A characterization of generalized Rudin–Shapiro sequences with values in a locally compact abelian group

by

JEAN-LOUP MAUCLAIRE (Paris)

1. Introduction. Let G be a locally compact abelian group with a group law denoted additively. Let A be a finite alphabet $\{0, 1, 2, \ldots, q-1\}$ of qelements naturally ordered, with a fixed integer $q \ge 2$. We denote by A^* the monoid of finite words on A. The number of letters of an element w of A^* is the *length* of the word, and with every word $w = w_0w_1 \ldots w_r$ of length r+1, we associate the integer $\dot{w} = w_0 + qw_1 + \ldots + q^r w_r$. Following J.-P. Allouche and P. Liardet (see [1]), we shall say that a map f from A^* to G is a *chained* map if it satisfies the condition that for all letters a and b in A, and any word w in A^* , f(abw) = f(ab) - f(b) + f(bw). Note that, by iteration, for all letters a_1, a_2, \ldots, a_s , and every word w in A^* , we have

$$f(a_1a_2...a_sw) = (f(a_1a_2) - f(a_2)) + \ldots + (f(a_{s-1}a_s) - f(a_s)) + f(a_sw).$$

Now, given a chained map f, if χ is a continuous character of G, we denote by χT the q^2 -matrix with entries $a_i^j = \chi(f(ij) - f(j)), 0 \le j \le q - 1$, $0 \le i \le q - 1$, where a_i^j is the element of the *i*th line and *j*th column. By definition, f is said to be a *Rudin–Shapiro map* if for every non-trivial character χ , $(\chi T)(\chi T) = qI$, or equivalently $(\chi T)(\overline{\chi T}) = qI$. Here I denotes the identity matrix and (χT) the adjoint of (χT) . With every f we associate a sequence f^* defined by $f^*(w) = f(w)$. Such a sequence f^* will be called a generalized Rudin–Shapiro sequence with values in G if f is a Rudin–Shapiro map.

In [1], motivations are given for the study of these sequences, which generalize in a natural way the classical Rudin–Shapiro sequence. But the authors assume that G is compact and metrizable. In this paper we consider the more general case where G is a locally compact abelian group. One of the interesting results presented in [1] is that if G is a compact metrizable abelian group and if f is a Rudin–Shapiro map, then G must be finite. The proof given in [1] is not quite correct. The purpose of this article is to give a complete proof for the more general case of locally compact abelian

[213]

groups. Moreover, we give a characterization of the existence of generalized Rudin–Shapiro sequences with values in a locally compact abelian group.

2. The result. We shall give a proof of the following theorem:

THEOREM. Let G be a locally compact abelian group written additively. A mapping f is a Rudin–Shapiro map from A^* to G if and only if

(i) G is a finite group, and its order N divides q,

(ii) if $u_{ij}(r) = f(ir) - f(jr)$, $0 \le i, j, r \le q-1$, then for every ϱ in G and every $i \ne j$, the number $N_{ij}(\varrho) = \operatorname{card}\{u_{ij}(r) : 0 \le r \le q-1, u_{ij}(r) = \varrho\}$ is equal to q/N.

Remark. Property (ii) is equivalent to the fact that the set of the differences f(ir) - f(jr), $0 \le r \le q - 1$, $i \ne j$, is the union of q/N copies of G.

3. Proof of the Theorem

I. We assume that f is a Rudin–Shapiro map. Let χ be a non-trivial character of G. Consider χT , the $q \times q$ matrix with entries

$$a_i^j = \chi(f(ij) - f(j)), \quad 0 \le j \le q - 1, \ 0 \le i \le q - 1.$$

We have $\chi T = (\chi(f(ij)))(\overline{\chi}(f(j)))$, where $(\chi(f(ij)))$ (resp. $(\overline{\chi}(f(j)))$ is the $q \times q$ matrix with entries $\tilde{a}_i^j = \chi(f(ij))$ (resp. $\hat{a}_i^j = \overline{\chi}(f(j))$ if i = j and $\hat{a}_i^j = 0$ otherwise). Now, since f is a Rudin–Shapiro map, we have $(\chi T)(\overline{\chi T}) = qI$, which implies $(\chi(f(ij)))(\overline{\chi(f(ij))}) = qI$ and gives

$$\sum_{r=0}^{q-1} \chi(f(ir) - f(jr)) = \begin{cases} q & \text{if } i = j, \\ 0 & \text{if } i \neq j. \end{cases}$$

Now, we fix i and j, $i \neq j$, and set u(r) = f(ir) - f(jr), $0 \leq r \leq q - 1$. Since G is locally compact, we consider a compact neighbourhood V(0) of the origin. Let F be a continuous non-negative real function with support in V(0) taking the value 1 at 0 and such that its Fourier transform F^* is invertible. The function H defined by

$$H(t) = \sum_{r=0}^{q-1} F(u(r) + t)$$

has a Fourier transform H^* given by

$$H^*(\chi) = \sum_{r=0}^{q-1} \int_G F(u(r) + t)\chi(t) \, dm(t)$$

where m is the normalized Haar measure on G. Therefore

$$H^{*}(\chi) = \sum_{r=0}^{q-1} \overline{\chi}(u(r)) \int_{G} F(u(r) + t)\chi(t + u(r)) \, dm(t)$$

and so

$$H^*(\chi) = F^*(\chi) \sum_{r=0}^{q-1} \overline{\chi}(u(r)).$$

Hence $H^*(\chi)$ is equal to zero, except if χ is trivial. Denoting by m^* the normalized Haar measure on G^* , the dual group of G, by Fourier inversion we get

$$\int_{G^*} H^*(\chi)\overline{\chi}(t) \, dm^*(\chi) = \int_{G^*} F^*(\chi) \sum_{r=0}^{q-1} \overline{\chi}(u(r))\overline{\chi}(t) \, dm^*(\chi)$$
$$= \sum_{r=0}^{q-1} F(u(r)+t) = H(t).$$

Since *H* is not identically 0 by construction, we deduce that if 1_{G^*} denotes the trivial character on *G*, then $m^*(\{1_{G^*}\})$ is not 0 and is finite since a point is compact. But m^* is translation invariant so that $m^*(\{\chi\}) = m^*(\{1_{G^*}\})$ for any character χ of *G*. Now, any compact neighbourhood V^* of 1_{G^*} has a finite measure and so must be a finite set. Indeed, if $\{\chi_m : 0 \le m \le n\}$ is a set of distinct elements of V^* , we must have

$$\sum_{n=0}^{n} m^*(\{\chi_m\}) = (n+1)m^*(\{1_{G^*}\}) < m^*(V^*),$$

which implies that n is finite. This proves that the topology defined on G^* is discrete. By a classical result of duality theory, we deduce that G is compact. Now, we consider a finite family of compact neighbourhoods V(r) of u(r), $0 \leq r \leq q-1$, and assume that there exists a continuous non-negative real function F, not identically 0, with compact support S(F) such that S(F) does not intersect any of the V(r). Since G is compact, the space E of finite linear combinations of characters of G is dense in the space of continuous functions on G. Then, for any given $\varepsilon > 0$, there exists an approximation $P_{\varepsilon} \in E$ such that $\sup_{t \in G} |F(t) - P_{\varepsilon}(t)| \leq \varepsilon$. Note that $|\int_{G} (F - P_{\varepsilon}) dm| \leq \varepsilon$, and recall that $\hat{P}_{\varepsilon}(1_{G^*}) = \int_{G} P_{\varepsilon} dm$, $\hat{P}_{\varepsilon}(1_{G^*})$ denoting the Fourier transform of P_{ε} at 1_{G^*} . But $\sup_{t \in G} |F(t) - P_{\varepsilon}(t)| \leq \varepsilon$ also implies that $|\sum_{r=0}^{q-1} F(u(r)) - P_{\varepsilon}(u(r))| \leq q\varepsilon$ and since F(u(r)) = 0 for every r and $\sum_{r=0}^{q-1} \chi(u(r)) = 0$ for every non-trivial character χ of G, we get $|\sum_{r=0}^{q-1} \hat{P}_{\varepsilon}(1_{G^*})| \leq q\varepsilon$. Therefore $\int_{G} F = 0$. Since F is continuous, non-negative and not identically 0, this is a contradiction. Hence S(F) intersects

at least one of the compact neighbourhoods V(r). This means that the finite set of points u(r), $0 \le r \le q - 1$, is dense in G, and so G is finite.

We shall denote by N the number of elements of G.

By our hypothesis, $\sum_{r=0}^{q-1} \chi(u(r)) = 0$ for every non-trivial character χ of G. Now, we write

(1)
$$\sum_{r=0}^{q-1} \chi(u(r)) = \sum_{\varrho \in G} \chi(\varrho) N(\varrho)$$

where, as above, $N(\varrho) = \operatorname{card}\{u(r) : 0 \le r \le q - 1, u(r) = \varrho\}$. For ϱ in G, the orthogonality relations for characters give

(2)
$$N(\varrho) = \frac{1}{N} \sum_{\chi \in G^*} \overline{\chi}(\varrho) \Big(\sum_{\varrho' \in G} \chi(\varrho') N(\varrho') \Big).$$

Using (1), we see that formula (2) can be written

$$N(\varrho) = \frac{1}{N} \sum_{\chi \in G^*} \overline{\chi}(\varrho) \Big(\sum_{r=0}^{q-1} \chi(u(r)) \Big),$$

and since by hypothesis $\sum_{r=0}^{q-1} \chi(u(r))$ is 0 if $\chi \neq 1$ and q if $\chi = 1$, we get $N(\varrho) = q/N$. In particular, N divides q since q/N is an integer.

So, we have shown that

(i) G is a finite group and its order N divides q,

(ii) if we fix i and j, $i \neq j$, and set $u_{ij}(r) = f(ir) - f(jr), 0 \leq r \leq q-1$, then for every ρ in G,

$$N_{ij}(\varrho) = \operatorname{card}\{u_{ij}(r) : 0 \le r \le q - 1, \ u_{ij}(r) = \varrho\} = q/N.$$

II. We prove the converse. To this end, we assume that G is a finite group and its order N divides q. Let f be a chained map satisfying the following property:

For any *i* and *j* such that $i \neq j$, the set of the differences f(ir) - f(jr), $0 \leq r \leq q - 1$, is the union of q/N copies of *G*.

We shall prove that if χ is a non-trivial character of G, then χT , the $q \times q$ matrix with entries $a_i^j = \chi(f(ij) - f(j))$, satisfies $(\chi T)(\overline{\chi T}) = qI$.

We have seen that $\chi T = (\chi(f(ij)))(\overline{\chi}(f(j)))$. Note that $(\chi T)(\overline{\chi T}) = (A_i^j)$ with

$$\begin{aligned} A_i^j &= \sum_{r=0}^{q-1} \chi(f(ir)) \overline{\chi}(r) \overline{\overline{\chi}}(r) \overline{\overline{\chi}}(f(jr)) = \sum_{r=0}^{q-1} \chi(f(ir)) \overline{\chi}(f(jr)) \\ &= \sum_{r=0}^{q-1} \chi(f(ir) - f(jr)). \end{aligned}$$

By assumption,

$$\sum_{r=0}^{q-1} \chi(f(ir) - f(jr)) = \sum_{\varrho \in G} \frac{q}{N} \chi(\varrho) = \frac{q}{N} \sum_{\varrho \in G} \chi(\varrho).$$

Therefore $A_i^j = q$ if i = j and $A_i^j = 0$ if $i \neq j$. This means that $(\chi T)(\overline{\chi T}) = qI$, i.e., f is a Rudin–Shapiro map. This ends the proof of the Theorem.

EXAMPLES. 1. In the case q = 2, $G = \mathbb{Z}/2\mathbb{Z}$, the classical Rudin–Shapiro sequence is obtained by taking f(ij) equal to the coefficient of the *i*th line and *j*th column of the 2×2 matrix $\begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$ ([3], [4]).

2. Let q be a prime number. We identify A with the cyclic group of order q. Then, as mentioned in [1] (where the condition on the primality of q has been omitted), the example given by Queffélec in [2] corresponds, in this case, to the A-valued Rudin–Shapiro map f defined on $A \times A$ by f(a, b) = ab.

References

- J.-P. Allouche and P. Liardet, Generalized Rudin-Shapiro sequences, Acta Arith. 60 (1991), 1–27.
- M. Queffélec, Une nouvelle propriété des suites de Rudin-Shapiro, Ann. Inst. Fourier (Grenoble) 37 (2) (1987), 115–138.
- [3] W. Rudin, Some theorems on Fourier coefficients, Proc. Amer. Math. Soc. 10 (1959), 855–859.
- [4] H. S. Shapiro, Extremal problems for polynomials and power series, Thesis, M.I.T., 1951.

C.N.R.S., U.R.A. 212 THÉORIES GÉOMÉTRIQUES UNIVERSITÉ PARIS-VII TOUR N° 45–55, 5° ÉTAGE 2, PLACE JUSSIEU 75251 PARIS CEDEX 05 FRANCE

Received on 1.3.1993

(2390)