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1. Introduction. Let f1, . . . , fm ∈ Z[x1, . . . , xn] be polynomials of max-
imum degree D and height (= maximum absolute value of the coefficients)
≤ H defining an affine variety V ⊂ Cn of codimension k. Denote by dist the
distance in Cn with respect to the norm |ω| = maxi |ωi|. In [B] W. D. Brow-
nawell proved the following inequality of Łojasiewicz type:

For any ω ∈ Cn we have

min{dist(ω,V), 1}(n+1)2 ≤ CD1 (H max{1, |ω|}2)C2 max
i
|fi(ω)|D−n

where C1 = exp{11(n+ 1)5} and C2 = (n+ 1)2.

This result is essentially the best possible, except perhaps for the values
of the constants and for the exponent (n + 1)2 in the left hand side. S. Ji,
J. Kollár and B. Shiffman [J-K-S] have recently proved a similar result for
polynomials over a field of arbitrary characteristic without this exponent
but with an ineffective dependence on the coefficients. In spite of that, we
can look for other relations between the values of the fi’s and the distance
to their common zeros in Cn. For a polynomial f ∈ Z[x1, . . . , xn] we denote
its size (= degree + logarithmic height) by t(f); for α ∈ Cn we also denote
by t(α) the minimum size of a non-zero polynomial f ∈ Z[x1, . . . , xn] for
which f(α) = 0 (if there are no such polynomials we put t(α) =∞). In this
paper we deal with the following problem:

Let ω be in the unit ball of Cn and suppose that

(1) max
i
|fi(ω)| < exp{−C{max

i
t(fi)}τ}

for some C greater than a constant A = A(n) and for some τ ≥ n+ 1. Find
the best value η = η(τ, n, k) for which there exist constants e = e(n, k) and
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B = B(n) such that

(2) min
α∈Cn
fi(α)=0

|α− ω| < exp{−B−1Cet(α)η}.

Roughly speaking, we are looking for an upper bound for transcendence
measures in terms of approximation measures (for definitions see [P2]). If
n = 1, this problem is completely solved: we can take η = τ . In the gen-
eral case, only partial results are known. For example, using a theorem of
P. Philippon, it is easy to see that we can choose η = τ − n (here −n cor-
responds to D−n in Brownawell’s inequality), and we conjecture that this
exponent can be replaced by τ . In the present paper we prove this in three
special cases: if τ = n+ 1, if V is discrete, or if n = 2. Our first result is the
following theorem:

Theorem 1. For any integer n ≥ 1 there exist two constants A,B > 0
having the following property. Let f1, . . . , fm and ω be as before and assume
that (1) holds for some τ ≥ n + 1 and some C > A. Then, if the affine
variety V defined by the fi’s has codimension k , we can find α ∈ V such that
(2) holds with

(3) η = max
{
n+ 1 +

τ − (n+ 1)
n+ 1− k , τ − n

}

and
e =

{
1 if η = τ − n,
2−n+k otherwise.

Notice that η = τ if τ = n+ 1 or if k = n (i.e. if V is discrete).
The case m = 1 is of particular interest. First of all, Theorem 1 allows us

to give a positive answer to the following conjecture of G. V. Chudnovsky
(see [C], Problem 1.3, p. 178):

For any integer n ≥ 1 there exists a positive constant C such that for
almost all ω in the unit ball of Cn (in the sense of the Lebesgue measure in
R2n) the inequality log |f(ω)| ≤ −Ct(f)n+1 has only finitely many solutions
f ∈ Z[x1, . . . , xn].

Indeed, it is easy to see that for any n ∈ N there exists a positive constant
C such that the set of ω’s in the unit ball of Cn for which the inequality

|α− ω| < exp{−Ct(α)n+1}
has infinitely many solutions α ∈ Cn is negligible for the Lebesgue measure
(see the proof of [A], Proposition 5). Using Theorem 1, we immediately
obtain Chudnovsky’s conjecture.

Moreover, for m = 1 and n ≥ 2, (3) can be easily improved to

η = max
{
n+

τ − 2
n− 1

, τ − 1
}
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(see Theorem 2 in §3), which implies the full conjecture η = τ for n = 2.
On the other hand, in [A] we proved (in a slightly weaker form) that we
can choose for η the maximum between τ − 2 + τ/n and the positive root
of x2 + (1 − τ)x + n − 1 − τ = 0. This result approaches our conjecture
for τ → ∞, but, unfortunately, the proof given in [A] contains some minor
errors. In the appendix we shall give a proof of the slightly weaker result

η > 0, η2 + (1− τ)η + n− τ = 0

(which also approaches our conjecture) and corrections of other mistakes
which occur in [A] (1).

2. Technical results. For the proofs, we use the theory of Chow forms,
as developed by Yu. V. Nesterenko (see [N1], [N2] and [N3]) and by P. Philip-
pon (see [P1] and [P2]). We briefly summarize the notations employed by
Nesterenko. Given a homogeneous unmixed ideal I of rank n+ 1− r in the
ring Z[x0, . . . , xn] having Chow form F = F (u1, . . . , ur) ∈ Z[u1

0, . . . , u
r
n],

we denote by H(I) the maximum absolute value of the coefficients of F ,
by N(I) the degree of F with respect to u1

0, . . . , u
1
n, and by t(I) the num-

ber N(I) + logH(I). Given ω′ in the projective space Pn over C, we define
|I|ω′ as

|I|ω′ = H(κ(F ))/|ω′|rN(I),

where H(κ(F )) is the maximum absolute value of the coefficients of the
polynomial

κ(F ) ∈ C[sij,k] i=1,...,r
0≤j<k≤n

obtained by replacing in F the vectors ui by Siω′, with Si (i = 1, . . . , r)
being skew-symmetric matrices in the new variables sij,k (0 ≤ j < k ≤ n).
For more details, see [N3] (Nesterenko uses the notation |I(ω′)| instead of
|I|ω′). Given a homogeneous polynomial Q ∈ Z[x0, . . . , xn] and ω′ ∈ Pn we
let

|Q|ω′ = |Q(ω′)|/|ω′|degQ.

We start with an easy consequence of the box principle.

Lemma 1. Let n ≥ 1 be an integer and let ω′ ∈ Pn. Then there exist
two positive constants c1 and c2 depending only on n such that for any
real number N > c1 there exists a non-zero homogeneous polynomial Q ∈
Z[x0, . . . , xn] with size ≤ N satisfying

|Q|ω′ ≤ exp{−c2Nn+1}.
P r o o f. Let H and d be two positive integers and let Λ be the set of

homogeneous polynomials Q ∈ Z[x0, . . . , xn] of degree d with non-negative

(1) I am grateful to Yurĭı Nesterenko who drew my attention to these mistakes.
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coefficients bounded by H. This set has cardinality (H + 1)D, D =
(
d+n
n

)
,

and for any Q ∈ Λ we have |Q|ω′ ≤ DH. Let

δ = min
Q1,Q2∈Λ,Q1 6=Q2

|Q1 −Q2|ω′ .

The ball in C with centre at the origin and radius DH + δ/2 contains the
disjoint union of the open balls of centre Q(ω′)|ω′|−d (Q ∈ Λ) and radius
δ/2. This gives

δ ≤ 2DH
(H + 1)D − 1

≤ 2DH1−D

and so there exist two polynomials Q1, Q2 ∈ Λ, Q1 6= Q2, such that

|Q1 −Q2|ω′ ≤ 2DH1−D.

The polynomial Q = Q1 − Q2 has degree d, height (= maximum absolute
value of the coefficients) ≤ H and satisfies |Q|ω′ ≤ 2DH1−D. The lemma
follows upon taking d = [N/2] and H = [exp{N/2}].

Given ω′, α′ in the complex projective space Pn, we put

d(α′, ω′) =
max0≤i<j≤n |ω′iα′j − ω′jα′i|

max0≤i≤n |α′i|max0≤i≤n |ω′i|
.

R e m a r k. Let ω′ = (1, ω) where ω is in the unit ball of Cn and assume
d(α′, ω′) < 1. Then α′0 6= 0 and the vector α ∈ Cn defined by αi = α′i/α

′
0 (i =

1, . . . , n) satisfies |α − ω| ≤ max{1, |α|}d(α′, ω′). This gives max{1, |α|} ≤
(1− d(α′, ω′))−1 and so

|α− ω| ≤ d(α′, ω′)
1− d(α′, ω′)

.

In particular, if d(α′, ω′) ≤ 1/2, we have |α− ω| ≤ 2d(α′, ω′).

Lemma 2. For any integer n ≥ 1 there exists a constant A > 0 having
the following property. Let k ≤ n be a positive integer , let τ ≥ k + 1, η ∈
[n + 1, τ + n − k] and θ > 1 be real numbers and let ω′ ∈ Pn. Assume that
there exists a homogeneous prime ideal ℘ ⊂ Z[x0, . . . , xn] of rank k such that
℘ ∩ Z = {0} and

|℘|ω′ < exp{−Ct(℘)τ/k}
for some C ≥ Aθ. Then either there exists α′ ∈ VP(℘), the projective variety
defined by ℘, such that

d(α′, ω′) < exp{−A−1θt(α′)η},
or there exists a homogeneous prime ideal ℘′ ⊂ Z[x0, . . . , xn] of rank k + 1
such that ℘′ ∩ Z = {0}, ℘′ ⊃ ℘ and

|℘′|ω′ < exp{−A−1θ−1Ct(℘′)(n+1−η+τ)/(k+1)}.
Moreover , if k = n or if η ≤ τ − k, the first case occurs.



Values of polynomials with integer coefficients 105

P r o o f. Denote by c3, . . . , c10 positive constants depending only on k, n,
τ and η. If ω′ ∈ VP(℘) we put α′ = ω; otherwise let α′ ∈ VP(℘) be such that
δ = d(ω′, α′) > 0 is minimal. Using Lemma 6 of [N3], we see that

(4) −δ > Ct(℘)(τ−k)/k − c3.
Moreover, Corollary 3 of [N1] gives

(5) t(α′) ≤ c4t(℘)1/k.

Hence

(6) −δ > (Cc−τ+k
4 − c3)t(α′)τ−k ≥ A−1θt(α′)η

provided that η ≤ τ − k and A is sufficiently large. Now assume η > τ − k
and put

N = θ−yt(℘)−x(−δ)y
where

x =
η − (n+ 1) + τ/k

η + (n+ 1)k − τ > 0 and y =
k + 1

η + (n+ 1)k − τ ≥ 1/n.

From (4) and from η ≤ τ + n− k we obtain

N ≥ θ−yt(℘)−x(Ct(℘)τ/k−1 − c1)y

≥ θ−y(C − c1)yt(℘)(τ+n−k−η)/(η+(n+1)k−τ) ≥ c1
provided that A is sufficiently large. Therefore, Lemma 1 gives a non-zero
homogeneous polynomial Q ∈ Z[x0, . . . , xn] which satisfies

t(Q) ≤ N,(7)

|Q|ω′ ≤ exp{−c2Nn+1}.(8)

We distinguish three cases:

• F i r s t c a s e: Q 6∈ ℘ and µ := c2N
n+1(−δ)−1 < 1. By (8) we have

|Q|ω′ ≤ exp{µδ}. If k < n, Lemma 4 of [N3] gives a homogeneous ideal
I ⊂ Z[x0, . . . , xn] of pure rank k + 1 whose zeros coincide with the zeros of
the ideal (℘,Q) and such that

t(I) ≤ c5t(Q)t(℘),(9)

log |I|ω′ ≤ µ log |℘|ω′ + c6t(℘)t(Q).(10)

Taking into account (10), (7), η ≤ τ + n− k and (9), we get

log |I|ω′ ≤ −c2CNn+1(−δ)−1t(℘)τ/k + c6t(℘)N

= −c2θ−1C(t(℘)N)(n+1−η+τ)/(k+1) + c6t(℘)N

≤ −(c2θ−1C − c6)(c−1
5 t(I))(n+1−η+τ)/(k+1).
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Proposition 2 of [N2] gives a homogeneous prime ideal ℘′ ∈ Z of rank k + 1
whose zeros are zeros of I such that ℘′ ∩ Z = {0} and

log |℘′|ω′ < −c7(θ−1C − c8)t(℘′)(n+1−η+τ)/(k+1)(11)

≤ −c9θ−1Ct(℘′)(n+1−η+τ)/(k+1)

provided that A is sufficiently large.
If k = n, the same Lemma 4 of [N3] gives µ log |℘|ω′ + c6t(℘)t(Q) ≥ 0,

which cannot occur if A is sufficiently large.

• S e c o n d c a s e: Q 6∈ ℘ and µ ≥ 1. Taking into account (5) we obtain

(12) −δ ≥ c10θ
(n+1)y/((n+1)y−1)t(α′)k(n+1)x/((n+1)y−1) ≥ A−1θt(α′)η

since
k(n+ 1)x

(n+ 1)y − 1
− η =

(η − n− 1)(η − τ + k(n+ 1))
τ + (n+ 1)− η ≥ 0.

• T h i r d c a s e: Q ∈ ℘. Using (7) and (5), we obtain

t(α′) ≤ t(Q) ≤ θ−yt(℘)−x(−δ)y ≤ ckx4 θ−yt(α′)−kx(−δ)y
and

(13) −δ ≥ A−1θt(α′)η.

Our assertion comes from (6), (11), (12) and (13).

By induction we deduce the following

Proposition 1. For any integer n ≥ 1 there exists a positive constant B
having the following property. Let k ≤ n be a positive integer and let ω′ ∈ Pn.
Assume that there exists a homogeneous prime ideal ℘ ⊂ Z[x0, . . . , xn] of
rank k such that ℘ ∩ Z = {0} and

|℘|ω′ < exp{−Ct(℘)τ/k}
for some C ≥ B and some τ ≥ n + 1. Then there exists α′ ∈ VP(℘) such
that

d(α′, ω′) < {−B−1Cet(α′)η}
where

η = max
{
n+ 1 +

τ − (n+ 1)
n+ 1− k , τ − k

}

and

e =
{

1 if η = τ − k,
2−n+k otherwise.

P r o o f. If η = τ − k, Lemma 2 gives our claim. Assume

η = n+ 1 +
τ − (n+ 1)
n+ 1− k .
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From τ ≥ n + 1 we obtain η ≥ n + 1. We shall prove the proposition by
induction on k.

• k = n. Lemma 2, with θ = A−1C, gives α′ ∈ VP(℘) such that

d(α′, ω′) < exp{−A−2Ct(α′)η}.
• k < n. We apply Lemma 2 with θ = C1/2. If there exists α′ ∈ ℘ such

that

d(α′, ω′) < exp{−A−1C1/2t(α′)η}
our assertion follows. Otherwise, there exists a homogeneous prime ideal
℘′ ⊃ ℘ of rank k + 1 such that ℘′ ∩ Z = {0} and

|℘′|ω′ < exp{−A−1C1/2t(℘′)τ
′/(k+1)},

with τ ′ = n+ 1− η + τ . By inductive hypothesis, we can find α′ ∈ ℘ with

d(α′, ω′) < exp{−B−1C2−n+k
t(α′)η

′}
where

η′ = n+ 1 +
τ ′ − (n+ 1)

n− k = η.

Using Theorem 2 of [P2] (with IN,1 = . . . = IN,k+1 = (QN ) and the
polynomial QN of size ≤ N given by Lemma 1 as in the proof of Lemma 2)
we find a result similar to the previous one but with a worse exponent:

For any integer n there exist constants A,B > 0 having the following
property. Let k ≤ n be an integer , τ ≥ n+ 1 a real number and let ω′ ∈ Pn.
Assume that there exists a homogeneous prime ideal ℘ ⊂ Z[x0, . . . , xn] of
rank k such that ℘ ∩ Z = {0} and

|℘|ω′ < exp{−At(℘)τ/k}.
Then we can find (1, α) ∈ Cn such that

d(α′, ω′) < exp{−B−1t(α′)η}
where

η = n+ 1 + k
τ − (n+ 1)
(n+ 1− k)τ

.

3. Proof of the main results. We have a relation between the value
of a homogeneous prime ideal ℘ at ω′ ∈ Pn and its projective distance from
the variety defined by ℘. Our next task is to put it in terms of polynomials.

Lemma 3. Let P1, . . . , Pm ∈ Z[x0, . . . , xn] be non-zero homogeneous poly-
nomials of size ≤ T and let ω′ ∈ Pn. Let ε = maxi |Pi|ω′ and assume
ε < exp{−ATn+1} where A > 0 depends only on n. Then there exists



108 F. Amoroso

an unmixed homogeneous ideal J ⊂ Z[x0, . . . , xn] of rank k ≤ n such that√
JQ[x0, . . . , xn] ∩ Z[x0, . . . , xn] ⊃ I = (P1, . . . , Pm) (2) and

t(J) ≤ B1T
k, |J |ω′ ≤ εB

−1
2

where A, B1 and B2 are positive constants depending only on n.

P r o o f. Denote by ch,11, . . . , ch,16 (h = 1, . . . , n + 1) positive constants
depending only on n. We will show by induction that for h = 1, . . . , n + 1
there exist unmixed homogeneous ideals Jh ⊂ Z[x0, . . . , xn] of rank h such
that Jh ∩ Z = {0} (for h ≤ n) and

(14h) t(Jh) ≤ chh,11T
h, |Jh|ω′ ≤ εch,12 .

Since the last inequalities fail for h = n+ 1, our assertion will be proved.

• h = 1. We take J1 = (P1) and we apply Proposition 1 of [N3].
• h⇒ h+1. Assume (14h) satisfied for some h ≤ n and for some ideal Jh.

We denote by Jh,1 the intersection of the primary components of Jh whose
radical contains I and by Jh,2 the intersection of the other components.
Using [N2], Proposition 2, and Gelfond’s inequality [G], Lemma II, p. 135,
it is easy to see that

(15)
t(Jh,1) ≤ ch,13T

h, t(Jh,2) ≤ ch,13T
h,

|Jh,1|ω′ |Jh,2|ω′ < εch,12 exp{ch,14T
h} ≤ εch,12−ch,14/A.

Since we are assuming that our claim is wrong, we must have |Jh,1|ω′ ≥ εB−1
2 ;

therefore

(16) |Jh,2|ω′ < εch,12−ch,14/A−1/B2 .

A classical trick (see for instance [P1], Lemma 1.9) allows us to find homoge-
neous polynomials a1, . . . , am ∈ Z[x0, . . . , xn] with deg aj = max(degPi) −
degPj (j = 1, . . . ,m) such that P = a1P1 + . . .+amPm is not a zero-divisor
on Z[x0, . . . , xn]/Jh,2. Moreover, we can choose the ai’s in such a way that
their heights are bounded by the number of irreducible components of Jh,2
and so, a fortiori, by ch,13T

h. From this, we obtain

t(P ) ≤ ch,15T, |Q|ω′ ≤ εch,16 .

Using (15), (16) and the last inequalities, Proposition 3 of [N2] gives an
unmixed ideal Jh+1 ⊂ Z[x0, . . . , xn] of rank h + 1 such that inequalities
(14h+1) hold.

Using Proposition 2 of [N2], we easily deduce

Proposition 2. For any integer n ≥ 1 there exist two constants A,B > 0
having the following property. Let τ ≥ n+1 be a real number and let ω′ ∈ Pn.

(2) rank(J) may be greater than rank(I).
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Assume that there exist non-zero homogeneous polynomials P1, . . . , Pm ∈
Z[x0, . . . , xn] of size ≤ T such that maxi |Pi|ω′ < exp{−CT τ} for some
C ≥ A. Then there exists a homogeneous prime ideal ℘ ⊂ Z[x0, . . . , xn] of
rank k ≤ n such that ℘ ∩ Z = {0}, ℘ ⊃ (P1, . . . , Pm) and

|℘|ω′ < exp{−B−1Ct(℘)τ/k}.
P r o o f o f T h e o r e m 1. Let f1, . . . , fm be as in Theorem 1, let Pi =

hfi be the homogenization of fi (i = 1, . . . ,m) and let ω′ = (1, ω) . Applying
Proposition 1 to the homogeneous prime ideal ℘ given by Proposition 2
(which has rank ≥ k since x0 6∈ ℘) and using the remark before Lemma 2,
we obtain our claim.

To improve the previous theorem when m = 1, we need the following
lemma of Chudnovsky (see [C], Lemma 1.1, p. 424).

Lemma 4. Let f ∈ C[x1, . . . , xn] of degree ≤ d and let ω ∈ Cn. Then for
any λ ∈ Nn there exists a zero α ∈ Cn of f such that

1
|λ|!

∣∣∣∣
∂λf(ω)
∂xλ

∣∣∣∣|α− ω||λ| ≤ 2d|f(ω)|

(here |λ| = λ1 + . . .+ λn).

Theorem 2. For any integer n ≥ 2 there exists a constant B > 0 having
the following property. Let f ∈ Z[x1, . . . , xn] of size ≤ T and let ω be in the
unit ball of Cn such that

|f(ω)| < exp{−CT τ}
for some C ≥ B and some τ ≥ n + 1. Then there exists α ∈ Cn on the
hypersurface {f = 0} such that

(17) |α− ω| < exp{−B−1Cet(α)η},
where

η = max
{
n+

τ − 2
n− 1

, τ − 1
}

and

e =
{

1 if η = τ − 1,
2−n+2 otherwise.

P r o o f. We can assume f irreducible and Dx1f = ∂f/∂x1 6≡ 0. Inequal-
ity (17) with η = τ − 1 and e = 1 is easily proved applying Proposition 1 to
the principal prime ideal ℘ = (f). Moreover, if

|Dx1f(ω)| ≥ exp
{
− C

2
t(f)τ

}
,
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Lemma 4 gives α ∈ Cn such that f(α) = 0 and

log |α− ω| < −C
4
t(f)τ .

In this case, (17) is proved with η = τ and e = 1. Otherwise, using Propo-
sition 2 with P1 = hf and P2 = hDx1f , we can find a homogeneous prime
ideal ℘ ⊂ Z[x1, . . . , xn] of rank ≥ 2 (actually = 2), containing the ideal
(hf, hDx1f), such that |℘|ω′ < exp{−c17Ct(℘)τ/2}. Proposition 1 and the
remark before Lemma 2 give (17) with

η = n+ 1 +
τ − (n+ 1)
n− 1

= n+
τ − 2
n− 1

and e = 2−n+2.

Appendix: Corrections to “Polynomials with high multiplicity”
(Acta Arith. 56 (1990), 345–364). In this section we refer to lemmas,
propositions, theorems, numbers of equations and lines of the paper [A]
using italic type.

The inequalities (5 ) on p. 354 are not true. More precisely, define for
k = 1, . . . , k0 and j = 1, . . . , sk,

Λjk = VP(℘j,h)
∖ k−1⋃

h=1

sh⋃

j=1

VP(℘j,h),

where the symbols have the same meaning as in [A]. Lemma 4 on p. 354
gives

iω(Jk) ≥
k−1∏

h=0

(tkM − thM) for any ω ∈ Λjk.

If Λjk is not empty, it is a non-empty Zariski open set in VP(℘j,h), and so
ejk ≥

∏k−1
h=0(tkM − thM) as claimed on p. 355 , l. 9 . So, inequalities (5 )

hold if Λjk 6= ∅. On the other hand, from (4 ) and the definition of these
sets, it is easy to see that

(18) VM ⊂
k0⋃

k=1

⋃

j=1,...,sk
Λjk 6=∅

VP(℘j,k).

Now, the same arguments used on p. 354 , l. 8–11 give a polynomial

gk ∈
⋂

j=1,...,sk
Λjk 6=∅

℘j,k

of size ≤ c6T/M . As in l. 12 we put g =
∏k0
k=1 gk. Then (18) ensures that g

is zero over VM and we have t(g) ≤ c7T/M .
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Unfortunately, a problem now arises in the inequality in l. −8/−7 , p. 362
in the proof of Theorem 2 , since (5) is available only if Λjk 6= ∅. This addi-
tional complication does not occur if n = 2 (s1 = 0 since f is irreducible),
so our result

τ ≤ η + max
(

0,
4− η

3

)
, n = 2,

is still true (but it is now sharpened by Theorem 2). In the general case,
however, we can easily deduce from Proposition 2 and from Theorem 1 a
weak form of Theorem 2 :

τ ≤ η +
n

η + 1
.

A more precise formulation of this result is the following theorem, an-
nounced in the introduction:

Theorem 3. For any integer n ≥ 1 there exist constants A,B > 0 having
the following property. Let f ∈ Z[x1, . . . , xn] and let ω be in the unit ball of
Cn. Suppose that |f(ω)| < exp{−CT τ} for C > A and τ ≥ n+ 1. Then we
can find α ∈ Cn on the hypersurface {f = 0} such that

|α− ω| < exp{−B−1Ct(α)η}
where η is the positive root of η2 + (1− τ)η + n− τ = 0.

P r o o f. We define M ≥ 1 as the first integer for which there exists
λ ∈ Nn with |λ| = M such that

1
M !

∣∣∣∣
∂λf(ω)
∂xλ

∣∣∣∣ > −
C

2
t(f)τ .

Let

u =
logM

log t(f)
∈ [0, 1].

Lemma 4 gives α ∈ Cn with f(α) = 0 and

(19) |α− ω| <
{
− C

4
t(f)τ−u

}
.

On the other hand, Proposition 2 with

{P1, . . . , Pm} =
{

1
λ!
∂λf

∂xλ
, |λ| ≤M − 1

}

and Lemma 6 of [N3] give a point α of multiplicity ≥M on the hypersurface
{f = 0} such that

|α− ω| < exp{−c18Ct(f)τ−n}.
By Theorem 1 , t(α) ≤ c19t(f)/M , hence

|α− ω| < exp{−c20Ct(α)(τ−n)/(1−u)}.
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Combining the last inequality with inequality (19), we find ω ∈ Cn on the
hypersurface {f = 0} which satisfies

|α− ω| < exp{−c21Ct(α)min{(τ−n)/(1−u),τ−u}}.
Since

min
0≤u≤1

min
{
τ − n
1− u , τ − u

}
= η,

our assertion follows.
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