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It is a classical result of P. Bohl [5], W. Sierpiński [21, 22] and H. Weyl
[25, 26] that the sequence (nα)n≥1 is uniformly distributed modulo 1 if and
only if α is irrational. The discrepancies

D∗N (α) = sup
0≤x≤1

∣∣∣
N∑
n=1

c[0,x)({nα})−Nx
∣∣∣

and

DN (α) = sup
0≤x<y≤1

∣∣∣
N∑
n=1

c[x,y)({nα})−N(y − x)
∣∣∣

measure the deviation of this sequence from an ideal distribution. (Here
N ∈ N, cM is the characteristic function of the set M and {x} = x − [x]
denotes the fractional part of x.) The speed of convergence in the limit
relations

lim
N→∞

1
N
D∗N (α) = 0 and lim

N→∞
1
N
DN (α) = 0

is used as a measure for the quality of distribution and was studied by many
authors. Initially the problem was tackled by H. Behnke [3, 4], A. Ostrowski
[14], G. H. Hardy and J. E. Littlewood [10], and E. Hecke [11]. More re-
cently, it was taken up by H. Niederreiter [13], J. Lesca [12], V. T. Sós [23,
24], Y. Dupain [7, 8], Y. Dupain and V. T. Sós [9], L. Ramshaw [15] and
J. Schoißengeier [17, 18, 20].
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In [17] it was proved that lim infN→∞D∗N (α) = 1 for all irrational α. To
determine the maximum order of D∗N (α), the quantities

ω+
N (α) = sup

0≤x≤1

( N∑
n=1

c[0,x)({nα})−Nx
)

and

ω−N (α) = sup
0≤x≤1

(
Nx−

N∑
n=1

c[0,x)({nα})
)

were introduced by J. Schoißengeier [20] who determined

max
1≤N<qm+1

ω+
N (α) and max

1≤N<qm+1

ω−N (α)

up to an absolute error in terms of the continued fraction expansion of α.
Utilizing D∗N (α) = max(ω+

N (α), ω−N (α)) one arrives at the maximum order
of D∗N (α).

It is the purpose of this paper to prove analogous results for the minimum
and maximum order of DN (α). We calculate max1≤N<qm+1 DN (α) in terms
of the continued fraction expansion of α up to an absolute error (where
qm denotes the denominator of the mth convergent of α). Using this we
describe the maximum order of the sequence (DN (α))N≥1 and calculate
lim supN→∞DN (α)/ logN for all α for whichDN (α) = O(logN) is satisfied.
Finally, we determine the minimum order of (DN (α))N≥1 which turns out
to be closely connected to the Lagrange spectrum.

1. The maximum order. We will use the following notations: α will
always denote an irrational real number with regular continued fraction
expansion α = [a0, a1, a2, . . .] (a0 ∈ Z and a1, a2, . . . ∈ N) and convergents
(pm/qm)m≥0. For all i, j ≥ 0 let

sij = qmin(i,j)(qmax(i,j)α− pmax(i,j))

and

εi =
1
2

(1− (−1)ai+1)
∏

0≤j≤i
j≡i (mod 2)

(−1)aj+1 .

We are now prepared to state our first main result.

Theorem 1.1. For m ≥ 0 let Nm = 1
2

∑m
i=0(ai+1 + (−1)mεi)qi. Then as

m→∞,

4 max
1≤N<qm+1

DN (α) =
m∑

i=0

ai+1 −
∑

0≤i≤m

∑

0≤j≤m
j≡i (mod 2)

εiεj |sij |+O(1)
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and

max
1≤N<qm+1

DN (α) =
{
DNm(α) +O(1) if Nm < qm+1,
DNm−1(α) +O(1) otherwise.

The implicit constants are absolute.

P r o o f. We introduce

Sm =
1
4

m∑

i=0

ai+1 − 1
4

∑

0≤i≤m

∑

0≤j≤m
j≡i (mod 2)

εiεj |sij |

as a convenient shorthand notation.
Employing c[0,{x−y})({x})−{x−y} = {y}−{x} for all x, y ∈ R we have

for 0 ≤ k, l ≤ N < qm+1,

(∗) ∆N (k, l)

:=
N∑
n=1

c[0,{kα})({nα})−N{kα} −
N∑
n=1

c[0,{lα})({nα}) +N{lα}

=
N∑
n=1

({(n− k)α} − {nα})−
N∑
n=1

({(n− l)α} − {nα})

=
k−1∑
n=1

{−nα}+
N−k∑
n=1

{nα} −
l−1∑
n=1

{−nα} −
N−l∑
n=1

{nα}

= k − 1−
k−1∑
n=1

{nα} − (l − 1) +
l−1∑
n=1

{nα}+
N−k∑
n=1

{nα} −
N−l∑
n=1

{nα}

=
l−1∑
n=1

({nα}−1/2)+
N−k∑
n=1

({nα}−1/2)−
k−1∑
n=1

({nα}−1/2)−
N−l∑
n=1

({nα}−1/2)

≤ 2 max
1≤M<qm+1

M∑
n=1

B1(nα)− 2 min
1≤M<qm+1

M∑
n=1

B1(nα) = Sm +O(1).

Here B1(x) = {x}−1/2 denotes the first Bernoulli polynomial. The last step
made use of Corollary 2 in §2 of [19]. UsingDN (α) = 1+max1≤k,l≤N ∆N (k, l)
we get max1≤N<qm+1 DN (α) ≤ Sm + c with an absolute constant c > 0. To
obtain equality we set

k := 1 +
1
2

∑

0≤i≤m
i≡0 (mod 2)

(ai+1 + (−1)mεi)qi,

l := 1 +
1
2

∑

0≤i≤m
i≡1 (mod 2)

(ai+1 + (−1)mεi)qi
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and N̂m := k+ l−1 = Nm+1. Obviously l−1 = N̂m−k and k−1 = N̂m− l.
According to Corollary 2 in §2 of [19] we have equality in (∗). Had we proved
N̂m < qm+1 we would have completed the proof of the theorem. It is of no
importance that N̂m = Nm + 1 as DN+1(α) = DN (α) + O(1) with an
absolute implied constant. A trivial estimation yields

Nm ≤ 1
2

m∑

i=0

2ai+1qi = qm+1 + qm − 1.

If am+1 ≥ 3 we even have

Nm < (qm + qm−1) +
1
2

(am+1 + 1)qm ≤ qm+1.

Thus, Nm ≥ qm+1 only if am+1 ≤ 2. But in this case we may safely change
to Nm−1 < qm + qm−1 ≤ qm+1 as Sm = Sm−1 +O(am+1) with an absolute
implied constant.

We conclude the proof with a remark: Obviously Nm ≥ qm if am+1 ≥ 2.
If am+1 = am = 1 it is possible that am+1 +(−1)mεm = am+(−1)m−1εm−1

= 0 but by the definition of the εi it is impossible to have also am−1 +
(−1)m−2εm−2 = 0. Therefore Nm ≥ qm−2.

R e m a r k. Using Corollary 1 in §2 of [19] the Bernoulli polynomials
can be replaced by Dedekind sums in the above estimate. This indicates a
close connection between discrepancies and Dedekind sums which was first
pointed out and explored by U. Dieter (oral communication).

Corollary 1.2. Let α be an irrational number. For N ∈ N we define
m ∈ N by the property qm ≤ N < qm+1. Then

lim sup
N→∞

DN (α)
/ ( m∑

i=0

ai+1 −
∑

0≤i≤m

∑

0≤j≤m
j≡i (mod 2)

εiεj |sij |
)

=
1
4
.

P r o o f. This can be proved along the same lines as Corollary 1 in §2
of [20].

R e m a r k. Another proof of Theorem 1.1 which uses a completely dif-
ferent method is to be found in [1]. It yields more precise information on
where the maximum is attained at the cost of a much longer proof.

2. The maximum order for numbers of bounded density. By
a well known theorem of W. M. Schmidt [16] for every α an infinity of
positive integers N such that DN (α) ≥ (66 log 4)−1 logN exist. On the other
hand, it was first observed by H. Behnke [4] that DN (α) = O(logN) if and
only if α = [a0, a1, a2, . . .] is of bounded density (i.e.

∑m
i=0 ai+1 = O(m) as
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m→∞). For these numbers we are now able to compute the infimum of all
possible implied constants in the estimate DN (α) = O(logN).

Theorem 2.1. Let α be a number of bounded density. Then

ν(α) := lim sup
N→∞

DN (α)
logN

=
1
4

lim sup
m→∞

1
log qm

( m∑

i=0

ai+1 −
∑

0≤i≤m

∑

0≤j≤m
j≡i (mod 2)

εiεj |sij |
)
.

P r o o f. This may be proved as Theorem 1 in §3 of [20].

Theorem 2.1 implies a property of the function ν which was first shown
by L. Ramshaw [15]:

Corollary 2.2. Let α, β be two numbers of bounded density. Assume
that there exists a matrix

(
a b
c d

) ∈ GL2(Z) such that β = (aα+ b)/(cα+ d).
Then ν(β) = ν(α).

P r o o f. This follows immediately from Theorem 2.1 and various parts
of the proof of Theorem 2 in §3 of [20].

R e m a r k. The analogous map ν∗(α) = lim supN→∞D∗N (α)/ logN is
studied in [1, 2]. The image of ν∗ has the property ν∗(B) = [ν∗(

√
2),∞).

(Here B denotes the set of all numbers of bounded density.) In the present
case we are able to prove [ν(

√
2),∞) ⊆ ν(B) but ν((1 +

√
5)/2) < ν(

√
2).

In the case of quadratic irrationalities there is a formula which does not
contain any limit processes:

Theorem 2.3. Let α = [0, a1, . . . , ae] where 2 | e and set

ηt =
∏

0≤σ<e
σ≡t (mod 2)

(−1)aσ+1 for t ∈ {0, 1}.

Then

ν(α) =
1

4 log(qe + αqe−1)

(e−1∑

i=0

ai+1

+
1∑
t=0

(2t− 1)
qe−1

2ηt − qe − pe−1
N
( ∑

0≤i<e
i≡t (mod 2)

εi(qiα− pi)
)

+
1∑
t=0

(2t− 1)
∑

0≤i<e
i≡t (mod 2)

∑

0≤j<e
j≡t (mod 2)

εiεjqipj sgn (i− j)
)
,

where N denotes the norm of the quadratic field Q(α).
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P r o o f. Here the same applies as to Theorem 1 of §4 in [20].

N o t e. In view of Corollary 2.2 the assumption on the shape of the con-
tinued fraction expansion of α does not exclude any quadratic irrationalities.
Note also that the period e is not assumed to be of minimal length.

We finish the section with two special cases of Theorem 2.3.

Corollary 2.4. Let α = [0, a, b] with a, b ∈ N. Then

ν(α) =
1

4 log(1 + b/α)

(
a+b− 1

2
· 1− (−1)a

ab+ 2(1− (−1)a)
− 1

2
· 1− (−1)b

ab+ 2(1− (−1)b)

)
.

Corollary 2.5. Let α = [0, a] with a ∈ N. Then

ν(α) =
a

4 log(1/α)

(
1− 1

2
· 1− (−1)a

a2 + 4

)
.

R e m a r k. Corollary 2.5 was first proved by L. Ramshaw [15].

3. The maximum order for special Hurwitz continued fractions

Theorem 3.1. Let t ∈ N and αt = coth(1/t) = [t, 3t, 5t, . . .]. Then as
m→∞,

max
1≤N<qm+1

DN (αt) =
1
4
tm2 + tm+

1
16t

((−1)t − 1) logm+O(1).

P r o o f. The proof runs analogously to that of Theorem 1 in §5 of [20].

Theorem 3.2. Let t ∈ N. Then

lim sup
N→∞

DN

(
coth

1
t

)(
log logN

logN

)2

=
t

4
,(1)

lim sup
N→∞

DN ( t
√
e)
(

log logN
logN

)2

=
t

4
,(2)

lim sup
N→∞

DN ( 2t+1
√
e2)
(

log logN
logN

)2

=
2t+ 1

4
.(3)

P r o o f. Using the well known continued fraction expansions of the num-
bers coth(1/t), t

√
e and 2t+1

√
e2 we proceed according to the following

scheme. First we calculate estimates
m∑

i=0

ai+1 ∼ C1(t)m2 and
m∑

i=1

log ai ∼ C2(t)m logm

as m→∞. Since
m∑

i=1

log ai ≤ log qm ≤
m∑

i=1

log(ai + 1) =
m∑

i=1

log ai +O(m)
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we have

log qm ∼ C2(t)m logm.

For each N ∈ N we define m ∈ N via the relation qm ≤ N < qm+1. Since
log qm+1 ∼ log qm as m → ∞ we infer logN ∼ C2(t)m logm as N → ∞.
This yields log logN ∼ logm and logN ∼ C2(t)m logm ∼ C2(t)m log logN
as N →∞. Putting all together we find

Sm ∼
m∑

i=0

ai+1 ∼ C1(t)m2 ∼ C1(t)
C2(t)2

(
logN

log logN

)2

,

where we made use of∑

0≤i≤m

∑

0≤j≤m
j≡i (mod 2)

εiεj |sij | = O(m).

The result now follows from Corollary 1.2.

4. The minimum order. We continue by introducing a few more no-
tations. Let qm ≤ N < qm+1. There is a unique expansion N =

∑m
j=0 bjqj

where 0 ≤ bj ≤ aj+1 for all j, b0 < a1 and bj = aj+1 ⇒ bj−1 = 0 for j ≥ 1.
For j ≥ −1 we define Aj =

∑m
µ=0 bµsµj . Let iN be the smallest integer j ≥ 0

such that bj 6= 0. Set

s := min{j | 2 - j, 1 ≤ j ≤ m, Aj > 0, Aj+2 > 0⇒ bj+1 < aj+2}
and

t := min{j | 2 - j, 1 ≤ j ≤ m, Aj−1 < 0 < Aj+1,

Aj+2 > 0⇒ bj+1 < aj+2 − 1},
where min ∅ :=∞. Finally, we define

u :=
{

0 if 2 | iN and (b0 < a1 − 1 or A1 < 0),
min{s, t} otherwise.

Theorem 4.1.

ω+
N (α) =

∑

u≤j≤m
j≡0 (mod 2)

bj(1−Aj) +
∑

u≤j≤m
Aj+1<0<Aj−1
j≡0 (mod 2)

Aj −
∑

u≤j≤m
Aj−1≤0<Aj+1
j≡0 (mod 2)

Aj(1)

−
∑

u≤j≤m
Aj<0

j≡0 (mod 2)

aj+1Aj + (δu,0 − 1)Au,

ω−N (α) = ω+
N (α) +A0 −

m∑

j=0

bj((−1)j −Aj)(2)
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and

(3) DN (α) = 2ω+
N (α) +A0 −

m∑

j=0

bj((−1)j −Aj).

P r o o f. Though not explicitly stated, (1) and (2) are contained in The-
orem 1 of §8 in [17]. (Note the slightly different definition of the Aj .) (3)
follows immediately from DN (α) = ω+

N (α) + ω−N (α).

Lemma 4.2. Let qm ≤ N < qm+1. Then

ω+
N (α) = max

1≤k≤N
(σ−1(k)−N{kα}) ≥ qm|qmα− pm|

and

ω−N (α) = 1 + max
1≤k≤N

(N{kα} − σ−1(k)) ≥ qm|qmα− pm|,
where σ : {1, . . . , N} → {1, . . . , N} is the unique permutation which satisfies
{ασ(i)} < {ασ(i+ 1)} for 1 ≤ i < N .

P r o o f. There is a k0 (1 ≤ k0 ≤ N) such that σ−1(k0) = N . We have

σ−1(k0)−N{k0α} = N |1 + [k0α]− k0α| ≥ qm|qmα− pm|
as |qα − p| ≥ |qmα − pm| > |qm+1α − pm+1| for all (q, p) 6= (qm+1, pm+1)
with 0 ≤ q < qm+1. The second assumption is proved analogously.

Theorem 4.3. If α is an irrational number , then

lim inf
N→∞

DN (α) = 1 + lim inf
m→∞

qm|qmα− pm|.

P r o o f. As in the proof of Corollary 1 in §9 of [17] we compute Dbqm(α)
(where 1 ≤ b ≤ am+1) using Theorem 4.1 and arrive at

Dbqm(α) = b− (b− 2)bqm|qmα− pm| − b|qmα− pm|.
Putting b = 1 leads to

lim inf
N→∞

DN (α) ≤ 1 + lim inf
m→∞

qm|qmα− pm|.
To prove the reverse inequality let ε > 0 and N such that D∗N (α) =
max(ω+

N (α), ω−N (α)) > 1 − ε. (The existence of such an N is guaranteed
by Corollary 2 in §9 of [17].) If (without loss of generality) ω+

N (α) > 1 − ε
then DN (α) = ω+

N (α) + ω−N (α) > 1 + qm|qmα− pm| − ε by Lemma 4.2.

R e m a r k. As proved in the above theorem, DN (α) behaves like D∗N (α)
if the sequence (aj)j≥1 of partial quotients is unbounded, otherwise it is
closely related to the Lagrange spectrum. As this set has been studied
thoroughly there is an abundance of information available on the set S :=
{lim infN→∞DN (α) | α ∈ R\Q} (see [6]). We restrict ourselves to state just
a few of the known facts:
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S is a closed subset of the interval [1, 1 + 1/
√

5] with minS = 1 and
maxS = 1+1/

√
5. Its subset S ∩ (1+1/3, 1+1/

√
5] consists of the numbers

1 +m/
√

9m2 − 4 where m is a positive integer such that

m2 +m2
1 +m2

2 = 3mm1m2

for some positive integers m1 ≤ m and m2 ≤ m. The three largest numbers
of S are 1 + 1/

√
5, 1 + 1/

√
8 and 1 + 5/

√
221. Let

µ0 =
253589820 + 283748

√
462

491993569
= 4.527829 . . .

Then [1, 1+1/µ0] ⊆ S and there is no interval I such that [1, 1+1/µ0] $ I ⊆
S. On the other hand, there are gaps in S such as J = (1+1/

√
13, 1+1/

√
12),

i.e. J ∩ S = ∅ but 1 + 1/
√

12 ∈ S and 1 + 1/
√

13 ∈ S.
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STRUDLHOFGASSE 4

A-1090 WIEN, AUSTRIA

E-mail: BAXA@PAP.UNIVIE.AC.AT

Received on 17.12.1993 (2547)


