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1. Introduction. Let Z, N, Q denote the sets of integers, positive inte-
gers and rational numbers respectively. Let D € N be square free, and let
A, h, € denote the discriminant, the class number and the fundamental unit
of the real quadratic field K = Q(v/D) respectively. Then

A D if D=1 (mod4),
= 14D i D#£1 (mod 4).

For the case that D is an odd prime, Gut [3] proved that if D = 1
(mod 4), then h < D/4. Newman [6] proved that A < 2v/D/3. Agoh [1]
proved that if v > 1/2 and D = 1 (mod 4), then h < vv/D except for a
finite number of D. In this paper, we prove a general result as follows.

THEOREM. (a) For any square free D € N, we have h < [V/A/2].
(b) Moreover, if D =3 (mod 4) is an odd prime, then

< VD/3|+1 if D=36k>+36k~+7, k€Z, k>0,
~ \[VD/4 +1 otherwise,

where [x] is the greatest integer less than or equal to x.

2. Preliminaries. Here and below, let x be the non-trivial Dirichlet
character of K, and let L(s, x) denote the L-function attached to x. Then
X is an even quadratic character of conductor A. The two lemmas below
follow immediately from [5, Theorem] and [8, p. 531] respectively.

LEMMA 1. Let v be Euler’s constant. We have

s(log A+2+~y—logm) if 2|A,

L(1 <
IL(1,x)| < {é(logA+2+’Y—10g47T) otherwise.

LEMMA 2. If D > 1500 and D =5 (mod 8), then
|L(1, x)| < g(log D +5.16).
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By much the same argument as in the proof of [4, Theorem A], we can
prove the following lemma.

LEMMA 3. If x(2) = 0 and x(3) = —1, then
|L(1, x)| < & (log A + 3log 6 + 8).
LEMMA 4. For any square free D € N, we have
D—-3 ifD=a>+4, aeN
1 2> : ’
(1) © { 4D — 3  otherwise.
Moreover, if D is a prime with D = 3 (mod 4), then

- _ 2
2) e 2D —3 sz—'a +2, a €N,
18D — 3  otherwise.
Proof. Since ¢ is equal to the fundamental solution (u; 4+ v1v/D)/2 of
the equation
u? —Dv?P =44, wveZ,
we have
g2 = i(ul +v1vVD)? > i(\/Dv% —4+v,VD)?
D-3 ifvy=1
2 1 )
> Dy =32 {4D—3 if vy > 1,

and (1) follows.
By [7], if D is a prime with D =3 (mod 4), then the equation
(3) U?-DV?=+42 UV eN,

has solutions (U, V) and £ = (U + Viv/D)?/2, where (U, V}) is the least
solution of (3). So we have

(4) e > 1(y/DVE -2+ V1VD)? > 2DV - 3.
Since 21V, we see from (4) that

_f2D-3 in=1,
718D -3 ifV; > 1,

and (2) follows. The lemma is proved.

3. Proof of Theorem. By the numerical results of [2], it suffices to
prove the Theorem for A > 24572. By the class number formula, we have

Va
= L(1 .
Fiog 2 LX)

First, we consider the case D =1 (mod 4). Then A = D and D > 24572.
If D = a?+4 with a € N, then D =5 (mod 8). On applying Lemmas 2 and

(5) h
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4 with (5), we get
D (log D + 5.16 D
(6) p< YD (logD+ VD
2 \3log(D —3) 2
On the other hand, by Lemmas 1 and 4, if D # a? £ 4, then
VD (log D + 0.046 _ VD
2\ log(4D —3) 2
Since h € N, we see from (6) and (7) that h < [V'D/2] for D =1 (mod 4).

Second, we consider the case D # 1 (mod 4). Then A = 4D, D > 6143
and x(2) = 0. By Lemmas 1 and 4, we get

log 4D + 1.433
h< VD822 LN B pas,
< <2log(4D—3) ) SVESEe

It implies that h < [V D] for D # 1 (mod 4). Up to now, we obtain h <
[vA/2].
Finally, we consider the case where D = 3 (mod 4) is an odd prime. If

D =a?—2,a €N and 3|a, then D = 36k* + 36k + 7, where k € Z with
k > 0. On applying Lemmas 1 and 4 with (5), we get

VD (log4D + 1.433 _ VD
4 log(2D — 3) 37

If D=a?+2ora®—2and 3fa, then D =2 (mod 3) and x(3) = —1. By

Lemmas 3 and 4, we get

VD (log4D + 13.38 _ VD
4 \ 2log(2D — 3) 40

Furthermore, using the methods of [9], we can check that h < +/D/4 for

79 < D < 10°. Similarly, by Lemmas 1 and 4, if D = 3 (mod 4) and
D # a? £2, then

D > 18.

(7) h < D > 2.

h < D > 250.

h < D >7-10°.

h < D > 3.

VD (log4D + 1.433 _ VD
4 \ log(18D — 3) 4’
All cases are considered and the Theorem is proved.
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