Values of polynomials with integer coefficients and distance to their common zeros

by

Francesco Amoroso (Pisa)

1. Introduction. Let $f_1, \ldots, f_m \in \mathbb{Z}[x_1, \ldots, x_n]$ be polynomials of maximum degree D and height (= maximum absolute value of the coefficients) $\leq H$ defining an affine variety $\mathbb{V} \subset \mathbb{C}^n$ of codimension k. Denote by dist the distance in \mathbb{C}^n with respect to the norm $|\omega| = \max_i |\omega_i|$. In [B] W. D. Brownawell proved the following inequality of Łojasiewicz type:

For any $\omega \in \mathbb{C}^n$ we have

$$\min\{\operatorname{dist}(\omega, \mathbb{V}), 1\}^{(n+1)^2} \le C_1^D(H \max\{1, |\omega|\}^2)^{C_2} \max_i |f_i(\omega)|^{D^{-n}}$$

where
$$C_1 = \exp\{11(n+1)^5\}$$
 and $C_2 = (n+1)^2$.

This result is essentially the best possible, except perhaps for the values of the constants and for the exponent $(n+1)^2$ in the left hand side. S. Ji, J. Kollár and B. Shiffman [J-K-S] have recently proved a similar result for polynomials over a field of arbitrary characteristic without this exponent but with an ineffective dependence on the coefficients. In spite of that, we can look for other relations between the values of the f_i 's and the distance to their common zeros in \mathbb{C}^n . For a polynomial $f \in \mathbb{Z}[x_1, \ldots, x_n]$ we denote its size (= degree + logarithmic height) by t(f); for $\alpha \in \mathbb{C}^n$ we also denote by $t(\alpha)$ the minimum size of a non-zero polynomial $f \in \mathbb{Z}[x_1, \ldots, x_n]$ for which $f(\alpha) = 0$ (if there are no such polynomials we put $t(\alpha) = \infty$). In this paper we deal with the following problem:

Let ω be in the unit ball of \mathbb{C}^n and suppose that

(1)
$$\max_{i} |f_i(\omega)| < \exp\{-C\{\max_{i} t(f_i)\}^{\tau}\}$$

for some C greater than a constant A = A(n) and for some $\tau \ge n+1$. Find the best value $\eta = \eta(\tau, n, k)$ for which there exist constants e = e(n, k) and

¹⁹⁹¹ Mathematics Subject Classification: Primary 11J25; Secondary 11J82.

B = B(n) such that

$$B = B(n) \text{ such that}$$

$$(2) \qquad \min_{\substack{\alpha \in \mathbb{C}^n \\ f_i(\alpha) = 0}} |\alpha - \omega| < \exp\{-B^{-1}C^e t(\alpha)^{\eta}\}.$$

Roughly speaking, we are looking for an upper bound for transcendence measures in terms of approximation measures (for definitions see [P2]). If n=1, this problem is completely solved: we can take $\eta=\tau$. In the general case, only partial results are known. For example, using a theorem of P. Philippon, it is easy to see that we can choose $\eta = \tau - n$ (here -n corresponds to D^{-n} in Brownawell's inequality), and we conjecture that this exponent can be replaced by τ . In the present paper we prove this in three special cases: if $\tau = n + 1$, if \mathbb{V} is discrete, or if n = 2. Our first result is the following theorem:

Theorem 1. For any integer $n \geq 1$ there exist two constants A, B > 0having the following property. Let f_1, \ldots, f_m and ω be as before and assume that (1) holds for some $\tau \geq n+1$ and some C > A. Then, if the affine variety \mathbb{V} defined by the f_i 's has codimension k, we can find $\alpha \in \mathbb{V}$ such that (2) holds with

(3)
$$\eta = \max \left\{ n + 1 + \frac{\tau - (n+1)}{n+1-k}, \tau - n \right\}$$

and

$$e = \begin{cases} 1 & \text{if } \eta = \tau - n, \\ 2^{-n+k} & \text{otherwise.} \end{cases}$$

Notice that $\eta = \tau$ if $\tau = n + 1$ or if k = n (i.e. if \mathbb{V} is discrete).

The case m=1 is of particular interest. First of all, Theorem 1 allows us to give a positive answer to the following conjecture of G. V. Chudnovsky (see [C], Problem 1.3, p. 178):

For any integer $n \geq 1$ there exists a positive constant C such that for almost all ω in the unit ball of \mathbb{C}^n (in the sense of the Lebesgue measure in \mathbb{R}^{2n}) the inequality $\log |f(\omega)| \leq -Ct(f)^{n+1}$ has only finitely many solutions $f \in \mathbb{Z}[x_1,\ldots,x_n].$

Indeed, it is easy to see that for any $n \in \mathbb{N}$ there exists a positive constant C such that the set of ω 's in the unit ball of \mathbb{C}^n for which the inequality

$$|\alpha - \omega| < \exp\{-Ct(\alpha)^{n+1}\}$$

has infinitely many solutions $\alpha \in \mathbb{C}^n$ is negligible for the Lebesgue measure (see the proof of [A], Proposition 5). Using Theorem 1, we immediately obtain Chudnovsky's conjecture.

Moreover, for m=1 and $n\geq 2$, (3) can be easily improved to

$$\eta = \max\left\{n + \frac{\tau - 2}{n - 1}, \tau - 1\right\}$$

(see Theorem 2 in §3), which implies the full conjecture $\eta = \tau$ for n = 2. On the other hand, in [A] we proved (in a slightly weaker form) that we can choose for η the maximum between $\tau - 2 + \tau/n$ and the positive root of $x^2 + (1 - \tau)x + n - 1 - \tau = 0$. This result approaches our conjecture for $\tau \to \infty$, but, unfortunately, the proof given in [A] contains some minor errors. In the appendix we shall give a proof of the slightly weaker result

$$\eta > 0$$
, $\eta^2 + (1 - \tau)\eta + n - \tau = 0$

(which also approaches our conjecture) and corrections of other mistakes which occur in [A] (1).

2. Technical results. For the proofs, we use the theory of Chow forms, as developed by Yu. V. Nesterenko (see [N1], [N2] and [N3]) and by P. Philippon (see [P1] and [P2]). We briefly summarize the notations employed by Nesterenko. Given a homogeneous unmixed ideal I of rank n+1-r in the ring $\mathbb{Z}[x_0,\ldots,x_n]$ having Chow form $F=F(u^1,\ldots,u^r)\in\mathbb{Z}[u^1_0,\ldots,u^r_n]$, we denote by H(I) the maximum absolute value of the coefficients of F, by N(I) the degree of F with respect to u^1_0,\ldots,u^1_n , and by t(I) the number $N(I) + \log H(I)$. Given ω' in the projective space \mathbb{P}^n over \mathbb{C} , we define $|I|_{\omega'}$ as

$$|I|_{\omega'} = H(\kappa(F))/|\omega'|^{rN(I)},$$

where $H(\kappa(F))$ is the maximum absolute value of the coefficients of the polynomial

$$\kappa(F) \in \mathbb{C}[s_{j,k}^i]_{\substack{i=1,\dots,r\\0\leq j < k \leq n}}$$

obtained by replacing in F the vectors u^i by $S^i\omega'$, with S^i $(i=1,\ldots,r)$ being skew-symmetric matrices in the new variables $s^i_{j,k}$ $(0 \le j < k \le n)$. For more details, see [N3] (Nesterenko uses the notation $|I(\omega')|$ instead of $|I|_{\omega'}$). Given a homogeneous polynomial $Q \in \mathbb{Z}[x_0,\ldots,x_n]$ and $\omega' \in \mathbb{P}^n$ we let

$$|Q|_{\omega'} = |Q(\omega')|/|\omega'|^{\deg Q}.$$

We start with an easy consequence of the box principle.

LEMMA 1. Let $n \geq 1$ be an integer and let $\omega' \in \mathbb{P}^n$. Then there exist two positive constants c_1 and c_2 depending only on n such that for any real number $N > c_1$ there exists a non-zero homogeneous polynomial $Q \in \mathbb{Z}[x_0, \ldots, x_n]$ with $size \leq N$ satisfying

$$|Q|_{\omega'} \le \exp\{-c_2 N^{n+1}\}.$$

Proof. Let H and d be two positive integers and let Λ be the set of homogeneous polynomials $Q \in \mathbb{Z}[x_0, \ldots, x_n]$ of degree d with non-negative

⁽¹⁾ I am grateful to Yurii Nesterenko who drew my attention to these mistakes.

coefficients bounded by H. This set has cardinality $(H+1)^D$, $D=\binom{d+n}{n}$, and for any $Q \in \Lambda$ we have $|Q|_{\omega'} \leq DH$. Let

$$\delta = \min_{Q_1, Q_2 \in \Lambda, Q_1 \neq Q_2} |Q_1 - Q_2|_{\omega'}.$$

The ball in \mathbb{C} with centre at the origin and radius $DH + \delta/2$ contains the disjoint union of the open balls of centre $Q(\omega')|\omega'|^{-d}$ $(Q \in \Lambda)$ and radius $\delta/2$. This gives

$$\delta \le \frac{2DH}{(H+1)^D - 1} \le 2DH^{1-D}$$

and so there exist two polynomials $Q_1, Q_2 \in \Lambda$, $Q_1 \neq Q_2$, such that

$$|Q_1 - Q_2|_{\omega'} \le 2DH^{1-D}.$$

The polynomial $Q=Q_1-Q_2$ has degree d, height (= maximum absolute value of the coefficients) $\leq H$ and satisfies $|Q|_{\omega'} \leq 2DH^{1-D}$. The lemma follows upon taking d=[N/2] and $H=[\exp\{N/2\}]$.

Given ω' , α' in the complex projective space \mathbb{P}^n , we put

$$d(\alpha', \omega') = \frac{\max_{0 \le i < j \le n} |\omega_i' \alpha_j' - \omega_j' \alpha_i'|}{\max_{0 < i < n} |\alpha_i'| \max_{0 < i < n} |\omega_i'|}$$

Remark. Let $\omega' = (1, \omega)$ where ω is in the unit ball of \mathbb{C}^n and assume $d(\alpha', \omega') < 1$. Then $\alpha'_0 \neq 0$ and the vector $\alpha \in \mathbb{C}^n$ defined by $\alpha_i = \alpha'_i/\alpha'_0$ (i = 1, ..., n) satisfies $|\alpha - \omega| \leq \max\{1, |\alpha|\}d(\alpha', \omega')$. This gives $\max\{1, |\alpha|\} \leq (1 - d(\alpha', \omega'))^{-1}$ and so

$$|\alpha - \omega| \le \frac{d(\alpha', \omega')}{1 - d(\alpha', \omega')}.$$

In particular, if $d(\alpha', \omega') \leq 1/2$, we have $|\alpha - \omega| \leq 2d(\alpha', \omega')$.

LEMMA 2. For any integer $n \geq 1$ there exists a constant A > 0 having the following property. Let $k \leq n$ be a positive integer, let $\tau \geq k+1$, $\eta \in [n+1,\tau+n-k]$ and $\theta > 1$ be real numbers and let $\omega' \in \mathbb{P}^n$. Assume that there exists a homogeneous prime ideal $\wp \subset \mathbb{Z}[x_0,\ldots,x_n]$ of rank k such that $\wp \cap \mathbb{Z} = \{0\}$ and

$$|\wp|_{\omega'} < \exp\{-Ct(\wp)^{\tau/k}\}$$

for some $C \geq A\theta$. Then either there exists $\alpha' \in \mathbb{V}_{\mathbb{P}}(\wp)$, the projective variety defined by \wp , such that

$$d(\alpha', \omega') < \exp\{-A^{-1}\theta t(\alpha')^{\eta}\},\$$

or there exists a homogeneous prime ideal $\wp' \subset \mathbb{Z}[x_0, \ldots, x_n]$ of rank k+1 such that $\wp' \cap \mathbb{Z} = \{0\}, \ \wp' \supset \wp$ and

$$|\wp'|_{\omega'} < \exp\{-A^{-1}\theta^{-1}Ct(\wp')^{(n+1-\eta+\tau)/(k+1)}\}.$$

Moreover, if k = n or if $\eta < \tau - k$, the first case occurs.

Proof. Denote by c_3, \ldots, c_{10} positive constants depending only on k, n, τ and η . If $\omega' \in \mathbb{V}_{\mathbb{P}}(\wp)$ we put $\alpha' = \omega$; otherwise let $\alpha' \in \mathbb{V}_{\mathbb{P}}(\wp)$ be such that $\delta = d(\omega', \alpha') > 0$ is minimal. Using Lemma 6 of [N3], we see that

$$(4) -\delta > Ct(\wp)^{(\tau-k)/k} - c_3.$$

Moreover, Corollary 3 of [N1] gives

$$(5) t(\alpha') \le c_4 t(\wp)^{1/k}.$$

Hence

(6)
$$-\delta > (Cc_4^{-\tau+k} - c_3)t(\alpha')^{\tau-k} \ge A^{-1}\theta t(\alpha')^{\eta}$$

provided that $\eta \le \tau - k$ and A is sufficiently large. Now assume $\eta > \tau - k$ and put

$$N = \theta^{-y} t(\wp)^{-x} (-\delta)^y$$

where

$$x = \frac{\eta - (n+1) + \tau/k}{\eta + (n+1)k - \tau} > 0$$
 and $y = \frac{k+1}{\eta + (n+1)k - \tau} \ge 1/n$.

From (4) and from $\eta \leq \tau + n - k$ we obtain

$$N \ge \theta^{-y} t(\wp)^{-x} (Ct(\wp)^{\tau/k-1} - c_1)^y$$

$$\ge \theta^{-y} (C - c_1)^y t(\wp)^{(\tau+n-k-\eta)/(\eta+(n+1)k-\tau)} \ge c_1$$

provided that A is sufficiently large. Therefore, Lemma 1 gives a non-zero homogeneous polynomial $Q \in \mathbb{Z}[x_0, \dots, x_n]$ which satisfies

$$(7) t(Q) \le N,$$

(8)
$$|Q|_{\omega'} \le \exp\{-c_2 N^{n+1}\}.$$

We distinguish three cases:

• First case: $Q \notin \wp$ and $\mu := c_2 N^{n+1} (-\delta)^{-1} < 1$. By (8) we have $|Q|_{\omega'} \le \exp\{\mu\delta\}$. If k < n, Lemma 4 of [N3] gives a homogeneous ideal $I \subset \mathbb{Z}[x_0,\ldots,x_n]$ of pure rank k+1 whose zeros coincide with the zeros of the ideal (\wp,Q) and such that

$$(9) t(I) \le c_5 t(Q) t(\wp),$$

(10)
$$\log |I|_{\omega'} \le \mu \log |\wp|_{\omega'} + c_6 t(\wp) t(Q).$$

Taking into account (10), (7), $\eta \le \tau + n - k$ and (9), we get

$$\log |I|_{\omega'} \le -c_2 C N^{n+1} (-\delta)^{-1} t(\wp)^{\tau/k} + c_6 t(\wp) N$$

= $-c_2 \theta^{-1} C(t(\wp) N)^{(n+1-\eta+\tau)/(k+1)} + c_6 t(\wp) N$
 $\le -(c_2 \theta^{-1} C - c_6) (c_5^{-1} t(I))^{(n+1-\eta+\tau)/(k+1)}.$

Proposition 2 of [N2] gives a homogeneous prime ideal $\wp' \in \mathbb{Z}$ of rank k+1 whose zeros are zeros of I such that $\wp' \cap \mathbb{Z} = \{0\}$ and

(11)
$$\log |\wp'|_{\omega'} < -c_7(\theta^{-1}C - c_8)t(\wp')^{(n+1-\eta+\tau)/(k+1)}$$

$$\leq -c_9\theta^{-1}Ct(\wp')^{(n+1-\eta+\tau)/(k+1)}$$

provided that A is sufficiently large.

If k = n, the same Lemma 4 of [N3] gives $\mu \log |\wp|_{\omega'} + c_6 t(\wp) t(Q) \ge 0$, which cannot occur if A is sufficiently large.

• Second case: $Q \notin \wp$ and $\mu \geq 1$. Taking into account (5) we obtain

$$(12) -\delta \ge c_{10}\theta^{(n+1)y/((n+1)y-1)}t(\alpha')^{k(n+1)x/((n+1)y-1)} \ge A^{-1}\theta t(\alpha')^{\eta}$$

since

$$\frac{k(n+1)x}{(n+1)y-1} - \eta = \frac{(\eta - n - 1)(\eta - \tau + k(n+1))}{\tau + (n+1) - \eta} \ge 0.$$

• Third case: $Q \in \wp$. Using (7) and (5), we obtain

$$t(\alpha') \le t(Q) \le \theta^{-y} t(\wp)^{-x} (-\delta)^y \le c_4^{kx} \theta^{-y} t(\alpha')^{-kx} (-\delta)^y$$

and

$$(13) -\delta \ge A^{-1}\theta t(\alpha')^{\eta}.$$

Our assertion comes from (6), (11), (12) and (13).

By induction we deduce the following

PROPOSITION 1. For any integer $n \geq 1$ there exists a positive constant B having the following property. Let $k \leq n$ be a positive integer and let $\omega' \in \mathbb{P}^n$. Assume that there exists a homogeneous prime ideal $\wp \subset \mathbb{Z}[x_0, \ldots, x_n]$ of rank k such that $\wp \cap \mathbb{Z} = \{0\}$ and

$$|\wp|_{\omega'} < \exp\{-Ct(\wp)^{\tau/k}\}$$

for some $C \geq B$ and some $\tau \geq n+1$. Then there exists $\alpha' \in \mathbb{V}_{\mathbb{P}}(\wp)$ such that

$$d(\alpha', \omega') < \{-B^{-1}C^e t(\alpha')^{\eta}\}$$

where

$$\eta = \max\left\{n + 1 + \frac{\tau - (n+1)}{n+1-k}, \tau - k\right\}$$

and

$$e = \begin{cases} 1 & \text{if } \eta = \tau - k, \\ 2^{-n+k} & \text{otherwise.} \end{cases}$$

Proof. If $\eta = \tau - k$, Lemma 2 gives our claim. Assume

$$\eta = n + 1 + \frac{\tau - (n+1)}{n+1-k}.$$

From $\tau \geq n+1$ we obtain $\eta \geq n+1$. We shall prove the proposition by induction on k.

• k = n. Lemma 2, with $\theta = A^{-1}C$, gives $\alpha' \in \mathbb{V}_{\mathbb{P}}(\wp)$ such that

$$d(\alpha', \omega') < \exp\{-A^{-2}Ct(\alpha')^{\eta}\}.$$

• k < n. We apply Lemma 2 with $\theta = C^{1/2}$. If there exists $\alpha' \in \wp$ such that

$$d(\alpha', \omega') < \exp\{-A^{-1}C^{1/2}t(\alpha')^{\eta}\}$$

our assertion follows. Otherwise, there exists a homogeneous prime ideal $\wp' \supset \wp$ of rank k+1 such that $\wp' \cap \mathbb{Z} = \{0\}$ and

$$|\wp'|_{\omega'} < \exp\{-A^{-1}C^{1/2}t(\wp')^{\tau'/(k+1)}\},$$

with $\tau' = n + 1 - \eta + \tau$. By inductive hypothesis, we can find $\alpha' \in \wp$ with

$$d(\alpha', \omega') < \exp\{-B^{-1}C^{2^{-n+k}}t(\alpha')^{\eta'}\}$$

where

$$\eta' = n + 1 + \frac{\tau' - (n+1)}{n-k} = \eta.$$

Using Theorem 2 of [P2] (with $I_{N,1} = \ldots = I_{N,k+1} = (Q_N)$ and the polynomial Q_N of size $\leq N$ given by Lemma 1 as in the proof of Lemma 2) we find a result similar to the previous one but with a worse exponent:

For any integer n there exist constants A, B > 0 having the following property. Let $k \le n$ be an integer, $\tau \ge n+1$ a real number and let $\omega' \in \mathbb{P}^n$. Assume that there exists a homogeneous prime ideal $\wp \subset \mathbb{Z}[x_0, \ldots, x_n]$ of rank k such that $\wp \cap \mathbb{Z} = \{0\}$ and

$$|\wp|_{\omega'} < \exp\{-At(\wp)^{\tau/k}\}.$$

Then we can find $(1, \alpha) \in \mathbb{C}^n$ such that

$$d(\alpha', \omega') < \exp\{-B^{-1}t(\alpha')^{\eta}\}\$$

where

$$\eta = n + 1 + k \frac{\tau - (n+1)}{(n+1-k)\tau}.$$

3. Proof of the main results. We have a relation between the value of a homogeneous prime ideal \wp at $\omega' \in \mathbb{P}^n$ and its projective distance from the variety defined by \wp . Our next task is to put it in terms of polynomials.

LEMMA 3. Let $P_1, \ldots, P_m \in \mathbb{Z}[x_0, \ldots, x_n]$ be non-zero homogeneous polynomials of size $\leq T$ and let $\omega' \in \mathbb{P}^n$. Let $\varepsilon = \max_i |P_i|_{\omega'}$ and assume $\varepsilon < \exp\{-AT^{n+1}\}$ where A > 0 depends only on n. Then there exists

an unmixed homogeneous ideal $J \subset \mathbb{Z}[x_0, \dots, x_n]$ of rank $k \leq n$ such that $\sqrt{J\mathbb{Q}[x_0, \dots, x_n]} \cap \mathbb{Z}[x_0, \dots, x_n] \supset I = (P_1, \dots, P_m)$ (2) and

$$t(J) \le B_1 T^k, \quad |J|_{\omega'} \le \varepsilon^{B_2^{-1}}$$

where A, B_1 and B_2 are positive constants depending only on n.

Proof. Denote by $c_{h,11},\ldots,c_{h,16}$ $(h=1,\ldots,n+1)$ positive constants depending only on n. We will show by induction that for $h=1,\ldots,n+1$ there exist unmixed homogeneous ideals $J_h \subset \mathbb{Z}[x_0,\ldots,x_n]$ of rank h such that $J_h \cap \mathbb{Z} = \{0\}$ (for $h \leq n$) and

$$(14_h) t(J_h) \le c_{h+1}^h T^h, |J_h|_{\omega'} \le \varepsilon^{c_{h,12}}.$$

Since the last inequalities fail for h = n + 1, our assertion will be proved.

- h = 1. We take $J_1 = (P_1)$ and we apply Proposition 1 of [N3].
- $h \Rightarrow h+1$. Assume (14_h) satisfied for some $h \leq n$ and for some ideal J_h . We denote by $J_{h,1}$ the intersection of the primary components of J_h whose radical contains I and by $J_{h,2}$ the intersection of the other components. Using [N2], Proposition 2, and Gelfond's inequality [G], Lemma II, p. 135, it is easy to see that

(15)
$$t(J_{h,1}) \le c_{h,13}T^h, \quad t(J_{h,2}) \le c_{h,13}T^h, \\ |J_{h,1}|_{\omega'}|J_{h,2}|_{\omega'} < \varepsilon^{c_{h,12}} \exp\{c_{h,14}T^h\} \le \varepsilon^{c_{h,12}-c_{h,14}/A}.$$

Since we are assuming that our claim is wrong, we must have $|J_{h,1}|_{\omega'} \geq \varepsilon^{B_2^{-1}}$; therefore

(16)
$$|J_{h,2}|_{\omega'} < \varepsilon^{c_{h,12} - c_{h,14}/A - 1/B_2}.$$

A classical trick (see for instance [P1], Lemma 1.9) allows us to find homogeneous polynomials $a_1, \ldots, a_m \in \mathbb{Z}[x_0, \ldots, x_n]$ with $\deg a_j = \max(\deg P_i) - \deg P_j$ $(j = 1, \ldots, m)$ such that $P = a_1 P_1 + \ldots + a_m P_m$ is not a zero-divisor on $\mathbb{Z}[x_0, \ldots, x_n]/J_{h,2}$. Moreover, we can choose the a_i 's in such a way that their heights are bounded by the number of irreducible components of $J_{h,2}$ and so, a fortiori, by $c_{h,13}T^h$. From this, we obtain

$$t(P) \le c_{h,15}T, \quad |Q|_{\omega'} \le \varepsilon^{c_{h,16}}.$$

Using (15), (16) and the last inequalities, Proposition 3 of [N2] gives an unmixed ideal $J_{h+1} \subset \mathbb{Z}[x_0,\ldots,x_n]$ of rank h+1 such that inequalities (14_{h+1}) hold.

Using Proposition 2 of [N2], we easily deduce

PROPOSITION 2. For any integer $n \ge 1$ there exist two constants A, B > 0 having the following property. Let $\tau \ge n+1$ be a real number and let $\omega' \in \mathbb{P}^n$.

 $^(^2)$ rank(J) may be greater than rank(I).

Assume that there exist non-zero homogeneous polynomials $P_1, \ldots, P_m \in \mathbb{Z}[x_0, \ldots, x_n]$ of size $\leq T$ such that $\max_i |P_i|_{\omega'} < \exp\{-CT^\tau\}$ for some $C \geq A$. Then there exists a homogeneous prime ideal $\wp \subset \mathbb{Z}[x_0, \ldots, x_n]$ of rank $k \leq n$ such that $\wp \cap \mathbb{Z} = \{0\}, \wp \supset (P_1, \ldots, P_m)$ and

$$|\wp|_{\omega'} < \exp\{-B^{-1}Ct(\wp)^{\tau/k}\}.$$

Proof of Theorem 1. Let f_1, \ldots, f_m be as in Theorem 1, let $P_i = {}^h f_i$ be the homogenization of f_i $(i=1,\ldots,m)$ and let $\omega'=(1,\omega)$. Applying Proposition 1 to the homogeneous prime ideal \wp given by Proposition 2 (which has rank $\geq k$ since $x_0 \notin \wp$) and using the remark before Lemma 2, we obtain our claim.

To improve the previous theorem when m = 1, we need the following lemma of Chudnovsky (see [C], Lemma 1.1, p. 424).

LEMMA 4. Let $f \in \mathbb{C}[x_1, \ldots, x_n]$ of degree $\leq d$ and let $\omega \in \mathbb{C}^n$. Then for any $\lambda \in \mathbb{N}^n$ there exists a zero $\alpha \in \mathbb{C}^n$ of f such that

$$\frac{1}{|\lambda|!} \left| \frac{\partial^{\lambda} f(\omega)}{\partial x^{\lambda}} \right| |\alpha - \omega|^{|\lambda|} \le 2^{d} |f(\omega)|$$

(here $|\lambda| = \lambda_1 + \ldots + \lambda_n$).

THEOREM 2. For any integer $n \geq 2$ there exists a constant B > 0 having the following property. Let $f \in \mathbb{Z}[x_1, \ldots, x_n]$ of size $\leq T$ and let ω be in the unit ball of \mathbb{C}^n such that

$$|f(\omega)| < \exp\{-CT^{\tau}\}$$

for some $C \geq B$ and some $\tau \geq n+1$. Then there exists $\alpha \in \mathbb{C}^n$ on the hypersurface $\{f=0\}$ such that

$$(17) |\alpha - \omega| < \exp\{-B^{-1}C^e t(\alpha)^{\eta}\},$$

where

$$\eta = \max\left\{n + \frac{\tau - 2}{n - 1}, \tau - 1\right\}$$

and

$$e = \begin{cases} 1 & \text{if } \eta = \tau - 1, \\ 2^{-n+2} & \text{otherwise.} \end{cases}$$

Proof. We can assume f irreducible and $D_{x_1}f = \partial f/\partial x_1 \not\equiv 0$. Inequality (17) with $\eta = \tau - 1$ and e = 1 is easily proved applying Proposition 1 to the principal prime ideal $\wp = (f)$. Moreover, if

$$|D_{x_1}f(\omega)| \ge \exp\left\{-\frac{C}{2}t(f)^{\tau}\right\},$$

Lemma 4 gives $\alpha \in \mathbb{C}^n$ such that $f(\alpha) = 0$ and

$$\log|\alpha - \omega| < -\frac{C}{4}t(f)^{\tau}.$$

In this case, (17) is proved with $\eta = \tau$ and e = 1. Otherwise, using Proposition 2 with $P_1 = {}^h f$ and $P_2 = {}^h D_{x_1} f$, we can find a homogeneous prime ideal $\wp \subset \mathbb{Z}[x_1, \ldots, x_n]$ of rank ≥ 2 (actually = 2), containing the ideal $({}^h f, {}^h D_{x_1} f)$, such that $|\wp|_{\omega'} < \exp\{-c_{17}Ct(\wp)^{\tau/2}\}$. Proposition 1 and the remark before Lemma 2 give (17) with

$$\eta = n + 1 + \frac{\tau - (n+1)}{n-1} = n + \frac{\tau - 2}{n-1}$$

and $e = 2^{-n+2}$.

Appendix: Corrections to "Polynomials with high multiplicity" (Acta Arith. 56 (1990), 345–364). In this section we refer to lemmas, propositions, theorems, numbers of equations and lines of the paper [A] using italic type.

The inequalities (5) on p. 354 are not true. More precisely, define for $k = 1, \ldots, k_0$ and $j = 1, \ldots, s_k$,

$$\Lambda_{jk} = \mathbb{V}_{\mathbb{P}}(\wp_{j,h}) \setminus \bigcup_{h=1}^{k-1} \bigcup_{j=1}^{s_h} \mathbb{V}_{\mathbb{P}}(\wp_{j,h}),$$

where the symbols have the same meaning as in [A]. Lemma 4 on p. 354 gives

$$i_{\omega}(J_k) \ge \prod_{h=0}^{k-1} (t_k M - t_h M)$$
 for any $\omega \in \Lambda_{jk}$.

If Λ_{jk} is not empty, it is a non-empty Zariski open set in $\mathbb{V}_{\mathbb{P}}(\wp_{j,h})$, and so $e_{jk} \geq \prod_{h=0}^{k-1} (t_k M - t_h M)$ as claimed on p. 355, l. 9. So, inequalities (5) hold if $\Lambda_{jk} \neq \emptyset$. On the other hand, from (4) and the definition of these sets, it is easy to see that

(18)
$$\mathbb{V}_{M} \subset \bigcup_{k=1}^{k_{0}} \bigcup_{\substack{j=1,\dots,s_{k}\\\Lambda_{jk}\neq\emptyset}} \mathbb{V}_{\mathbb{P}}(\wp_{j,k}).$$

Now, the same arguments used on p.~354, l.~8-11 give a polynomial

$$g_k \in \bigcap_{\substack{j=1,\dots,s_k\\\Lambda_{jk} \neq \emptyset}} \wp_{j,k}$$

of size $\leq c_6 T/M$. As in *l.* 12 we put $g = \prod_{k=1}^{k_0} g_k$. Then (18) ensures that g is zero over \mathbb{V}_M and we have $t(g) \leq c_7 T/M$.

Unfortunately, a problem now arises in the inequality in l. -8/-7, p. 362 in the proof of *Theorem 2*, since (5) is available only if $\Lambda_{jk} \neq \emptyset$. This additional complication does not occur if n = 2 ($s_1 = 0$ since f is irreducible), so our result

$$\tau \le \eta + \max\left(0, \frac{4-\eta}{3}\right), \quad n = 2,$$

is still true (but it is now sharpened by Theorem 2). In the general case, however, we can easily deduce from Proposition 2 and from *Theorem 1* a weak form of *Theorem 2*:

$$\tau \le \eta + \frac{n}{\eta + 1}.$$

A more precise formulation of this result is the following theorem, announced in the introduction:

THEOREM 3. For any integer $n \ge 1$ there exist constants A, B > 0 having the following property. Let $f \in \mathbb{Z}[x_1, \ldots, x_n]$ and let ω be in the unit ball of \mathbb{C}^n . Suppose that $|f(\omega)| < \exp\{-CT^{\tau}\}$ for C > A and $\tau \ge n + 1$. Then we can find $\alpha \in \mathbb{C}^n$ on the hypersurface $\{f = 0\}$ such that

$$|\alpha - \omega| < \exp\{-B^{-1}Ct(\alpha)^{\eta}\}\$$

where η is the positive root of $\eta^2 + (1 - \tau)\eta + n - \tau = 0$.

Proof. We define $M \geq 1$ as the first integer for which there exists $\lambda \in \mathbb{N}^n$ with $|\lambda| = M$ such that

$$\left| \frac{1}{M!} \left| \frac{\partial^{\lambda} f(\omega)}{\partial x^{\lambda}} \right| > -\frac{C}{2} t(f)^{\tau}.\right|$$

Let

$$u = \frac{\log M}{\log t(f)} \in [0, 1].$$

Lemma 4 gives $\alpha \in \mathbb{C}^n$ with $f(\alpha) = 0$ and

$$(19) |\alpha - \omega| < \left\{ -\frac{C}{4}t(f)^{\tau - u} \right\}.$$

On the other hand, Proposition 2 with

$${P_1, \dots, P_m} = \left\{ \frac{1}{\lambda!} \frac{\partial^{\lambda} f}{\partial x^{\lambda}}, |\lambda| \le M - 1 \right\}$$

and Lemma 6 of [N3] give a point α of multiplicity $\geq M$ on the hypersurface $\{f=0\}$ such that

$$|\alpha - \omega| < \exp\{-c_{18}Ct(f)^{\tau - n}\}.$$

By Theorem 1, $t(\alpha) \leq c_{19}t(f)/M$, hence

$$|\alpha - \omega| < \exp\{-c_{20}Ct(\alpha)^{(\tau - n)/(1 - u)}\}.$$

Combining the last inequality with inequality (19), we find $\omega \in \mathbb{C}^n$ on the hypersurface $\{f=0\}$ which satisfies

$$|\alpha - \omega| < \exp\{-c_{21}Ct(\alpha)^{\min\{(\tau - n)/(1 - u), \tau - u\}}\}.$$

Since

$$\min_{0 \leq u \leq 1} \min \left\{ \frac{\tau - n}{1 - u}, \tau - u \right\} = \eta,$$

our assertion follows.

References

- [A] F. Amoroso, Polynomials with high multiplicity, Acta Arith. 56 (1990), 345–364.
- [B] W. D. Brownawell, Local diophantine Nullstellen inequalities, J. Amer. Math. Soc. 1 (1988), 311–322.
- [C] G. V. Chudnovsky, Contribution to the theory of transcendental numbers, Math. Surveys Monographs 19, Amer. Math. Soc., 1984.
- [G] A. O. Gelfond, Transcendental and Algebraic Numbers, Dover, New York, 1960.
- [J-K-S] S. Ji, J. Kollár and B. Shiffman, A global Lojasiewicz inequality for algebraic varieties, Trans. Amer. Math. Soc. 329 (1992), 813–818.
 - [N1] Yu. V. Nesterenko, Estimates for the characteristic function of a prime ideal, Mat. Sb. 123 (1984), 11–34 = Math. USSR-Sb. 51 (1985), 9–32.
 - [N2] —, On algebraic independence of algebraic powers of algebraic numbers, Mat. Sb. 123 (1984), 435–459 = Math. USSR-Sb. 51 (1985), 429–453.
 - [N3] —, On a measure of the algebraic independence of the values of certain functions, Math. USSR-Sb. 56 (1987), 545–567.
 - [P1] P. Philippon, Critères pour l'indépendance algébrique, Inst. Hautes Études Sci. Publ. Math. 64 (1986), 5–52.
 - [P2] —, Sur les mesures d'indépendance algébrique, in: Séminaire de Théorie des Nombres, Paris 1983-84, Birkhäuser, 1985, 219–233.
 - [W] M. Waldschmidt, Nombres transcendants, Springer, Berlin, 1974.

DIPARTIMENTO DI MATEMATICA VIA F. BUONARROTI 2 56127 PISA, ITALY

> Received on 7.9.1992 and in revised form on 28.4.1994 (2301)