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Upper bounds for class numbers of real quadratic fields
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1. Introduction. Let Z, N, Q denote the sets of integers, positive inte-
gers and rational numbers respectively. Let D ∈ N be square free, and let
∆, h, ε denote the discriminant, the class number and the fundamental unit
of the real quadratic field K = Q(

√
D) respectively. Then

∆ =
{
D if D ≡ 1 (mod 4),
4D if D 6≡ 1 (mod 4).

For the case that D is an odd prime, Gut [3] proved that if D ≡ 1
(mod 4), then h < D/4. Newman [6] proved that h < 2

√
D/3. Agoh [1]

proved that if ν > 1/2 and D ≡ 1 (mod 4), then h < ν
√
D except for a

finite number of D. In this paper, we prove a general result as follows.

Theorem. (a) For any square free D ∈ N, we have h ≤ [
√
∆/2].

(b) Moreover , if D ≡ 3 (mod 4) is an odd prime, then

h ≤
{

[
√
D/3] + 1 if D = 36k2 + 36k + 7, k ∈ Z, k ≥ 0,

[
√
D/4] + 1 otherwise,

where [x] is the greatest integer less than or equal to x.

2. Preliminaries. Here and below, let χ be the non-trivial Dirichlet
character of K, and let L(s, χ) denote the L-function attached to χ. Then
χ is an even quadratic character of conductor ∆. The two lemmas below
follow immediately from [5, Theorem] and [8, p. 531] respectively.

Lemma 1. Let γ be Euler’s constant. We have

|L(1, χ)| ≤
{ 1

4 (log∆+ 2 + γ − log π) if 2 |∆,
1
2 (log∆+ 2 + γ − log 4π) otherwise.

Lemma 2. If D > 1500 and D ≡ 5 (mod 8), then

|L(1, χ)| < 1
6 (logD + 5.16).
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By much the same argument as in the proof of [4, Theorem A], we can
prove the following lemma.

Lemma 3. If χ(2) = 0 and χ(3) = −1, then

|L(1, χ)| ≤ 1
8 (log∆+ 3 log 6 + 8).

Lemma 4. For any square free D ∈ N, we have

(1) ε2 >

{
D − 3 if D = a2 ± 4, a ∈ N,
4D − 3 otherwise.

Moreover , if D is a prime with D ≡ 3 (mod 4), then

(2) ε >

{
2D − 3 if D = a2 ± 2, a ∈ N,
18D − 3 otherwise.

P r o o f. Since ε is equal to the fundamental solution (u1 + v1
√
D)/2 of

the equation

u2 −Dv2 = ±4, u, v ∈ Z,
we have

ε2 = 1
4 (u1 + v1

√
D)2 ≥ 1

4 (
√
Dv2

1 − 4 + v1
√
D)2

> Dv2
1 − 3 ≥

{
D − 3 if v1 = 1,
4D − 3 if v1 > 1,

and (1) follows.
By [7], if D is a prime with D ≡ 3 (mod 4), then the equation

(3) U2 −DV 2 = ±2, U, V ∈ N,
has solutions (U, V ) and ε = (U1 + V1

√
D)2/2, where (U1, V1) is the least

solution of (3). So we have

(4) ε ≥ 1
2 (
√
DV 2

1 − 2 + V1
√
D)2 > 2DV 2

1 − 3.

Since 2 -V1, we see from (4) that

ε >

{
2D − 3 if V1 = 1,
18D − 3 if V1 > 1,

and (2) follows. The lemma is proved.

3. Proof of Theorem. By the numerical results of [2], it suffices to
prove the Theorem for ∆ > 24572. By the class number formula, we have

(5) h =

√
∆

2 log ε
|L(1, χ)|.

First, we consider the case D ≡ 1 (mod 4). Then ∆ = D and D > 24572.
If D = a2±4 with a ∈ N, then D ≡ 5 (mod 8). On applying Lemmas 2 and
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4 with (5), we get

(6) h <

√
D

2

(
logD + 5.16
3 log(D − 3)

)
<

√
D

2
, D ≥ 18.

On the other hand, by Lemmas 1 and 4, if D 6= a2 ± 4, then

(7) h <

√
D

2

(
logD + 0.046
log(4D − 3)

)
<

√
D

2
, D ≥ 2.

Since h ∈ N, we see from (6) and (7) that h ≤ [
√
D/2] for D ≡ 1 (mod 4).

Second, we consider the case D 6≡ 1 (mod 4). Then ∆ = 4D, D > 6143
and χ(2) = 0. By Lemmas 1 and 4, we get

h <
√
D

(
log 4D + 1.433
2 log(4D − 3)

)
<
√
D, D ≥ 3.

It implies that h ≤ [
√
D] for D 6≡ 1 (mod 4). Up to now, we obtain h ≤

[
√
∆/2].
Finally, we consider the case where D ≡ 3 (mod 4) is an odd prime. If

D = a2 − 2, a ∈ N and 3 | a, then D = 36k2 + 36k + 7, where k ∈ Z with
k ≥ 0. On applying Lemmas 1 and 4 with (5), we get

h <

√
D

4

(
log 4D + 1.433

log(2D − 3)

)
<

√
D

3
, D ≥ 250.

If D = a2 + 2 or a2 − 2 and 3 - a, then D ≡ 2 (mod 3) and χ(3) = −1. By
Lemmas 3 and 4, we get

h <

√
D

4

(
log 4D + 13.38
2 log(2D − 3)

)
<

√
D

4
, D ≥ 7 · 105.

Furthermore, using the methods of [9], we can check that h <
√
D/4 for

79 < D < 106. Similarly, by Lemmas 1 and 4, if D ≡ 3 (mod 4) and
D 6= a2 ± 2, then

h <

√
D

4

(
log 4D + 1.433
log(18D − 3)

)
<

√
D

4
, D ≥ 3.

All cases are considered and the Theorem is proved.
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