |z|) ≤ C3 where C3 depends only on d2 and c unless f has a double
root α. In the latter case we have

0 = δ−1f ′(α) = 3α2 + 6d2α+ 2d2
2,

which implies α = −d2 ± d2
3

√
3. Hence

0 = f(α) = δ(α3 + 3d2α
2 + 2d2

2α) + c2 = ∓ 2
9δd

3
2

√
3 + c2.

Since δ, c and d2 are rational, this implies d2 = 0, which is a contradiction. So
we obtain max(x, y) ≤ C4 where C4 is some computable number depending
only on d1 and d2.

We are left with the cases L ∈ {2, 4} and M is odd, M ≥ 5. Here we
consider the hyperelliptic equation z2 = f(y) where

(7) f(Y ) := δY (Y + d2) . . . (Y + (M − 1)d2) + c2

and c is some positive rational integer. According to Lemma 2 we have
max(y, z) ≤ C3 where C3 depends only on c, d2 and M , unless f has exactly
one root of odd order. In the latter case we may assume without loss of
generality that

f(Y ) = δ(Y − α1)r1(Y − α2)r2 . . . (Y − αn)rn

with α1, . . . , αn distinct roots, r1 odd and r2, . . . , rn even. Since f(Y ) − c2
has M distinct real roots, the roots of f ′ are real and simple by Rolle’s
theorem. Thus r1 = 1, r2 = . . . = rn = 2. Therefore M = 2n− 1 and f has
(M − 1)/2 double roots α2, . . . , αn.

Consider the polynomial

g(Y ) :=
(
Y − M − 1

2

)(
Y − M − 3

2

)
. . .

(
Y +

M − 3
2

)(
Y +

M − 1
2

)
.

Observe that g is an odd function and that

f(Y ) = δdM2 g

(
Y

d2
+
M − 1

2

)
+ c2.
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Since f has (M−1)/2 double roots, the polynomial g has (M−1)/2 distinct
real values β with g(β) = −δc2d−M2 , g′(β) = 0. Since g is odd, Lemma 1
gives that the function g is of the form g(Y ) = a1TM (a2Y ) where TM is the
Mth Chebyshev polynomial and a1 and a2 are non-zero real constants. This
implies that

f(Y ) = δa1d
M
2 TM

(
a2

d2
Y +

a2(M − 1)
2

)
+ c2.

We infer from (7) that

Y (Y + d2) . . . (Y + (M − 1)d2) = a1d
M
2 TM

(
a2

d2
Y +

a2(M − 1)
2

)
.

However, it follows from the definition of Chebyshev polynomials that for
M > 3 the roots of TM are not equidistant, which yields a contradiction.
We conclude that max(x, y) ≤ C5 where C5 is some number depending only
on d1, d2 and M .

3. Lemmas for the proof of Theorem 2. Using the notation of the
first paragraph of the introduction we rewrite (1) as follows:

(8) x(x+ d1) . . . (x+ (lk − 1)d1) = y(y + d2) . . . (y + (mk − 1)d2).

Without loss of generality we shall assume that l < m. We shall frequently
use the Vinogradov symbol � and then tacitly assume that the implied
constants are effectively computable positive numbers depending only on
d1, d2, l and m. Note that l and m are completely determined by L/M .

Lemma 3. k � log(x+ 1).

P r o o f. We assume that k is larger than some suitable number depending
only on d1, d2, l and m. We express this by saying that k is taken sufficiently
large. Let p be the smallest prime number which does not divide d1d2. Then

ordp(y(y + d2) . . . (y + (mk − 1)d2)) ≥
[
mk

p

]
+
[
mk

p2

]
+ . . .

On the other hand,

ordp(x(x+ d1) . . . (x+ (lk − 1)d1))

≤ max
i=0,...,lk−1

ordp(x+ id1) +
[
lk

p

]
+
[
lk

p2

]
+ . . .

It now follows from (8) and l < m that, for k sufficiently large,

k �
[
mk

p

]
−
[
lk

p

]
≤ max
i=0,...,lk−1

ordp(x+ id1)� log(x+ kd1).

Hence k � log(x+ 1).

Lemma 4. xl − ym � ym−1 log(y + 1), ym − xl � xl−1 log(x+ 1).
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P r o o f. We have, by (8), ykm ≤ (x + kld1)kl. Hence, by Lemma 3,
ym/l − x ≤ kld1 � log(x+ 1). This implies ym − xl � xl−1 log(x+ 1). For
the proof of the first inequality we derive from (8) and Lemma 3 as above
that xl/m − y � log(x+ 1), which implies that log(x+ 1)� log(y + 1) and
the first inequality follows.

The following inequalities follow immediately from Lemmas 3 and 4:

(9) k � log(y + 1),

(10) xl � ym, ym � xl, |xl − ym| � min(xl, ym)
log y
y

.

Because of Lemma 3, (9) and (10) we may assume that x and y are larger
than some suitable number depending only on d1, d2, l and m. We express
this by saying that x (or y) is taken sufficiently large. From now onwards,
we shall assume without reference that x and y are sufficiently large.

We adopt the notation of [10] in slightly modified form. We define posi-
tive integers Aj(ν, k) for ν ∈ {l,m} by

z(z + 1) . . . (z + νk − 1) =
νk−1∑

j=0

Aj(ν, k)zνk−j .

Further we determine rational numbers Bj(ν, k) and Hj(ν, k) such that

(zν +B1(ν, k)zν−1 + . . .+Bν(ν, k))k =
νk∑

j=0

Hj(ν, k)zνk−j

satisfies

Hj(ν, k) = Aj(ν, k) for 0 ≤ j ≤ ν.
We introduce the notation

Gj(ν, k) = Aj(ν, k)−Hj(ν, k) for 0 < j ≤ νk.

Lemma 5. There exist effectively computable absolute constants c1 and
c2 such that

Aj(ν, k) ≤ (νk)2j for 0 ≤ j < νk,(a)

Bj(ν, k) ≤ cj3/2

1 (νk)2j for 1 ≤ j ≤ ν,(b)

|Gj(ν, k)| ≤ cj
√
ν

2 (νk)2j for 0 < j ≤ νk,(c)

k2j−1Bj(ν, k) ∈ Z for 1 ≤ j ≤ ν,(d)

k2j−1Gj(ν, k) ∈ Z for 0 < j ≤ νk.(e)
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P r o o f. (a) Aj(ν, k) ≤ (νk−1
j

)
(νk)j < (νk)2j .

(b) As the proof of [10], Lemma 1.
(c) As the proof of [10], Lemma 2.
(d), (e) As the proof of [10], Lemma 3.

Put

(11)
Lj = Bj(l, k)dj1 for 1 ≤ j ≤ l,
Mj = Bj(m, k)dj2 for 1 ≤ j ≤ m,

(12)
L∗j = Gj(l, k)dj1 for 1 ≤ j ≤ lk,
M∗j = Gj(m, k)dj2 for 1 ≤ j ≤ mk.

Then

(13) x(x+ d1) . . . (x+ (lk − 1)d1)

= (xl + L1x
l−1 + . . .+ Ll)k + L∗l+1x

kl−l−1 + L∗l+2x
kl−l−2 + . . .

and

(14) y(y + d2) . . . (y + (mk − 1)d2)

= (ym +M1y
m−1 + . . .+Mm)k

+M∗m+1y
km−m−1 +M∗m+2y

km−m−2 + . . .

Lemma 6.

(15) xl + L1x
l−1 + . . .+ Ll = ym +M1y

m−1 + . . .+Mm.

P r o o f. By (13), (14), (8), (12) and Lemma 5(c),

D : = |(xl + L1x
l−1 + . . .+ Ll)k − (ym +M1y

m−1 + . . .+Mm)k|

=
∣∣∣

lk∑

i=l+1

L∗i x
lk−i −

mk∑

j=m+1

M∗j y
mk−j

∣∣∣

≤
lk∑

i=l+1

ci
√
l

2 (lkd1)2ixlk−i +
mk∑

j=m+1

c
j
√
m

2 (mkd2)2jymk−j .

By Lemma 3 and (9), we obtain

D ≤ (lkd1)2l+2c
(l+1)

√
l

2 xlk−l−1

1− c
√
l

2 (lkd1)2/x
+

(mkd2)2m+2c
(m+1)

√
m

2 ymk−m−1

1− c
√
m

2 (mkd2)2/y

�
(
k2

x

)l+1

xlk +
(
k2

y

)m+1

ymk.
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On the other hand, we have L1 > 0, M1 > 0 and

D = |(xl + L1x
l−1 + . . .+ Ll)k − (ym +M1y

m−1 + . . .+Mm)k|
≥ |(xl + L1x

l−1 + . . .+ Ll)− (ym +M1y
m−1 + . . .+Mm)|

×min(xl(k−1), ym(k−1)).

Suppose (15) does not hold. Then, by (11), Lemma 5(d) and l < m, it fol-
lows that D ≥ wk−1/k2m−1 with w = min(xl, ym). On combining the lower
and upper bound for D we obtain, using the fact that l < m and x� y by
Lemma 4,

wk−1 ≤ k2m−1D � k4m+1

y
max(xlk−l, ymk−m).

Hence, by (9) and (10),

wk−1 � k4m+1

y
(w + |xl − ym|)k−1 � (log y)4m+1

y
wk−1

(
1 +

log y
y

)k−1

.

This implies, by (9),

log y � log log y + k log
(

1 +
log y
y

)
� log log y +

(log y)2

y
.

This proves that y � 1, which is a contradiction.

Lemma 7. We have

L∗i = 0 for l < i < 2l

and

(16) M∗j = 0 for m < j < 2m.

P r o o f. Define I and J by

L∗l+1 = . . . = L∗I−1 = 0, L∗I 6= 0, M∗m+1 = . . . = M∗J−1 = 0, M∗J 6= 0.

By (15), (8), (13) and (14), we obtain
∑lk
i=I L

∗
i x
lk−i =

∑mk
j=JM

∗
j y

mk−j .
Therefore, by (10), it suffices to show that either Al+1 = . . . = A2l−1 = 0 or
Bm+1 = . . . = B2m−1 = 0. Suppose that this assertion is false. Then we can
take l < I < 2l and m < J < 2m. Observe that mI = lJ and gcd(l,m) = 1
imply l | I, a contradiction. We prove the lemma when mI < lJ and the
proof for the case mI > lJ is similar. We have

(17) mI ≤ lJ − 1.
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Hence, by (12), Lemma 5(c), Lemma 3 and (9),

|L∗Ixlk−I | ≤
lk∑

i=I+1

|L∗i |xlk−i +
mk∑

j=J

|M∗j |ymk−j

≤
lk∑

i=I+1

ci
√
l

2 (lkd1)2ixlk−i +
mk∑

j=J

c
j
√
m

2 (mkd2)2jymk−j

≤ 2c(I+1)
√
l

2
(lkd1)2I+2

xI+1 xlk + 2cJ
√
m

2
(mkd2)2J

yJ
ymk.

By (12), Lemma 5(e) and L∗I 6= 0, we have |L∗I | ≥ k−2I . Hence, by I < 2l,
Lemma 3 and (10),

1 ≤ 2c(I+1)
√
l

2 k2I (lkd1)2I+2

x
+ 2cJ

√
m

2 k2I (mkd2)2J

yJ−mI/l

(
ym

xl

)k−I/l
(18)

≤ 2
(c
√
l

2 lkd1)8l

x
+ 2

c
J
√
m

2 k4l(mkd2)2J

yJ−mI/l

(
1 +
|ym − xl|

xl

)k

≤ 1
2

+ 2
c
J
√
m

2 k4l(mkd2)2J

yJ−mI/l

(
1 +

c3 log y
y

)k

for some number c3 depending only on d1, d2, l and m. Since J < 2m, (18)
implies, by (17),

(19) y1/l ≤ cJ
√
m

2 (mkd2)10m
(

1 +
c3 log y
y

)k
.

By (19) and (9)

(20) log y � log k + k log
(

1 +
c3 log y
y

)
� log log y +

(log y)2

y
.

It is clear from (20) that y � 1, a contradiction.

The next lemma is due to R. Balasubramanian.

Lemma 8. Let m > 2. There exists an effectively computable number C6

depending only on m and an integer q with m < q < 2m such that

(21) Gq(m, k) 6= 0 for k ≥ C6.

P r o o f. See [10], Lemma 7.

Lemma 9. Suppose that f(X) and g(Y ) are polynomials of positive degree
with rational numbers as coefficients. Assume that the degrees of f and g
are relatively prime. Then f(X)− g(Y ) is irreducible over the rationals.

P r o o f. This is due to Ehrenfeucht [4]. Cf. [14], p. 94 and [3].
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4. Proof of Theorem 2. It suffices to show that equation (8) with
k > 1 and l < m implies that max(k, x, y) ≤ C2. By the result of Saradha
and Shorey [10] mentioned in the introduction we may assume m > 2. By
Lemma 3 and (10) we may take x and y sufficiently large so that (16) holds.
Then, by (12), Lemma 8 and m > 2, we have k � 1. We may therefore
assume that k is fixed. Hence L1, . . . , Ll and M1, . . . ,Mm are fixed. If

(22) X(X + d1) . . . (X + (lk − 1)d1)− Y (Y + d2) . . . (Y + (mk − 1)d2)

and

(23) (X l + L1X
l−1 + . . .+ Ll)− (Y m +M1Y

m−1 + . . .+Mm)

have no non-constant common factor, then the resultant of both polynomials
with respect toX is a non-zero polynomial in Y which is a linear combination
of the polynomials (22) and (23). Since every sufficiently large solution (x, y)
of (8) is also a solution of (15), it follows that y is a zero of the resultant.
This implies that y is bounded. This contradicts our assumption that y is
sufficiently large. If (22) and (23) have a non-constant common factor, then
we see from Lemma 9 that (22) has to be divisible by (23).

Put g(Y ) = Y m+M1Y
m−1+. . .+Mm. By taking Y = 0, −d2, −2d2, . . . ,

−(mk − 1)d2 we find that each polynomial

fj(X) := X l + L1X
l−1 + . . .+ Ll − g(−jd2) (j = 0, 1, . . . ,mk − 1)

is a divisor of

X(X + d1) . . . (X + (lk − 1)d1).

However, g can assume each value at most m times. So in 0,−d2, . . . ,
−(mk − 1)d2 the polynomial g attains at least k distinct values. To each
value corresponds a polynomial fj(X) of degree l. Since X(X + d1) . . .
. . . (X + (lk − 1)d1) is a polynomial of degree lk and any two distinct poly-
nomials fj are coprime (their difference is constant), there are at most k
distinct polynomials fj . Thus the polynomials {fj}mk−1

j=0 split into k classes
of size m such that within a class the polynomials are identical and any two
polynomials from different classes are distinct.

First we consider the case where m is odd. We have shown that at the
points {−jd2 | 0 ≤ j < mk} the monic polynomial g of odd degree m > 2
attains exactly k distinct values and each value precisely m times. Denote
these values by v1 < v2 < . . . < vk and the points where g attains the value
vi by −ji,1d2 < −ji,2d2 < . . . < −ji,md2 (i = 1, . . . , k). By Rolle’s theorem
each interval (−ji,hd2,−ji,h+1d2) contains a zero of g′. Since g′ has only
m− 1 zeros, z1, z2, . . . , zm−1 say, these zeros are distinct and simple and

−ji,1d2 < z1 < −ji,2d2 < z2 < . . . < −ji,m−1d2 < zm−1 < −ji,md2

(i = 1, . . . , k).
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The polynomial g is increasing on (−∞, z1), decreasing on (z1, z2), increasing
on (z2, z3), . . . , increasing on (zm−1,∞). It follows that the set {−ji,1d2 | 1 ≤
i ≤ k} consists of the k extreme negative points {−jd2 | (m − 1)k ≤ j ≤
mk−1} and, more precisely, j1,1 = mk−1, j2,1 = mk−2, . . . , jk,1 = mk−k.
Further, we have the following scheme in case m is odd (↓ indicates g is
increasing, ↑ indicates g is decreasing):

v1 = g(−(mk − 1)d2) = . . .
→
= g(−(3k − 1)d2) = g(−kd2)

→
= g(−(k − 1)d2)

↓ ↓ ↑ ↓
v2 = g(−(mk − 2)d2) = . . . = g(−(3k − 2)d2) = g(−(k + 1)d2) = g(−(k − 2)d2)

↓ ↓ ↑ ↓
...

...
...

...
↓ ↓ ↑ ↓

vk−1 = g(−(mk − k + 1)d2) = . . . = g(−(2k + 1)d2) = g(−(2k − 2)d2) = g(−d2)
↓ ↓ ↑ ↓

vk = g(−(mk − k)d2)
→
= . . . = g(−2kd2)

→
= g(−(2k − 1)d2) = g(0)

Hence we have

g(Y ) = Y (Y + (2k − 1)d2)(Y + 2kd2)(Y + (4k − 1)d2) . . .

. . . (Y + (mk − k)d2) + vk

= (Y + d2)(Y + (2k − 2)d2)(Y + (2k + 1)d2)(Y + (4k − 2)d2) . . .

. . . (Y + (mk − k + 1)d2) + vk−1.

By putting Y = 0 and Y = −(2k − 1)d2 in the above equality we have

vk − vk−1 = dm2 · 1 · (2k − 2)(2k + 1)(4k − 2) . . . (mk − k + 1)

= dm2 · (−2k + 2)(−1)(2)(2k − 1) . . . (mk − 3k + 2),

which is impossible since m ≥ 3.
If m is even, a similar reasoning yields the following scheme:

v1 = g(−(mk − k)d2)
→
= . . .

→
= g(−(3k − 1)d2) = g(−kd2)

→
= g(−(k − 1)d2)

↑ ↓ ↑ ↓
v2 = g(−(mk − k + 1)d2) = . . . = g(−(3k − 2)d2) = g(−(k + 1)d2) = g(−(k − 2)d2)

↑ ↓ ↑ ↓
...

...
...

...
↑ ↓ ↑ ↓

vk−1 = g(−(mk − 2)d2) = . . . = g(−(2k + 1)d2) = g(−(2k − 2)d2) = g(−d2)
↑ ↓ ↑ ↓

vk = g(−(mk − 1)d2) = . . . = g(−2kd2)
→
= g(−(2k − 1)d2) = g(0)

Hence we have

g(Y ) = Y (Y + (2k − 1)d2)(Y + 2kd2)(Y + (4k − 1)d2) . . .

. . . (Y + (mk − 1)d2) + vk

= (Y + d2)(Y + (2k − 2)d2)(Y + (2k + 1)d2)(Y + (4k − 2)d2) . . .

. . . (Y + (mk − 2)d2) + vk−1.
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By putting Y = 0 and Y = −(2k − 1)d2 in the above equality we have

vk − vk−1 = dm2 · 1 · (2k − 2)(2k + 1)(4k − 2) . . . (mk − 2)

= dm2 · (−2k + 2)(−1)(2)(2k − 1) . . . (mk − 2k − 1),

which is impossible since m ≥ 4. In fact, the above argument is also valid
when m = 2 and k ≥ 3.
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