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I. Introduction. Probabilistic number theory deals, among other ques-
tions, with the problem of the description of the distribution laws defined by
the values of an additive arithmetical function, i.e., by a function f which
sends N∗ into a group G, supposed here additive, satisfying

f(mn) = f(m) + f(n) if (m,n) = 1,

N∗ being the set of positive integers.
If G is the additive group of real numbers, denoted by R, a complete

result has been given simultaneously by Elliott and Ryavec [6], and Levine
and Timofeev [8]. Another case where a complete result has been obtained
is when G is the additive group R/Z, and this case has been considered
by many authors, for instance Delange [2], Manstavicius [9], Elliott [5] and
Hartman [7]. The case of G discrete has been studied by Ruzsa [13]. In his
article [13], Ch. 5, this author sets the following problem for group-valued
additive arithmetical functions: “Can one formulate and prove the analogues
of the well-known global limit theorems?”

In this article, we consider this problem when the group is a locally
compact abelian group.

II. Results. Let G be an additive locally compact abelian group, g its
dual group, m a Haar measure on g, and f an additive arithmetical function
with values in G. We denote the integral part of a real number x by [x]. If
a and b are positive integers, the notation a - b means “a does not divide b”.

P is the set of the prime numbers, p a generic element of P , and Ex− is
the subset of elements n of N∗ such that if p divides n, then p ≤ x.

δa is the measure with unit mass at the point a.
If H is a compact subgroup of G, TH will denote the canonical projection

of G on G/H. The Haar measures on g and G are normalized as in [11],
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p. 103, and we refer to [1] for generalities on integration on locally compact
spaces.

We shall give only one theorem. The interested reader will check that the
result given allows one to get, using classical results of probability theory, the
well-known formulations in the case of R or R/Z, which involve conditions
on the values of f(p), p ∈ P , the analogues of Theorems 7.1 and 7.2 in [3]
for locally compact abelian groups, of Theorems 8.1, 8.2 and 8.9 in [3] for
compact abelian groups, and leads to simple proofs of Theorems 22.1, 22.2
and 22.3 in [4].

Theorem. Let h be the subset of g, in fact a subgroup of g, of the ele-
ments χ of g such that

lim sup
x→∞

1
x

∣∣∣
∑

n≤x
2 -n

χ(f(n))
∣∣∣ > 0.

There are two cases:

F i r s t c a s e: h is not locally negligible relatively to m.
Then the dual of g/h is a compact subgroup H of G and there exists a

continuous homomorphism ϕ : R → G/H, a sequence an in G/H and a
probability measure ν with support in G/H such that the sequence of mea-
sures

1
[x]

∑

n≤x
δTH(f(n))−ϕ(log n)−Σp≤xap

converges vaguely to the measure ν, which is not continuous if and only if
H is finite and

∑

TH(f(p)−ϕ(log p))6=0

1
p
<∞.

N.B. The sequence an has the property that for any given α satisfying
0 < α ≤ 1 and any sequence Y[x] such that xα ≤ Y[x] ≤ x,

lim
x→∞

∑

Y[x]≤p≤x
ap = 0.

S e c o n d c a s e: h is locally negligible relatively to m.
In this case, for any compact subgroup K of G , any continuous homo-

morphism ϕ : R→ G/K, any sequence an of G/K, the sequence of measures

1
[x]

∑

n≤x
δTH(f(n))−ϕ(log n)−Σp≤xap

converges vaguely to the null measure.
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III. Proof of the result

A. Preliminaries

Lemma 1. Let U be an additive locally compact abelian group. If V is
a compact neighborhood of the origin of U with characteristic function IV ,
there exists a continuous compactly supported function I1 with Fourier trans-
form nonnegative and integrable, hence invertible, such that I1(0) = 1 and
for any u in U , I1(u) ≤ IV (u).

P r o o f. This is an immediate consequence of Theorem 2.6.2, p. 48 of [12].

Lemma 2. Let U be an additive locally compact abelian group, and v :
N → U a sequence. If for almost every character χ in U∗, where U∗ is the
dual of U , the sequence χ(v(n)) is convergent , then the sequence v(n) itself
is convergent.

P r o o f. The set A of characters χ in U∗ for which the sequence χ(v(n))
is convergent is a subgroup of U∗, not locally negligible, and so, open and
closed, and dense in U∗. This gives that A = U∗. Denote by w(χ) the
measurable function defined as the limit of χ(v(n)). If χ and χ′ are in U∗,
we have w(χχ′) = w(χ)w(χ′), and the measurability of w implies that w is
a character of U . So, by the Pontryagin duality theorem, there exists a in
U such that for every χ in U∗, χ(v(n) − a) tends to 1. This implies that
v(n)− a tends to 0.

Halász’s Theorem. Let g(n), n = 1, 2, . . . , be a multiplicative function
with modulus equal to 1. If there exists a real number u such that

∑
p−1(1−

Re g(p)p−iu) converges, then

lim sup
x→∞

1
x

∣∣∣
∑

n≤x
2 -n

g(n)
∣∣∣ > 0
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and
∑

n≤x
g(n) =

x1+iu

1 + iu

∏

p≤x

(
1− 1

p

)(
1 +

∞∑
r=1

g(pr)p−iur

pr

)
+ o(x), x→∞.

If such a u does not exist , then

lim
x→∞

1
x

∣∣∣
∑

n≤x
g(n)

∣∣∣ = 0.

(See [3], Ch. 6.)

Ruzsa’s Theorem. Let G be a locally compact abelian group, µp a se-
quence of probability measures on G, and denote by µy− the convolution
product

µy− = *p≤y µp.

If there exists V , a compact neighborhood of the origin in G, such that

lim
y→∞

sup
x∈G

µy−(x+ V ) > 0,

then there exists a sequence ay− in G and a probability measure ν such that
the sequence of measures µy− ∗ δ−ay− converges vaguely to the measure ν.

(See [14].)

B. Main proposition. The basic result is

Proposition 1. The following assertions are equivalent :

(1) h is not locally negligible,
(2) there exists a continuous homomorphism ϕ : R→ G/H, where H is

a compact group, such that for every χ in h, the dual of G/H, we have

lim
x→∞

∣∣∣∣
∏

p≤x
p6=2

(
1− 1

p

)∑

k≥0

χ(f(pk)− ϕ(log pk))
pk

∣∣∣∣ > 0.

P r o o f. (1)⇒(2). We assume that h is not locally negligible.

P1. h is an open subgroup of g.

P r o o f o f P1. h is the set defined by

h =
{
χ ∈ g : lim sup

x→∞
1
x

∣∣∣
∑

n≤x
2 -n

χ(f(n))
∣∣∣ > 0

}
.

χ(f(n)) is multiplicative with modulus equal to 1, and so, Halász’s Theorem
gives that χ ∈ h if and only if there exists τχ ∈ R such that

∑ 1− Reχ(f(p))p−iτχ

p
converges.
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Since for every χ and χ′ in g and a in G, we have

|1− χχ′(a)|2 ≤ 2(|1− χ(a)|2 + |1− χ′(a)|2),

we see that if
∑

(1 − Reχ(f(p))p−iτχ)/p and
∑

(1 − Reχ′(f(p))p−iτχ′ )/p
converge, then so does

∑
(1−Reχχ′(f(p))p−i(τχ+τχ′ ))/p, and so, χχ′ belongs

to h. h is clearly measurable, and being a not locally negligible measurable
subgroup of g, h is an open subgroup of g; hence, it is closed, and so, locally
compact; moreover, g/h is discrete. We denote by H the orthogonal of h,
which is compact as the dual group of a discrete group. A consequence is
that G/H is locally compact.

P2. χ→ τχ is a group homomorphism.

P r o o f o f P2. We prove that χ → τχ is a function h → R and that
τχχ′ = τχ + τχ′ .

Suppose that τχ and τ ′χ are associated with the same χ of h. This gives
that

∑
p

1− Reχχ(f(p))p−i(τχ−τ
′
χ)

p
converges,

i.e.
∑

(1− Re p−i(τχ−τ
′
χ))/p converges, which implies τχ = τ ′χ.

To show that τχχ′ = τχ + τχ′ , we remark that
∑

(1−Reχ(f(p))p−iτχ)/p
and

∑
(1 − Reχ′(f(p))p−iτχ′ )/p converge, and so, as above, we conclude

that
∑

(1− Reχχ′(f(p))p−i(τχ+τχ′ ))/p converges.

P3. χ→ τχ is a continuous group homomorphism.

P r o o f o f P3. It is sufficient to show that χ→ τχ is measurable.
For any prime q, we define, for α > 0, α an integer, and χ in h,

S1
qα,x(χ) =

∑

n≤x
2qα -n

χ(f(n)).

These functions are continuous on h, and setting

Sqα,x(χ) = S1
qα,x(χ) + I(S1

qα,x(χ)),

where I(z) is defined by I(z) = 1 if z = 0, I(z) = 0 if z 6= 0, we see that
Sqα,x(χ) is a sequence of measurable functions, never equal to 0, and we
have

Sq2,x(χ)
Sq1,x(χ)

→ 1 +
χ(f(q))q−iτχ

q
, x→∞.

So, as a limit of a sequence of measurable functions, q−iτχ is measurable.
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Now, since
[ ∑

n≤q
2 -n

χ(f(n))
][
q1+iτχ

∏

p≤q,p 6=2

(
1− 1

p

)(∑

k≥0

χ(f(pk))p−ikτχ

pk

)]−1

→ 1
1 + iτχ

, q prime, q →∞,

we deduce that χ→ τχ is measurable as the limit of a sequence of measurable
functions.

P4. There exists a continuous homomorphism ϕ : R → G/H such that
for every n in N∗, we have χ(ϕ(log n)) = exp{iτχ log n}.

P r o o f o f P4. For a in R, we set ψa(χ) = exp{iaτχ}, and remark
that χ→ ψa(χ) is a continuous character of h. The classical duality theory
(see [15], Ch. VI, §28, pp. 102–103) gives immediately that the dual map ϕ :
R → G/H defined by χ(ϕ(a)) = exp{iτχa} is a continuous homomorphism
R→ G/H.

This ends the proof of (1)⇒(2).

(2)⇒(1). We assume that there exists a continuous homomorphism ϕ :
R → G/H, where H is a compact group, such that for every χ in h, the
dual of G/H, we have

lim
x→∞

∣∣∣∣
∏

p≤x
p6=2

(
1− 1

p

)∑

k≥0

χ(f(pk)− ϕ(log pk))
pk

∣∣∣∣ > 0.

Since such a continuous homomorphism ϕ : R → G/H exists, it follows
that for every χ in h, χ(ϕ(a)) is a character of R, and so, there exists τχ
such that χ(ϕ(a)) = exp{iτχa}. Halász’s Theorem gives immediately that
∑

n≤x
2 -n

χ(f(n)) =
x1+iτχ

1 + iτχ

∏

p≤x
p6=2

(
1− 1

p

)∑

k≥0

χ(f(pk))p−ikτχ

pk
+ o(x), x→∞,

and this shows that for every χ in h, which is open since g/h is discrete, and
so, not locally negligible, we have

lim sup
x→∞

1
x

∣∣∣∣
∑

n≤x
2 -n

χ(f(n))
∣∣∣∣ > 0.

This ends the proof of Proposition 1.

C. Proof of the Theorem.

P r o o f o f t h e f i r s t c a s e . 1. Since h is not locally negligible, by
Proposition 1, there exists a compact group H such that h is the dual of
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G/H and a continuous homomorphism ϕ : R→ G/H such that for every χ
in h, we have

lim
x→∞

∣∣∣∣
∏

p≤x
p6=2

(
1− 1

p

)∑

k≥0

χ(f(pk)− ϕ(log pk))
pk

∣∣∣∣ > 0.

We define

µ̃y− =
∏

p≤x

(
1− 1

p

) ∑

n∈Ex−

δTH(f(n))−ϕ(logn)

n
,

µ̃sy− =
∏

p≤x

(
1− 1

p

)2 ∑

(m,n)∈E2
x−

δTH(f(m)−f(n))−ϕ(logm−logn)

mn
,

and we consider a compact symmetric neighborhood V of the origin in G/H.
Applying Lemma 1 with U = G/H, we can find a continuous compactly
supported function I1 with Fourier transform F (I1(χ)) nonnegative and
integrable, hence invertible, such that I1(0) = 1 and for any u in G/H,
I1 ≤ IV . We have

µ̃sy−(V ) =
∫
IV dµ̃

s
y− ≥

∫
I1 dµ̃

s
y−,

since I1 ≤ IV , and also

∫
I1 dµ̃

s
y− =

∫
h

F (I1(χ))
∣∣∣∣
∏

p≤y

(
1− 1

p

)(
1 +

∑

r≥1

χ(f(pr))p−riτχ

pr

)∣∣∣∣
2

dm(χ).

Now, we remark that

lim
x→∞

∫
h

F (I1(χ))
∣∣∣∣
∏

p≤x

(
1− 1

p

)(
1 +

∑

r≥1

χ(f(pr))p−riτχ

pr

)∣∣∣∣
2

dm(χ)

=
∫
h

F (I1(χ)) lim
x→∞

∣∣∣∣
∏

p≤x

(
1− 1

p

)(
1 +

∑

r≥1

χ(f(pr))p−riτχ

pr

)∣∣∣∣
2

dm(χ)

by the Lebesgue theorem, and since the integrand is a continuous function
taking a positive value at the origin, this integral is positive, has a positive
value c, and for x large enough, is greater than c/2. This gives that

lim
y→∞

µ̃sy−(V ) > 0.

Since this inequality can be written as

lim
y→∞

∫
G/H

µ̃y−(x+ V ) dµy−(x) > 0,
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this implies that

lim
y→∞

sup
x∈G/H

µ̃y−(x+ V ) > 0.

Now, by Ruzsa’s Theorem, there exists a sequence an in G/H and a prob-
ability measure ν with support in G/H such that the sequence of measures

µy− =
∏

p≤x

(
1− 1

p

) ∑

n∈Ex−

δTH(f(n))−ϕ(logn)−Σp≤xap

n

converges vaguely to the measure ν.

2. P r o o f o f t h e N.B. We have to prove that the sequence an has the
property that for any given α satisfying 0 < α ≤ 1 and any sequence Y[x]
such that xα ≤ Y[x] ≤ x,

lim
x→∞

∑

Y[x]≤p≤x
ap = 0.

Let F (n) = TH(f(n))− ϕ(log n). We remark that for χ in h,

χ
(∑

p≤y
p 6=2

ap

) ∏

p≤y
p 6=2

(
1− 1

p

)∑

k≥0

χ(F (pk))
pk

converges and the limit is not 0. By the Cauchy criterion, we have, for any
given α satisfying 0 < α ≤ 1 and any sequence Y[x] such that xα ≤ Y[x] ≤ x,

lim
x→∞

χ
( ∑

Y[x]≤p≤x
ap

) ∏

Y[x]≤p≤x

(
1− 1

p

)∑

k≥0

χ(F (pk))
pk

= 1.

Now, since ∣∣∣∣
∏

p≤x

(
1− 1

p

)∑

k≥0

χ(F (pk))
pk

∣∣∣∣ converges,

we have

lim
x→∞

log
∣∣∣∣
∏

Y[x]≤p≤x

(
1− 1

p

)∑

k≥0

χ(F (pk))
pk

∣∣∣∣ = 0,

which implies

lim
x→∞

∑

Y[x]≤p≤x

1− Reχ(F (p))
p

= 0,

which can be written as

lim
x→∞

∑

Y[x]≤p≤x

|1− χ(F (p))|2
p

= 0.
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But

log
∏

Y[x]≤p≤x

(
1− 1

p

)∑

k≥0

χ(F (pk))
pk

=
∑

Y[x]≤p≤x

1− χ(F (p))
p

+ o(1),

and∣∣∣∣
∑

Y[x]≤p≤x

1− χ(F (p))
p

∣∣∣∣ ≤
∑

Y[x]≤p≤x

|1− χ(F (p))|
p

≤
( ∑

Y[x]≤p≤x

|1− χ(F (p))|2
p

)1/2( ∑

Y[x]≤p≤x

1
p

)1/2

≤
( ∑

xα≤p≤x

|1− χ(F (p))|2
p

)1/2( ∑

xα≤p≤x

1
p

)1/2

,

and since ( ∑

xα≤p≤x

1
p

)1/2

= O(1)

and ( ∑

xα≤p≤x

|1− χ(F (p))|2
p

)1/2

= o(1), x→∞,

we get

lim
x→∞

log
∏

Y[x]≤p≤x

(
1− 1

p

)∑

k≥0

χ(F (pk))
pk

= 0,

which implies

lim
x→∞

∏

Y[x]≤p≤x

(
1− 1

p

)∑

k≥0

χ(F (pk))
pk

= 1.

From

lim
x→∞

χ
( ∑

Y[x]≤p≤x
ap

) ∏

Y[x]≤p≤x

(
1− 1

p

)∑

k≥0

χ(F (pk))
pk

= 1,

we deduce that
lim
x→∞

χ
( ∑

Y[x]≤p≤x
ap

)
= 1,

and this implies by Lemma 2 that L = limx→∞
∑
Y[x]≤p≤x ap exists, and

L = 0.

3. Continuity of ν. We prove the equivalence of

(1) ν is not continuous,
(2) H is finite and

∑
TH(f(p)−ϕ(log p))6=0 1/p <∞.
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P r o o f. Since H and the sequence of measures

µy− =
∏

p≤x

(
1− 1

p

) ∑

n∈Ex−

δTH(f(n))−ϕ(logn)−Σp≤xap

n

which can be written as

µy− = *p≤x

(
1− 1

p

) ∞∑

k=0

δTH(f(pk))−ϕ(log pk)−ap
pk

,

satisfy the hypothesis of Theorem 3.2 of [7], the measure ν is not continuous
if and only if H is finite and

lim
y→∞

∏

p≤y
Sp 6= 0,

where Sp is defined by

Sp = max
u∈G/H

((
1− 1

p

) ∞∑

k=0

δTH(f(pk))−ϕ(log pk)−ap
pk

)
(u).

This is equivalent to
∑
p∈P (1− Sp) <∞ which is true if and only if

∑

p∈P

(
1− max

u∈G/H

((
1− 1

p

)
δ−ap +

δTH(f(p))−ϕ(log p)−ap
p

)
(u)
)
<∞.

It is clear that this inequality means that for some sequence (up), p ∈ P ,
we have ∑

p∈P
(1− δ−ap(up)) <∞

and
∑

p∈P

δ−ap(up)− δTH(f(p)−ϕ(log p)−ap)(up)

p
<∞.

It is easy to check that these inequalities can be satisfied if and only if the
condition ∑

TH(f(p)−ϕ(log p))6=0

1
p
<∞

is satisfied.

P r o o f o f t h e s e c o n d c a s e. If m(h) = 0, we have

lim
x→∞

∣∣∣∣
1
x

∑

n≤x
χ(f(n))

∣∣∣∣ = 0 dm-a.e.

If K is a compact subgroup of G and ϕ is a continuous homomorphism from
R to G/K, the dual group k of G/K is open and the duality theory gives
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that for every χ in k, there exists a real number τχ such that for every t in
R∗, we have

χ(ϕ(t)) = exp{iτχt},
which gives that for every n in N∗,

χ(ϕ(log n)) = exp{iτχ log n}.
Since m(h) = 0, by Halász’s Theorem, we know that for every real u, we
have dm-a.e. ∣∣∣

∑

n≤x
χ(f(n))niu

∣∣∣ = o(x), x→∞.

This implies that for almost every χ in k,∣∣∣
∑

n≤x
χ(f(n))n−iτχ

∣∣∣ = o(x), x→∞,

and so, for almost every χ in k,∣∣∣
∑

n≤x
χ(f(n)− ϕ(log n))

∣∣∣ = o(x), x→∞,

which implies immediately that whatever the sequence an is, we have

lim
x→∞

1
x

∑

n≤x
χ
(
f(n)− ϕ(log n)−

∑

p≤x
ap

)
= 0,

for almost every χ in k, and this ends the proof of the second case of the
Theorem.
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