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1. Introduction. Let G be a locally compact abelian group with a group
law denoted additively. Let A be a finite alphabet {0,1,2,...,q — 1} of ¢
elements naturally ordered, with a fixed integer ¢ > 2. We denote by A* the
monoid of finite words on A. The number of letters of an element w of A* is
the length of the word, and with every word w = wows ... w, of length r+1,
we associate the integer w = wg +qwi +. . . + ¢"w,-. Following J.-P. Allouche
and P. Liardet (see [1]), we shall say that a map f from A* to G is a chained
map if it satisfies the condition that for all letters a and b in A, and any
word w in A*, f(abw) = f(ab) — f(b) + f(bw). Note that, by iteration, for
all letters ay,as,...,as, and every word w in A*, we have

flarasz ... .asw) = (f(araz2) — f(az)) + ...+ (f(as—1as) — f(as)) + f(asw).

Now, given a chained map f, if x is a continuous character of GG, we denote
by xT the g*-matrix with entries a! = x(f(ij) — f(j)), 0 < j < q¢ — 1,
0 <i < q—1, where a{ is the element of the ith line and jth column.
By definition, f is said to be a Rudin—Shapiro map if for every non-trivial
character x, (XT)(xT) = qI, or equivalently (xT)(xT) = qI. Here I denotes
the identity matrix and (xT) the adjoint of (xT'). With every f we associate
a sequence f* defined by f*(w) = f(w). Such a sequence f* will be called a
generalized Rudin—Shapiro sequence with values in G if f is a Rudin—Shapiro
map.

In [1], motivations are given for the study of these sequences, which
generalize in a natural way the classical Rudin—Shapiro sequence. But the
authors assume that G is compact and metrizable. In this paper we consider
the more general case where G is a locally compact abelian group. One of
the interesting results presented in [1] is that if G is a compact metrizable
abelian group and if f is a Rudin—Shapiro map, then G must be finite.
The proof given in [1] is not quite correct. The purpose of this article is to
give a complete proof for the more general case of locally compact abelian
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groups. Moreover, we give a characterization of the existence of generalized
Rudin—Shapiro sequences with values in a locally compact abelian group.

2. The result. We shall give a proof of the following theorem:

THEOREM. Let G be a locally compact abelian group written additively.
A mapping f is a Rudin—-Shapiro map from A* to G if and only if
(i) G is a finite group, and its order N divides q,
(ii) if ui;(r) = f(ir)— f(4r), 0 <i,4,r < g—1, then for every o in G and
every i # j, the number N;j(o0) = card{u;;(r) : 0 <r < q—1,u;;(r) = o} is
equal to q/N.

Remark. Property (ii) is equivalent to the fact that the set of the
differences f(ir) — f(jr), 0 <r < q—1, i # j, is the union of ¢/N copies
of G.

3. Proof of the Theorem

I. We assume that f is a Rudin—Shapiro map. Let y be a non-trivial
character of G. Consider x7', the ¢ X ¢ matrix with entries

al = x(f(ij) = (7)), 0<j<q—1,0<i<q—1.
We have xT' = (x(f(27))) (X(f(5))), where (x(f(ij))) (resp. (X(f(j))) is the
qxq matrix with entries @] = x(f(ij)) (vesp. a] = X(f(j)) ifi = janda] =0

otherwise). Now, since f is a Rudin-Shapiro map, we have (xT')(xT') = ¢/,
which implies (x(/(i7))) (x(f(i/))) = af and gives

q—1 1y .
q mr=j,
x(f Flm) = {0 if i # j.
r=0

Now, we fix ¢ and j, i # j, and set u(r) = f(ir) — f(jr), 0 <r < qg—1.
Since G is locally compact, we consider a compact neighbourhood V' (0) of
the origin. Let F' be a continuous non-negative real function with support
in V(0) taking the value 1 at 0 and such that its Fourier transform F* is
invertible. The function H defined by

= Z F(u(r)+1t)
r=0

has a Fourier transform H* given by

»Q
)_l

f F(u )x(t) dm(t)
G
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where m is the normalized Haar measure on GG. Therefore
q—1

H*(x) = > x(u(r) [ Fur)+O)x(t +u(r) dm(t)
r=0 G

and so
H*(x) = F*(x) ) _x(u(r)).
r=0

Hence H*(x) is equal to zero, except if x is trivial. Denoting by m* the
normalized Haar measure on G*, the dual group of GG, by Fourier inversion
we get,

(u(r))x(t) dm*(x)

x|

[ H Cox®)dm*(x) = [ F*(x)
et

=) Flu(r)+t) = H(t).
r=0

Since H is not identically 0 by construction, we deduce that if 14+ denotes
the trivial character on G, then m*({1¢-}) is not 0 and is finite since a point
is compact. But m* is translation invariant so that m*({x}) = m*({lg+})
for any character x of G. Now, any compact neighbourhood V* of 15+ has
a finite measure and so must be a finite set. Indeed, if {x,, : 0 < m < n} is
a set of distinct elements of V*, we must have

S (fxm}) = (0 + Dm* ({Lg-}) < m* (V7).
m=0

which implies that n is finite. This proves that the topology defined on
G* is discrete. By a classical result of duality theory, we deduce that G
is compact. Now, we consider a finite family of compact neighbourhoods
V(r) of u(r), 0 < r < g — 1, and assume that there exists a continuous
non-negative real function F', not identically 0, with compact support S(F')
such that S(F') does not intersect any of the V(r). Since G is compact,
the space E of finite linear combinations of characters of G is dense in
the space of continuous functions on G. Then, for any given € > 0, there
exists an approximation P. € E such that sup,cq |F(t) — P-(t)| < . Note
that | [,(F — P.)dm| < e, and recall that P.(1g:) = Jo P-dm, P.(1¢-)
denoting the Fourier transform of P; at 1g-. But sup,cq |F(t) — P-(t)| < ¢
also implies that | E?;é F(u(r)) — P-(u(r))] < ge and since F(u(r)) = 0 for
every r and Zg;é X(u(r)) = 0 for every non-trivial character x of G, we
get |Zg;é P.(1¢+)| < ge. Therefore Jo F = 0. Since F is continuous, non-
negative and not identically 0, this is a contradiction. Hence S(F') intersects
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at least one of the compact neighbourhoods V(7). This means that the finite
set of points u(r), 0 <r < ¢ —1, is dense in G, and so G is finite.

We shall denote by N the number of elements of G.

By our hypothesis, Zg;é X(u(r)) = 0 for every non-trivial character x
of G. Now, we write

W 3 vl = 3 x (0N (o)
r=0 0€G

where, as above, N(p) = card{u(r) : 0 < r < ¢ —1,u(r) = p}. For g in G,
the orthogonality relations for characters give

@) No) =5 3 X (X MeIN@)),
xXE€EG* o'eG

Using (1), we see that formula (2) can be written

=

N0 = 5 3 %) (X xur),
xX€EG* r=

and since by hypothesis Zg;é x(u(r)) is 0 if x # 1 and ¢ if x = 1, we get

N(p) = ¢/N. In particular, N divides ¢ since ¢/N is an integer.
So, we have shown that

(i) G is a finite group and its order N divides ¢,
(ii) if we fix ¢ and j, ¢ # j, and set u;;(r) = f(ir) — f(jr), 0 <r < g—1,
then for every p in G,

Nij(o0) = card{u;;(r) : 0 <r < g —1, u;(r) = o} = q/N.

II. We prove the converse. To this end, we assume that G is a finite group
and its order IV divides q. Let f be a chained map satisfying the following
property:

For any ¢ and j such that i # j, the set of the differences f(ir) —
f(gr), 0 <r < q—1, is the union of ¢/N copies of G.

We shall prove that if x is a non-trivial character of G, then xT', the
q x ¢ matrix with entries al = x(f(ij) — f(4)), satisfies (xT)(xT) = ql.

‘We have seen that xT = (x(f(i5)))(x(f(j))). Note that (xT)(xT) =
(A7) with

<
I
_
<
I
_

AL =) X () ROXRGr) =Y x(fr)x(f ()

Q3
Ll
=)
3
I
=)

= D Xx(f(ir) = f(jr)).

%
I
o
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By assumption,

DoX(fr) = £(r) = Y- 1oxle) = 1= > x(o).
r=0 0€G 0€G

Therefore Ag =gqifi=j and A{ = 0 if i # j. This means that (xT)(xT)
=ql, i.e., f is a Rudin—Shapiro map. This ends the proof of the Theorem.

ExXAMPLES. 1. In the case ¢ = 2, G = Z/27Z, the classical Rudin—Shapiro
sequence is obtained by taking f(ij) equal to the coefficient of the ith line

and jth column of the 2 x 2 matrix H 711] ([3], [4])-

2. Let ¢ be a prime number. We identify A with the cyclic group of
order gq. Then, as mentioned in [1] (where the condition on the primality
of ¢ has been omitted), the example given by Queffélec in [2] corresponds,
in this case, to the A-valued Rudin—Shapiro map f defined on A x A by
f(a,b) = ab.
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