Minimum and maximum order of magnitude of the discrepancy of $(n \alpha)$

by
C. Baxa and J. Schoissengeier (Wien)

Dedicated to Prof. Wolfgang Schmidt on the occasion of his sixtieth birthday

It is a classical result of P. Bohl [5], W. Sierpiński [21, 22] and H. Weyl $[25,26]$ that the sequence $(n \alpha)_{n \geq 1}$ is uniformly distributed modulo 1 if and only if α is irrational. The discrepancies

$$
D_{N}^{*}(\alpha)=\sup _{0 \leq x \leq 1}\left|\sum_{n=1}^{N} c_{[0, x)}(\{n \alpha\})-N x\right|
$$

and

$$
D_{N}(\alpha)=\sup _{0 \leq x<y \leq 1}\left|\sum_{n=1}^{N} c_{[x, y)}(\{n \alpha\})-N(y-x)\right|
$$

measure the deviation of this sequence from an ideal distribution. (Here $N \in \mathbb{N}, c_{M}$ is the characteristic function of the set M and $\{x\}=x-[x]$ denotes the fractional part of x.) The speed of convergence in the limit relations

$$
\lim _{N \rightarrow \infty} \frac{1}{N} D_{N}^{*}(\alpha)=0 \quad \text { and } \quad \lim _{N \rightarrow \infty} \frac{1}{N} D_{N}(\alpha)=0
$$

is used as a measure for the quality of distribution and was studied by many authors. Initially the problem was tackled by H. Behnke [3, 4], A. Ostrowski [14], G. H. Hardy and J. E. Littlewood [10], and E. Hecke [11]. More recently, it was taken up by H. Niederreiter [13], J. Lesca [12], V. T. Sós [23, 24], Y. Dupain [7, 8], Y. Dupain and V. T. Sós [9], L. Ramshaw [15] and J. Schoißengeier [17, 18, 20].

[^0]In [17] it was proved that $\liminf _{N \rightarrow \infty} D_{N}^{*}(\alpha)=1$ for all irrational α. To determine the maximum order of $D_{N}^{*}(\alpha)$, the quantities

$$
\omega_{N}^{+}(\alpha)=\sup _{0 \leq x \leq 1}\left(\sum_{n=1}^{N} c_{[0, x)}(\{n \alpha\})-N x\right)
$$

and

$$
\omega_{N}^{-}(\alpha)=\sup _{0 \leq x \leq 1}\left(N x-\sum_{n=1}^{N} c_{[0, x)}(\{n \alpha\})\right)
$$

were introduced by J. Schoißengeier [20] who determined

$$
\max _{1 \leq N<q_{m+1}} \omega_{N}^{+}(\alpha) \quad \text { and } \quad \max _{1 \leq N<q_{m+1}} \omega_{N}^{-}(\alpha)
$$

up to an absolute error in terms of the continued fraction expansion of α. Utilizing $D_{N}^{*}(\alpha)=\max \left(\omega_{N}^{+}(\alpha), \omega_{N}^{-}(\alpha)\right)$ one arrives at the maximum order of $D_{N}^{*}(\alpha)$.

It is the purpose of this paper to prove analogous results for the minimum and maximum order of $D_{N}(\alpha)$. We calculate $\max _{1 \leq N<q_{m+1}} D_{N}(\alpha)$ in terms of the continued fraction expansion of α up to an absolute error (where q_{m} denotes the denominator of the m th convergent of α). Using this we describe the maximum order of the sequence $\left(D_{N}(\alpha)\right)_{N \geq 1}$ and calculate $\lim \sup _{N \rightarrow \infty} D_{N}(\alpha) / \log N$ for all α for which $D_{N}(\alpha)=O(\log N)$ is satisfied. Finally, we determine the minimum order of $\left(D_{N}(\alpha)\right)_{N \geq 1}$ which turns out to be closely connected to the Lagrange spectrum.

1. The maximum order. We will use the following notations: α will always denote an irrational real number with regular continued fraction expansion $\alpha=\left[a_{0}, a_{1}, a_{2}, \ldots\right]\left(a_{0} \in \mathbb{Z}\right.$ and $\left.a_{1}, a_{2}, \ldots \in \mathbb{N}\right)$ and convergents $\left(p_{m} / q_{m}\right)_{m \geq 0}$. For all $i, j \geq 0$ let

$$
s_{i j}=q_{\min (i, j)}\left(q_{\max (i, j)} \alpha-p_{\max (i, j)}\right)
$$

and

$$
\varepsilon_{i}=\frac{1}{2}\left(1-(-1)^{a_{i+1}}\right) \prod_{\substack{0 \leq j \leq i \\ j \equiv i(\bmod 2)}}(-1)^{a_{j+1}} .
$$

We are now prepared to state our first main result.
Theorem 1.1. For $m \geq 0$ let $N_{m}=\frac{1}{2} \sum_{i=0}^{m}\left(a_{i+1}+(-1)^{m} \varepsilon_{i}\right) q_{i}$. Then as $m \rightarrow \infty$,

$$
4 \max _{1 \leq N<q_{m+1}} D_{N}(\alpha)=\sum_{i=0}^{m} a_{i+1}-\sum_{0 \leq i \leq m} \sum_{\substack{0 \leq j \leq m \\ j \equiv i(\bmod 2)}} \varepsilon_{i} \varepsilon_{j}\left|s_{i j}\right|+O(1)
$$

and

$$
\max _{1 \leq N<q_{m+1}} D_{N}(\alpha)= \begin{cases}D_{N_{m}}(\alpha)+O(1) & \text { if } N_{m}<q_{m+1} \\ D_{N_{m-1}}(\alpha)+O(1) & \text { otherwise }\end{cases}
$$

The implicit constants are absolute.
Proof. We introduce

$$
S_{m}=\frac{1}{4} \sum_{i=0}^{m} a_{i+1}-\frac{1}{4} \sum_{0 \leq i \leq m} \sum_{\substack{0 \leq j \leq m \\ j \equiv i(\bmod 2)}} \varepsilon_{i} \varepsilon_{j}\left|s_{i j}\right|
$$

as a convenient shorthand notation.
Employing $c_{[0,\{x-y\})}(\{x\})-\{x-y\}=\{y\}-\{x\}$ for all $x, y \in \mathbb{R}$ we have for $0 \leq k, l \leq N<q_{m+1}$,
(*) $\Delta_{N}(k, l)$

$$
\begin{aligned}
& :=\sum_{n=1}^{N} c_{[0,\{k \alpha\})}(\{n \alpha\})-N\{k \alpha\}-\sum_{n=1}^{N} c_{[0,\{l \alpha\})}(\{n \alpha\})+N\{l \alpha\} \\
& =\sum_{n=1}^{N}(\{(n-k) \alpha\}-\{n \alpha\})-\sum_{n=1}^{N}(\{(n-l) \alpha\}-\{n \alpha\}) \\
& =\sum_{n=1}^{k-1}\{-n \alpha\}+\sum_{n=1}^{N-k}\{n \alpha\}-\sum_{n=1}^{l-1}\{-n \alpha\}-\sum_{n=1}^{N-l}\{n \alpha\} \\
& =k-1-\sum_{n=1}^{k-1}\{n \alpha\}-(l-1)+\sum_{n=1}^{l-1}\{n \alpha\}+\sum_{n=1}^{N-k}\{n \alpha\}-\sum_{n=1}^{N-l}\{n \alpha\} \\
& =\sum_{n=1}^{l-1}(\{n \alpha\}-1 / 2)+\sum_{n=1}^{N-k}(\{n \alpha\}-1 / 2)-\sum_{n=1}^{k-1}(\{n \alpha\}-1 / 2)-\sum_{n=1}^{N-l}(\{n \alpha\}-1 / 2) \\
& \leq 2 \max _{1 \leq M<q_{m+1}} \sum_{n=1}^{M} B_{1}(n \alpha)-2 \min _{1 \leq M<q_{m+1}} \sum_{n=1}^{M} B_{1}(n \alpha)=S_{m}+O(1)
\end{aligned}
$$

Here $B_{1}(x)=\{x\}-1 / 2$ denotes the first Bernoulli polynomial. The last step made use of Corollary 2 in $\S 2$ of [19]. Using $D_{N}(\alpha)=1+\max _{1 \leq k, l \leq N} \Delta_{N}(k, l)$ we get $\max _{1 \leq N<q_{m+1}} D_{N}(\alpha) \leq S_{m}+c$ with an absolute constant $c>0$. To obtain equality we set

$$
\begin{aligned}
k & :=1+\frac{1}{2} \sum_{\substack{0 \leq i \leq m \\
i \equiv 0(\bmod 2)}}\left(a_{i+1}+(-1)^{m} \varepsilon_{i}\right) q_{i} \\
l & :=1+\frac{1}{2} \sum_{\substack{0 \leq i \leq m \\
i \equiv 1(\bmod 2)}}\left(a_{i+1}+(-1)^{m} \varepsilon_{i}\right) q_{i}
\end{aligned}
$$

and $\widehat{N}_{m}:=k+l-1=N_{m}+1$. Obviously $l-1=\widehat{N}_{m}-k$ and $k-1=\widehat{N}_{m}-l$. According to Corollary 2 in $\S 2$ of [19] we have equality in (*). Had we proved $\widehat{N}_{m}<q_{m+1}$ we would have completed the proof of the theorem. It is of no importance that $\widehat{N}_{m}=N_{m}+1$ as $D_{N+1}(\alpha)=D_{N}(\alpha)+O(1)$ with an absolute implied constant. A trivial estimation yields

$$
N_{m} \leq \frac{1}{2} \sum_{i=0}^{m} 2 a_{i+1} q_{i}=q_{m+1}+q_{m}-1
$$

If $a_{m+1} \geq 3$ we even have

$$
N_{m}<\left(q_{m}+q_{m-1}\right)+\frac{1}{2}\left(a_{m+1}+1\right) q_{m} \leq q_{m+1} .
$$

Thus, $N_{m} \geq q_{m+1}$ only if $a_{m+1} \leq 2$. But in this case we may safely change to $N_{m-1}<q_{m}+q_{m-1} \leq q_{m+1}$ as $S_{m}=S_{m-1}+O\left(a_{m+1}\right)$ with an absolute implied constant.

We conclude the proof with a remark: Obviously $N_{m} \geq q_{m}$ if $a_{m+1} \geq 2$. If $a_{m+1}=a_{m}=1$ it is possible that $a_{m+1}+(-1)^{m} \varepsilon_{m}=a_{m}+(-1)^{m-1} \varepsilon_{m-1}$ $=0$ but by the definition of the ε_{i} it is impossible to have also $a_{m-1}+$ $(-1)^{m-2} \varepsilon_{m-2}=0$. Therefore $N_{m} \geq q_{m-2}$.

Remark. Using Corollary 1 in $\S 2$ of [19] the Bernoulli polynomials can be replaced by Dedekind sums in the above estimate. This indicates a close connection between discrepancies and Dedekind sums which was first pointed out and explored by U. Dieter (oral communication).

Corollary 1.2. Let α be an irrational number. For $N \in \mathbb{N}$ we define $m \in \mathbb{N}$ by the property $q_{m} \leq N<q_{m+1}$. Then

$$
\limsup _{N \rightarrow \infty} D_{N}(\alpha) /\left(\sum_{i=0}^{m} a_{i+1}-\sum_{0 \leq i \leq m} \sum_{\substack{0 \leq j \leq m \\ j \equiv i(\bmod 2)}} \varepsilon_{i} \varepsilon_{j}\left|s_{i j}\right|\right)=\frac{1}{4}
$$

Proof. This can be proved along the same lines as Corollary 1 in $\S 2$ of [20].

Remark. Another proof of Theorem 1.1 which uses a completely different method is to be found in [1]. It yields more precise information on where the maximum is attained at the cost of a much longer proof.
2. The maximum order for numbers of bounded density. By a well known theorem of W. M. Schmidt [16] for every α an infinity of positive integers N such that $D_{N}(\alpha) \geq(66 \log 4)^{-1} \log N$ exist. On the other hand, it was first observed by H. Behnke [4] that $D_{N}(\alpha)=O(\log N)$ if and only if $\alpha=\left[a_{0}, a_{1}, a_{2}, \ldots\right]$ is of bounded density (i.e. $\sum_{i=0}^{m} a_{i+1}=O(m)$ as
$m \rightarrow \infty)$. For these numbers we are now able to compute the infimum of all possible implied constants in the estimate $D_{N}(\alpha)=O(\log N)$.

Theorem 2.1. Let α be a number of bounded density. Then

$$
\begin{aligned}
\nu(\alpha) & :=\limsup _{N \rightarrow \infty} \frac{D_{N}(\alpha)}{\log N} \\
& =\frac{1}{4} \limsup _{m \rightarrow \infty} \frac{1}{\log q_{m}}\left(\sum_{i=0}^{m} a_{i+1}-\sum_{0 \leq i \leq m} \sum_{\substack{0 \leq j \leq m \\
j \equiv i(\bmod 2)}} \varepsilon_{i} \varepsilon_{j}\left|s_{i j}\right|\right) .
\end{aligned}
$$

Proof. This may be proved as Theorem 1 in $\S 3$ of [20].
Theorem 2.1 implies a property of the function ν which was first shown by L. Ramshaw [15]:

Corollary 2.2. Let α, β be two numbers of bounded density. Assume that there exists a matrix $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{GL}_{2}(\mathbb{Z})$ such that $\beta=(a \alpha+b) /(c \alpha+d)$. Then $\nu(\beta)=\nu(\alpha)$.

Proof. This follows immediately from Theorem 2.1 and various parts of the proof of Theorem 2 in $\S 3$ of [20].

Remark. The analogous map $\nu^{*}(\alpha)=\lim \sup _{N \rightarrow \infty} D_{N}^{*}(\alpha) / \log N$ is studied in $[1,2]$. The image of ν^{*} has the property $\nu^{*}(B)=\left[\nu^{*}(\sqrt{2}), \infty\right)$. (Here B denotes the set of all numbers of bounded density.) In the present case we are able to prove $[\nu(\sqrt{2}), \infty) \subseteq \nu(B)$ but $\nu((1+\sqrt{5}) / 2)<\nu(\sqrt{2})$.

In the case of quadratic irrationalities there is a formula which does not contain any limit processes:

Theorem 2.3. Let $\alpha=\left[0, \overline{a_{1}, \ldots, a_{e}}\right]$ where $2 \mid e$ and set

$$
\eta_{t}=\prod_{\substack{0 \leq \sigma<e \\ \sigma \equiv t(\bmod 2)}}(-1)^{a_{\sigma+1}} \quad \text { for } t \in\{0,1\} .
$$

Then

$$
\begin{aligned}
\nu(\alpha)= & \frac{1}{4 \log \left(q_{e}+\alpha q_{e-1}\right)}\left(\sum_{i=0}^{e-1} a_{i+1}\right. \\
& +\sum_{t=0}^{1}(2 t-1) \frac{q_{e-1}}{2 \eta_{t}-q_{e}-p_{e-1}} \mathcal{N}\left(\sum_{\substack{0 \leq i<e \\
i \equiv t(\bmod 2)}} \varepsilon_{i}\left(q_{i} \alpha-p_{i}\right)\right) \\
& \left.+\sum_{t=0}^{1}(2 t-1) \sum_{\substack{0 \leq i<e \\
i \equiv t(\bmod 2)}} \sum_{\substack{0 \leq j<e \\
j \equiv t(\bmod 2)}} \varepsilon_{i} \varepsilon_{j} q_{i} p_{j} \operatorname{sgn}(i-j)\right),
\end{aligned}
$$

where \mathcal{N} denotes the norm of the quadratic field $\mathbb{Q}(\alpha)$.

Proof. Here the same applies as to Theorem 1 of $\S 4$ in [20].
Note. In view of Corollary 2.2 the assumption on the shape of the continued fraction expansion of α does not exclude any quadratic irrationalities. Note also that the period e is not assumed to be of minimal length.

We finish the section with two special cases of Theorem 2.3.
Corollary 2.4. Let $\alpha=[0, \overline{a, b}]$ with $a, b \in \mathbb{N}$. Then

$$
\nu(\alpha)=\frac{1}{4 \log (1+b / \alpha)}\left(a+b-\frac{1}{2} \cdot \frac{1-(-1)^{a}}{a b+2\left(1-(-1)^{a}\right)}-\frac{1}{2} \cdot \frac{1-(-1)^{b}}{a b+2\left(1-(-1)^{b}\right)}\right) .
$$

Corollary 2.5. Let $\alpha=[0, \bar{a}]$ with $a \in \mathbb{N}$. Then

$$
\nu(\alpha)=\frac{a}{4 \log (1 / \alpha)}\left(1-\frac{1}{2} \cdot \frac{1-(-1)^{a}}{a^{2}+4}\right)
$$

Remark. Corollary 2.5 was first proved by L. Ramshaw [15].

3. The maximum order for special Hurwitz continued fractions

Theorem 3.1. Let $t \in \mathbb{N}$ and $\alpha_{t}=\operatorname{coth}(1 / t)=[t, 3 t, 5 t, \ldots]$. Then as $m \rightarrow \infty$,

$$
\max _{1 \leq N<q_{m+1}} D_{N}\left(\alpha_{t}\right)=\frac{1}{4} t m^{2}+t m+\frac{1}{16 t}\left((-1)^{t}-1\right) \log m+O(1)
$$

Proof. The proof runs analogously to that of Theorem 1 in $\S 5$ of [20].
Theorem 3.2. Let $t \in \mathbb{N}$. Then

$$
\begin{equation*}
\limsup _{N \rightarrow \infty} D_{N}\left(\operatorname{coth} \frac{1}{t}\right)\left(\frac{\log \log N}{\log N}\right)^{2}=\frac{t}{4} \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\limsup _{N \rightarrow \infty} D_{N}(\sqrt[t]{e})\left(\frac{\log \log N}{\log N}\right)^{2}=\frac{t}{4} \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
\limsup _{N \rightarrow \infty} D_{N}\left(\sqrt[2 t+1]{e^{2}}\right)\left(\frac{\log \log N}{\log N}\right)^{2}=\frac{2 t+1}{4} \tag{3}
\end{equation*}
$$

Proof. Using the well known continued fraction expansions of the numbers $\operatorname{coth}(1 / t), \sqrt[t]{e}$ and $\sqrt[2 t+1]{e^{2}}$ we proceed according to the following scheme. First we calculate estimates

$$
\sum_{i=0}^{m} a_{i+1} \sim C_{1}(t) m^{2} \quad \text { and } \quad \sum_{i=1}^{m} \log a_{i} \sim C_{2}(t) m \log m
$$

as $m \rightarrow \infty$. Since

$$
\sum_{i=1}^{m} \log a_{i} \leq \log q_{m} \leq \sum_{i=1}^{m} \log \left(a_{i}+1\right)=\sum_{i=1}^{m} \log a_{i}+O(m)
$$

we have

$$
\log q_{m} \sim C_{2}(t) m \log m
$$

For each $N \in \mathbb{N}$ we define $m \in \mathbb{N}$ via the relation $q_{m} \leq N<q_{m+1}$. Since $\log q_{m+1} \sim \log q_{m}$ as $m \rightarrow \infty$ we infer $\log N \sim C_{2}(t) m \log m$ as $N \rightarrow \infty$. This yields $\log \log N \sim \log m$ and $\log N \sim C_{2}(t) m \log m \sim C_{2}(t) m \log \log N$ as $N \rightarrow \infty$. Putting all together we find

$$
S_{m} \sim \sum_{i=0}^{m} a_{i+1} \sim C_{1}(t) m^{2} \sim \frac{C_{1}(t)}{C_{2}(t)^{2}}\left(\frac{\log N}{\log \log N}\right)^{2},
$$

where we made use of

$$
\sum_{\substack{0 \leq i \leq m}} \sum_{\substack{0 \leq j \leq m \\ j \equiv i(\bmod 2)}} \varepsilon_{i} \varepsilon_{j}\left|s_{i j}\right|=O(m) .
$$

The result now follows from Corollary 1.2.
4. The minimum order. We continue by introducing a few more notations. Let $q_{m} \leq N<q_{m+1}$. There is a unique expansion $N=\sum_{j=0}^{m} b_{j} q_{j}$ where $0 \leq b_{j} \leq a_{j+1}$ for all $j, b_{0}<a_{1}$ and $b_{j}=a_{j+1} \Rightarrow b_{j-1}=0$ for $j \geq 1$. For $j \geq-1$ we define $A_{j}=\sum_{\mu=0}^{m} b_{\mu} s_{\mu j}$. Let i_{N} be the smallest integer $j \geq 0$ such that $b_{j} \neq 0$. Set

$$
s:=\min \left\{j \mid 2 \nmid j, 1 \leq j \leq m, A_{j}>0, A_{j+2}>0 \Rightarrow b_{j+1}<a_{j+2}\right\}
$$

and

$$
\begin{aligned}
& t:=\min \left\{j \mid 2 \nmid j, 1 \leq j \leq m, A_{j-1}<0<A_{j+1}\right. \\
&\left.A_{j+2}>0 \Rightarrow b_{j+1}<a_{j+2}-1\right\},
\end{aligned}
$$

where $\min \emptyset:=\infty$. Finally, we define

$$
u:= \begin{cases}0 & \text { if } 2 \mid i_{N} \text { and }\left(b_{0}<a_{1}-1 \text { or } A_{1}<0\right), \\ \min \{s, t\} & \text { otherwise } .\end{cases}
$$

Theorem 4.1.

$$
\begin{align*}
\omega_{N}^{+}(\alpha)= & \sum_{\substack{u \leq j \leq m \\
j \equiv 0(\bmod 2)}} b_{j}\left(1-A_{j}\right)+\sum_{\substack{u \leq j \leq m \\
A_{j+1}<0<A_{j-1} \\
j \equiv 0(\bmod 2)}} A_{j}-\sum_{\substack{u \leq j \leq m \\
A_{j} \leq 1 \leq 0<A_{j+1} \\
j \equiv 0(\bmod 2)}} A_{j} \tag{1}\\
& -\sum_{\substack{u \leq j \leq m \\
A_{j}<0 \\
j \equiv 0(\bmod 2)}} a_{j+1} A_{j}+\left(\delta_{u, 0}-1\right) A_{u}, \\
& \omega_{N}^{-}(\alpha)=\omega_{N}^{+}(\alpha)+A_{0}-\sum_{j=0}^{m} b_{j}\left((-1)^{j}-A_{j}\right)
\end{align*}
$$

and

$$
\begin{equation*}
D_{N}(\alpha)=2 \omega_{N}^{+}(\alpha)+A_{0}-\sum_{j=0}^{m} b_{j}\left((-1)^{j}-A_{j}\right) . \tag{3}
\end{equation*}
$$

Proof. Though not explicitly stated, (1) and (2) are contained in Theorem 1 of $\S 8$ in [17]. (Note the slightly different definition of the A_{j}.) (3) follows immediately from $D_{N}(\alpha)=\omega_{N}^{+}(\alpha)+\omega_{N}^{-}(\alpha)$.

Lemma 4.2. Let $q_{m} \leq N<q_{m+1}$. Then

$$
\omega_{N}^{+}(\alpha)=\max _{1 \leq k \leq N}\left(\sigma^{-1}(k)-N\{k \alpha\}\right) \geq q_{m}\left|q_{m} \alpha-p_{m}\right|
$$

and

$$
\omega_{N}^{-}(\alpha)=1+\max _{1 \leq k \leq N}\left(N\{k \alpha\}-\sigma^{-1}(k)\right) \geq q_{m}\left|q_{m} \alpha-p_{m}\right|,
$$

where $\sigma:\{1, \ldots, N\} \rightarrow\{1, \ldots, N\}$ is the unique permutation which satisfies $\{\alpha \sigma(i)\}<\{\alpha \sigma(i+1)\}$ for $1 \leq i<N$.

Proof. There is a $k_{0}\left(1 \leq k_{0} \leq N\right)$ such that $\sigma^{-1}\left(k_{0}\right)=N$. We have

$$
\sigma^{-1}\left(k_{0}\right)-N\left\{k_{0} \alpha\right\}=N\left|1+\left[k_{0} \alpha\right]-k_{0} \alpha\right| \geq q_{m}\left|q_{m} \alpha-p_{m}\right|
$$

as $|q \alpha-p| \geq\left|q_{m} \alpha-p_{m}\right|>\left|q_{m+1} \alpha-p_{m+1}\right|$ for all $(q, p) \neq\left(q_{m+1}, p_{m+1}\right)$ with $0 \leq q<q_{m+1}$. The second assumption is proved analogously.

Theorem 4.3. If α is an irrational number, then

$$
\liminf _{N \rightarrow \infty} D_{N}(\alpha)=1+\liminf _{m \rightarrow \infty} q_{m}\left|q_{m} \alpha-p_{m}\right| .
$$

Proof. As in the proof of Corollary 1 in $\S 9$ of [17] we compute $D_{b q_{m}}(\alpha)$ (where $1 \leq b \leq a_{m+1}$) using Theorem 4.1 and arrive at

$$
D_{b q_{m}}(\alpha)=b-(b-2) b q_{m}\left|q_{m} \alpha-p_{m}\right|-b\left|q_{m} \alpha-p_{m}\right| .
$$

Putting $b=1$ leads to

$$
\liminf _{N \rightarrow \infty} D_{N}(\alpha) \leq 1+\liminf _{m \rightarrow \infty} q_{m}\left|q_{m} \alpha-p_{m}\right| .
$$

To prove the reverse inequality let $\varepsilon>0$ and N such that $D_{N}^{*}(\alpha)=$ $\max \left(\omega_{N}^{+}(\alpha), \omega_{N}^{-}(\alpha)\right)>1-\varepsilon$. (The existence of such an N is guaranteed by Corollary 2 in $\S 9$ of [17].) If (without loss of generality) $\omega_{N}^{+}(\alpha)>1-\varepsilon$ then $D_{N}(\alpha)=\omega_{N}^{+}(\alpha)+\omega_{N}^{-}(\alpha)>1+q_{m}\left|q_{m} \alpha-p_{m}\right|-\varepsilon$ by Lemma 4.2.

Remark. As proved in the above theorem, $D_{N}(\alpha)$ behaves like $D_{N}^{*}(\alpha)$ if the sequence $\left(a_{j}\right)_{j \geq 1}$ of partial quotients is unbounded, otherwise it is closely related to the Lagrange spectrum. As this set has been studied thoroughly there is an abundance of information available on the set $\mathcal{S}:=$ $\left\{\liminf _{N \rightarrow \infty} D_{N}(\alpha) \mid \alpha \in \mathbb{R} \backslash \mathbb{Q}\right\}$ (see [6]). We restrict ourselves to state just a few of the known facts:
\mathcal{S} is a closed subset of the interval $[1,1+1 / \sqrt{5}]$ with $\min \mathcal{S}=1$ and $\max S=1+1 / \sqrt{5}$. Its subset $\mathcal{S} \cap(1+1 / 3,1+1 / \sqrt{5}]$ consists of the numbers $1+m / \sqrt{9 m^{2}-4}$ where m is a positive integer such that

$$
m^{2}+m_{1}^{2}+m_{2}^{2}=3 m m_{1} m_{2}
$$

for some positive integers $m_{1} \leq m$ and $m_{2} \leq m$. The three largest numbers of \mathcal{S} are $1+1 / \sqrt{5}, 1+1 / \sqrt{8}$ and $1+5 / \sqrt{221}$. Let

$$
\mu_{0}=\frac{253589820+283748 \sqrt{462}}{491993569}=4.527829 \ldots
$$

Then $\left[1,1+1 / \mu_{0}\right] \subseteq \mathcal{S}$ and there is no interval I such that $\left[1,1+1 / \mu_{0}\right] \varsubsetneqq I \subseteq$ \mathcal{S}. On the other hand, there are gaps in \mathcal{S} such as $J=(1+1 / \sqrt{13}, 1+1 / \sqrt{12})$, i.e. $J \cap \mathcal{S}=\emptyset$ but $1+1 / \sqrt{12} \in \mathcal{S}$ and $1+1 / \sqrt{13} \in \mathcal{S}$.

References

[1] C. Baxa, Die maximale Größenordnung der Diskrepanz der Folge $(n \alpha)_{n \geq 1}$, Dissertation, Universität Wien, 1993.
[2] -, On the discrepancy of the sequence ($n \alpha$), to appear.
[3] H. Behnke, Über die Verteilung von Irrationalitäten mod 1, Abh. Math. Sem. Univ. Hamburg 1 (1922), 252-267.
[4] -, Zur Theorie der diophantischen Approximationen I, ibid. 3 (1924), 261-318.
[5] P. Bohl, Über ein in der Theorie der säkularen Störungen vorkommendes Problem, J. Reine Angew. Math. 135 (1909), 189-283.
[6] T. W. Cusick and M. E. Flahive, The Markoff and Lagrange Spectra, Math. Surveys Monographs 30, Amer. Math. Soc., Providence, Rhode Island, 1989.
[7] Y. Dupain, Répartition et discrépance, Thèse, Université de Bordeaux I, 1978.
$[8]$-, Discrépance de la suite $\left(\left\{n \frac{1+\sqrt{5}}{2}\right\}\right)$, Ann. Inst. Fourier (Grenoble) 29 (1979), 81-106.
[9] Y. Dupain and V. T. Sós, On the discrepancy of $(n \alpha)$ sequences, in: Topics in Classical Number Theory, Vol. 1, Colloq. Math. Soc. János Bolyai 34, G. Halász (ed.), North-Holland, Amsterdam, 1984, 355-387.
[10] G. H. Hardy and J. E. Littlewood, Some problems of Diophantine Approximation: The lattice points of a right-angled triangle II, Abh. Math. Sem. Univ. Hamburg 1 (1922), 212-249.
[11] E. Hecke, Über analytische Funktionen und die Verteilung von Zahlen mod. Eins, ibid. 54-76.
[12] J. Lesca, Sur la répartition modulo 1 de la suite n α, Acta Arith. 20 (1972), 345-352.
[13] H. Niederreiter, Application of diophantine approximation to numerical integration, in: Diophantine Approximation and Its Applications, C. F. Osgood (ed.), Academic Press, New York, 1973, 129-199.
[14] A. Ostrowski, Bemerkungen zur Theorie der Diophantischen Approximationen, Abh. Math. Sem. Univ. Hamburg 1 (1922), 77-98.
[15] L. Ramshaw, On the discrepancy of the sequence formed by the multiples of an irrational number, J. Number Theory 13 (1981), 138-175.
[16] W. M. Schmidt, Irregularities of distribution VII, Acta Arith. 21 (1972), 45-50.
[17] J. Schoißengeier, On the discrepancy of ($n \alpha$), ibid. 44 (1984), 241-279.
[18] J. Schoißengeier, On the discrepancy of (n α) II, J. Number Theory 24 (1986), 54-64.
[19] -, Abschätzungen für $\sum_{n \leq N} B_{1}(n \alpha)$, Monatsh. Math. 102 (1986), 59-77.
[20] -, The discrepancy of $(n \alpha)_{n \geq 1}$, Math. Ann. 296 (1993), 529-545.
[21] W. Sierpiński, Sur la valeur asymptotique d'une certaine somme, Bull. Int. Acad. Polon. Sci. (Cracovie) A (1910), 9-11.
[22] -, On the asymptotic value of a certain sum, Rozprawy Akademii Umiejętności w Krakowie, Wydział mat. przyrod. 50 (1910), 1-10 (in Polish).
[23] V. T. Sós, On the theory of diophantine approximation II (inhomogeneous problems), Acta Math. Acad. Sci. Hungar. 9 (1958), 229-241.
[24] -, On strong irregularities of the distribution of $\{n \alpha\}$ sequences, in: Studies in Pure Mathematics, P. Erdős (ed.), Birkhäuser, Boston, 1983, 685-700.
[25] H. Weyl, Über die Gibbs'sche Erscheinung und verwandte Konvergenzphänomene, Rend. Circ. Mat. Palermo 30 (1910), 377-407.
[26] - Über die Gleichverteilung von Zahlen mod. Eins, Math. Ann. 77 (1916), 313-352.

INSTITUT FÜR MATHEMATIK
UNIVERSITÄT WIEN
STRUDLHOFGASSE 4
A-1090 WIEN, AUSTRIA
E-mail: BAXA@PAP.UNIVIE.AC.AT

[^0]: Research was supported by the Austrian Science Foundation (FWF) under grant P8703-PHY.

