
ACTA ARITHMETICA
LXVIII.4 (1994)

Sums of coefficients of Hecke series

by
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1. Introduction and statement of results. Let

(1.1) Hj(s) =
∞∑

n=1

tj(n)n−s (Re s > 1)

be the Hecke series attached to the Maass wave form ϕj(z) corresponding
to the eigenvalue λj = κ2

j + 1/4 (κj > 0, j ≥ 1) of the non-Euclidean
Laplacian acting on the space of all non-holomorphic automorphic functions
with respect to SL(2, Z). The set {ϕj} forms an orthonormal base of the
subspace spanned by all cusp forms. The tj(n)’s are real-valued and are the
eigenvalues of the Hecke operator T (n), which means that, for Im z > 0,

(T (n)ϕj)(z) = n−1/2
∑

ad=n

d∑
b=1

ϕj

(
az + b

d

)
= tj(n)ϕj(z).

The series in (1.1) converges absolutely only for Re s > 1, but the function
Hj(s) can be continued analytically to an entire function over the s-plane.
It satisfies the functional equation

(1.2) Hj(s) = Xj(s)Hj(1− s)

with

(1.3) Xj(s) = 22s−1π2s−2Γ (1−s+iκj)Γ (1−s−iκj)(εj ch(πκj)−cos(πs)).

Here εj is the parity sign of the Maass wave form ϕj , namely

εj =
{

1 if ϕj(−x + iy) = ϕj(x + iy),
−1 if ϕj(−x + iy) = −ϕj(x + iy).

Starting with the pioneering works of N. V. Kuznetsov [17]–[19] and
H. Iwaniec [11], spectral theory and Hecke series have become increasingly
important in analytic number theory. Recently Y. Motohashi made heavy
use of this theory (see [23], [24], [10] and Ch. 5 of [9]) to establish precise
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342 A. Ivi ć and T. Meurman

formulas for the fourth moment of |ζ(1/2 + it)|. A comprehensive account
on spectral theory and Maass wave forms is found in the works of H. Iwaniec
[12], [13].

The aim of this work is to study the partial sum of the coefficients
in (1.1), namely

(1.4) Tj(x) =
∑′

n≤x

tj(n),

its mean square integral, and the summatory function of t2j (n). In (1.4)
the dash denotes that the last term in the sum is to be halved if x is an
integer. The accent in our investigations is on the fact, often encountered
in applications, that κj does not have to be fixed, but may vary with x.
Naturally this causes difficulties, since all estimates must then be uniform
in κj . The results that we obtain (see Theorems 1–3 below) are the sharpest
ones hitherto.

If κj is fixed, then it was shown by Hafner–Ivić [7] that

(1.5) Tj(x) � x2/5.

Such a result follows from a general theorem of Chandrasekharan–Nara-
simhan [3] on Dirichlet series with a functional equation containing gamma-
factors. The second author proved (Corollary to Theorem 1 in [20]) that

(1.6) Tj(x)−Hj(0) �ε x(1+α)/3+ε (κj ≤ x1/2),

where as usual ε will denote arbitrarily small, positive constants, not neces-
sarily the same at each occurrence. In fact, [20] treats the more general case
when tj(n) in (1.4) is multiplied by an exponential factor exp(2πihn/k).
In (1.6), α ≥ 0 is a constant for which

(1.7) tj(n) �ε nα+ε

uniformly in κj . The famous Ramanujan–Petersson conjecture for Maass
wave forms asserts that α = 0. It is known that α ≤ 1/5 from the work
of J.-P. Serre (see [22] and [25]), and recently D. Bump et al . [2] proved
that α ≤ 5/28. In bounding Tj(x) it will be enough to consider the range
x1/2 < κj ≤ x. Namely, Deshouillers–Iwaniec [5] proved that

(1.8)
∑
n≤x

|%j(n)|2 � ch(πκj)(x + κj) log(2 + x/κj)

uniformly in κj , where %j(n) denotes the nth Fourier coefficient of the Maass
wave form ϕj(z). Also for the quantity

(1.9) αj = |%j(1)|2/ch(πκj)
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H. Iwaniec [14] proved the lower bound

(1.10) αj �ε κ−ε
j .

Now if one uses

(1.11) %j(n) = %j(1)tj(n)

and the multiplicative property

(1.12) tj(m)tj(n) =
∑

d|(m,n)

tj(mn/d2) (m ≥ 1, n ≥ 1),

then it follows from (1.8) and (1.10) (see H. Iwaniec [15]) that, uniformly
in κj ,

(1.13)
∑
n≤x

t2j (n) �ε κε
jx.

Hence from (1.13) one obtains, by using the Cauchy–Schwarz inequality,
that uniformly in κj ,

(1.14)
∑
n≤x

tj(n) �ε κε
jx.

Our first result improves (1.14) for κj ≤ x:

Theorem 1. For any given ε > 0 and x1/2 < κj ≤ x we have

(1.15) Tj(x) =
∑′

n≤x

tj(n) �ε κ1+ε
j .

This is compatible with (1.6), since by the functional equation (1.2) we
have |Hj(0)| = |Xj(0)Hj(1)|, and by (1.3),

|Xj(0)| = κj

2π

∣∣∣∣εj ch(πκj)− 1
sh(πκj)

∣∣∣∣ � κj ,

while on using (1.6) and (1.14) one finds that

Hj(1) =
∞∑

n=1

tj(n)n−1 =
∞∫

1−0

u−2
( ∑

n≤u

tj(n)
)

du =
κ4

j∫
1−0

+
∞∫

κ4
j

= Oε(κε
j) + Hj(0)κ−2

j = Oε(κε
j) + Xj(0)Hj(1)κ−2

j .

Thus Hj(1) �ε κε
j and consequently κj |Hj(1)| � |Hj(0)| �ε κ1+ε

j . This
shows that Hj(0) may be large if κj is not fixed. Therefore, apart from ε,
the bound in (1.15) is in a certain sense the best one can hope for.

Our mean square result on Tj(x) is contained in
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Theorem 2. If X < Y ≤ 2X, κj ≤ X1/2 and h(κj) (� κ
ε−1/2
j ) is given

by (4.6), then for any given ε > 0 we have, uniformly in κj ,

(1.16)
Y∫

X

(Tj(x)−Hj(0)− h(κj))2 dx

=
1

4π2

∞∑
n=1

t2j (n)
Y∫

X

x1/2

(
n +

1
x

(
κj

2π

)2)−3/2

dx + Oε(X1+ε).

The analogue of Theorem 2 holds for holomorphic cusp forms. This is
due to M. Jutila [16] (see Th. 1.2 and Notes to Ch. 1).

From (1.16) we obtain without difficulty the following

Corollary 1. For κj ≤ X1/2 and any given ε > 0 we have, uniformly
in κj ,

(1.17)
2X∫

X

T 2
j (x) dx =

{√
8− 1
6π2

∞∑
n=1

t2j (n)n−3/2

}
X3/2 + H2

j (0)X

+ Oε{(κ2
jX

1/2 + κ
1/2
j X + κjX

3/4)Xε}.
If κj is fixed , then

(1.18)
X∫

1

T 2
j (x) dx =

{
1

6π2

∞∑
n=1

t2j (n)n−3/2

}
X3/2 + Oε(X1+ε).

Note that, for Y = 2X, the main term on the right-hand side of (1.16)
is

≥ 1
4π2

t2j (1)
2X∫

X

x1/2 dx =
√

8− 1
6π2

X3/2.

Suppose now that Tj(x) = o(x1/4) as x → ∞. Since Hj(0) �ε κ1+ε
j , for

κj ≤ x1/4−ε1 and any given ε1 > 0 we deduce that the left-hand side of
(1.16) is o(X3/2), which is a contradiction. Thus we obtain

Corollary 2. If κj ≤ x1/4−ε1 for any given ε1 > 0, then Tj(x) =
Ω(x1/4).

To assess the strength of Theorem 2 it may be remarked that (1.18) is
analogous to the mean square formula

(1.19)
X∫

1

∆2(x) dx =
{

1
6π2

∞∑
n=1

d2(n)n−3/2

}
X3/2 + O(X log4 X),

where
∆(x) =

∑′

n≤x

d(n)− x(log x + 2γ − 1)− 1/4
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is the error term in the classical divisor problem. Here d(n) is the number of
divisors of n, and γ is Euler’s constant. The omega-result Tj(x) = Ω(x1/4)
is the analogue of the classical omega-result ∆(x) = Ω(x1/4), which follows
from (1.19). For ∆(x) even sharper omega-results are known, but their
analogues for Tj(x) are hard to obtain, since little is known about the arith-
metical structure of the tj(n)’s.

The error term in (1.19) is the sharpest one known. It is due to E. Preiss-
mann [26], while K.-C. Tong [30] and T. Meurman [21] had O(X log5 X).
The method of [21] was a substantial simplification of Tong’s work, and
yielded also the analogue of (1.19) for the important function

E(T ) :=
T∫

0

|ζ(1/2 + it)|2 dt− T (log(T/(2π)) + 2γ − 1).

It can clearly be used for general mean square formulas, for example the ones
considered by Chandrasekharan–Narasimhan [4]. A variant of this method
will be used for the proof of Theorem 2. Since the function ∆(x) is less
difficult to handle than Tj(x), the error term in (1.16) appears to be the
limit of the present methods.

To deal with the summatory function of t2j (n) we introduce the arith-
metical function

(1.20) cj(n) :=
∑
d2|n

|%j(n/d2)|2.

In terms of the generating Dirichlet series, (1.20) is equivalent to

(1.21) Cj(s) = ζ(2s)Lj(s),

where

(1.22) Lj(s) :=
∞∑

n=1

|%j(n)|2n−s, Cj(s) :=
∞∑

n=1

cj(n)n−s.

From (1.11) and (1.13) we obtain, uniformly in κj ,

(1.23)
∑
n≤x

|%j(n)|2 �ε αjκ
ε
j ch(πκj)x,

∑
n≤x

cj(n) �ε αjκ
ε
j ch(πκj)x,

so that both series in (1.22) converge absolutely for Re s > 1. In fact, Cj(s)
possesses meromorphic continuation having only a simple pole at s = 1 with
residue 2 ch(πκj). It satisfies the functional equation (see N. V. Proskurin
[27] for a proof of these facts)

(1.24) π−2sCj(s)θj(s) = π−2(1−s)Cj(1− s)θj(1− s),

where

(1.25) θj(s) = Γ (s/2 + iκj)Γ (s/2− iκj)Γ 2(s/2).
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The proof of (1.24)–(1.25) is obtained by the so-called Rankin–Selberg con-
volution method (see D. Bump [1] for an extensive account).

Suppose now that κj is fixed. As in the proof of (1.5) we can appeal to
the method of Chandrasekharan–Narasimhan [3] to evaluate the summatory
function of cj(n). In their notation q = r = δ = 1, A = 2, u = 3/8. We use
their Remark (5.5), since (e.g. by the Wiener–Ikehara–Tauberian theorem)∑

n≤x cj(n) = (1 + o(1))2x ch(πκj) as x → ∞, so that a = b = 1. Thus
(4.2) of [3] yields∑

n≤x

cj(n) = 2x ch(πκj) + O(x3/8+3η/2) + O(x3/4−η)(1.26)

= 2x ch(πκj) + O(x3/5)

if η = 3/20. In view of (1.9), (1.11) and (1.20) it is seen that from (1.26)
one obtains by a convolution argument

(1.27)
∑
n≤x

t2j (n) =
12x

π2αj
+ O(x3/5).

This result corresponds to R. A. Rankin’s classical theorem [28] for holo-
morphic cusp forms. H. Iwaniec [12], [13] states (1.27) with the incorrect
constant 6/(π2αj) in the main term, as is also done on p. 244 of [9].

When κj is not fixed, we naturally cannot expect to obtain formulas for
the above sum with error term as good as O(x3/5). What we shall prove is

Theorem 3. If α is the constant defined by (1.7) and κj ≤ x1−α then
for any given ε > 0 we have, uniformly in κj ,∑

n≤x

t2j (n) =
12x

π2αj
+ Oε(xε(κ1/(2−2α)

j x1/2(1.28)

+ min(κ(1+10α)/(3+6α)
j x1/2 + x(3+6α)/5, κ−1

j x1+2α))).

The asymptotic formula (1.28) shows that, under the truth of the Rama-
nujan–Petersson conjecture α = 0, we can extend (1.27) (with an additional
ε-factor) to the range κj ≤ x1/5, namely

(1.29)
∑
n≤x

t2j (n) =
12x

π2αj
+ Oε(x3/5+ε) (κj ≤ x1/5).

If 1/10 < α < 1/2 and κj ≤ x(3+6α)/8 then the error terms in (1.28) are

Oε(xε(κ(1+10α)/(3+6α)
j x1/2 + x(3+6α)/5)).

Note that (1.28) improves the result of N. V. Proskurin [27] (in the special
case when κj1 = κj2 = κj), who investigated the summatory function of
%j1(n)%j2(n).
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2. Proof of Theorem 1. For the proof of Theorem 1 we shall need the
following

Lemma 1. Let s = σ + it, −ε ≤ σ ≤ 1 + ε for a small , fixed ε > 0, and
t ≥ 1. Then

(2.1) Hj(s) �ε (κj + t)1−σ+2ε,

and if |t− κj | ≥ 2, then

(2.2) Xj(s) =
Hj(s)

Hj(1− s)

= π2s−1ct

(
1
4 |t

2 − κ2
j |

)1/2−s
∣∣∣∣ t− κj

t + κj

∣∣∣∣iκj

e2it

(
1 + O

(
1

|t− κj |

))
,

where

ct =
{

εj if t < κj − 2,
i if t > κj + 2.

P r o o f. By using standard properties of the gamma-function one can
rewrite the functional equation (1.2) as

θj(s)Hj(s) = θj(1− s)Hj(1− s) if εj = 1,

θj(1 + s)Hj(s) = −θj(2− s)Hj(1− s) if εj = −1,

where

θj(s) = π−sΓ

(
s

2
+

i

2
κj

)
Γ

(
s

2
− i

2
κj

)
.

Hence by using Stirling’s formula in the form

Γ (s) =
√

2π|t|σ−1/2 exp
{
− π

2
|t|+ i

(
t log |t| − t +

πt

2|t|

(
σ − 1

2

))}
×

(
1 + O

(
1
|t|

))
(|t| ≥ 1),

one obtains (2.2). By (1.13) we have

|Hj(1 + ε + it)| ≤
∞∑

n=1

|tj(n)|n−1−ε �ε κε
j ,

and by (2.2),

|Hj(−ε + it)| = |Hj(1 + ε + it)Xj(−ε + it)| �ε κε
j(κj + t)1+2ε.

Therefore (2.1) follows by the Phragmén–Lindelöf principle (see (A.36)
of [8]).

We now pass to the proof of Theorem 1, supposing that x1/2 < κj ≤ x
and starting from the Perron inversion formula for Dirichlet series (see e.g.
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(A.10) of [8]). If xε1 ≤ T ≤ x1−ε1 and α is the constant defined by (1.7),
then by the residue theorem we have

(2.3)
∑
n≤x

tj(n)

=
1

2πi

1+ε+iT∫
1+ε−iT

Hj(s)xs ds

s
+ Oε(x1+α+εT−1)

=
1

2πi

−ε+iT∫
−ε−iT

Hj(s)xs ds

s
+ Hj(0)

+ Oε(x1+α+εT−1 + max
−ε≤σ≤1+ε

(κj + T )1−σ+2εxσT−1)

=
1

2πi

−ε+iT∫
−ε−iT

Hj(1− s)Xj(s)xs ds

s

+ Oε(κ1+ε
j + x1+α+εT−1)

=
∑

n≤κ2
j
/x

tj(n)
(

1
2πi

−ε+iT∫
−ε−iT

ns−1Xj(s)xs ds

s

)

+
∑

n>κ2
j
/x

tj(n)n−ε−1 Re
{

1
πxε

T∫
1

(xn)itXj(−ε + it)
dt

−ε + it

}

+ Oε(κ1+ε
j + x1+α+εT−1)

=
∑

1
+

∑
2

+ Oε(κ1+ε
j + x1+α+εT−1),

say. Here we used (2.1), the functional equation (1.2), and exchanged the
order of summation and integration in view of the absolute convergence of
Hj(1 − s) for Re s < 0. In the integrals in

∑
1, which is a non-empty sum

since κj > x1/2, we replace the segment of integration [−ε− iT,−ε + iT ] by
the segment [1/2 − iT, 1/2 + iT ]. By the residue theorem, (1.3) and (2.2)
we obtain

1
2πi

−ε+iT∫
−ε−iT

nsXj(s)xs ds

s

= −Xj(0) + O{(nx)1/2 log T + max
−ε≤σ≤1/2

(nx)σT−1(κj + T )1−2σ}

� κj + (nx)1/2 log T.
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Therefore by using (1.13) we obtain∑
1
� κj

∑
n≤κ2

j
/x

|tj(n)|n−1 + x1/2 log T
∑

n≤κ2
j
/x

|tj(n)|n−1/2(2.4)

�ε κ1+2ε
j .

To estimate
∑

2 we use (2.2) to write

(2.5)
T∫

1

(xn)itXj(−ε + it)
dt

−ε + it

=
T∫

1

∗
(xn)itctπ

−1−2ε+2it
(

1
4 |t

2 − κ2
j |

)1/2+ε−it
∣∣∣∣ t− κj

t + κj

∣∣∣∣iκj

e2it dt

it

+ Oε(κ1+2ε
j )

=
T∫

1

∗
dt|t2 − κ2

j |1/2+εeiF (t) dt

t
+ Oε(κ1+2ε

j ),

where dt is piecewise constant,

F (t) = F (t;κj , x, n) := 2t + κj log
∣∣∣∣ t− κj

t + κj

∣∣∣∣− t log |t2 − κ2
j |+ t log(4π2xn),

and ∗ indicates that the interval [κj−2, κj +2] is excluded from integration if
it intersects [1, T ] (its contribution is trivially � 1). The total error coming
from the error term in (2.2) and from replacing −ε+it by it is�ε κ1+2ε

j . We
divide the interval of integration in the last integral in O(log T ) subintervals
of the form [T1, T2], where 1 � T1 < T2 ≤ 2T1 ≤ T , and note that

F ′(t) = log
4π2xn

|t2 − κ2
j |

, F ′′(t) =
−2t

t2 − κ2
j

.

In the subinterval of [T1, T2] in which

(2.6) |F ′′(t)| ≥ 2/t

we estimate the corresponding integral by the second derivative test
(Lemma 2.2 of [8]) as

(2.7) �ε (T1 + κj)1+2εT
−1/2
1 �ε T 1/2+2ε + κ1+2ε

j ,

providing that the subinterval in question is not empty. If (2.6) fails to hold,
then t2 < 1

2κ2
j holds. Hence |t2 − κ2

j | < 3
2κ2

j and

F ′(t) ≥ log
4π2κ2

j

|t2 − κ2
j |

> log
8π2

3
> 3.
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Therefore, by the first derivative test (Lemma 2.1 of [8]), the bound in (2.7)
certainly holds for the corresponding portion of the integral over [T1, T2].
Hence we obtain

(2.8)
∑

2
�ε (T 1/2+2ε + κ1+2ε

j )
∑

n>κ2
j
/x

|tj(n)|n−ε−1 �ε (T 1/2 + κj)x3ε.

From (2.3), (2.4) and (2.8) we obtain

(2.9)
∑
n≤x

tj(n) �ε (κj + x1+αT−1 + T 1/2)x3ε �ε (κj + x(1+α)/3)x3ε

if T = x(2+2α)/3. Since x(1+α)/3 ≤ κ
(2+2α)/3
j ≤ κ

5/6
j , Theorem 1 follows

from (2.9).

3. Some auxiliary results. In this section we lay the groundwork
for the proof of Theorem 2, and state five lemmas. In the next section we
shall obtain a suitable explicit formula for Tj(x) that will be squared and
integrated termwise to produce Theorem 2. It would be possible to treat also
the case κj > X1/2, but the difficulties involving the transitional region of
the K-Bessel function terms would be overwhelming, and for this reason we
shall be working with the condition κj ≤ X1/2. Such a condition, however,
is not necessary for this section, except in Lemma 2.

Lemma 2. Let 1 � N � x, κj ≤ x1/2. Then for any given ε > 0 we
have uniformly

Tj(x) =
x1/4

π
√

2

∑
n≤N

tj(n)
(

n +
κ2

j

4π2x

)−3/4

sinGκj
(4π

√
nx)(3.1)

+ Hj(0) + Oε(x1/2+α+εN−1/2),

where α is the constant in (1.7) and

(3.2)
Gκ(u) := (u2 + 4κ2)1/2 − 2κ arsh

(
2κ

u

)
+

π

4
,

arshu = log(u + (u2 + 1)1/2).

Lemma 3. For x > 0 we have

Tj(x) =
πi

sh(πκj)

∞∑
n=1

tj(n)
x∫

0

(J2iκj
(4π

√
nv)− J−2iκj

(4π
√

nv)) dv(3.3)

+ 4εj ch(πκj)
∞∑

n=1

tj(n)
x∫

0

K2iκj
(4π

√
nv) dv.

The series occurring in (3.3) are boundedly convergent for x lying in any
fixed interval [x1, x2] ⊂ (0,∞).
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The proofs of Lemmas 2 and 3 are found in [20]. For the definitions and
relevant properties of the J- and K-Bessel functions the reader is referred
to the monograph of G. N. Watson [31].

Lemma 4. For x > 0 and κ � 1 we have

(3.4)
−J2iκ(x) + J−2iκ(x)

sin(iπκ)

= 2π−1/2

(
x2

4
+ κ2

)−1/4

cos Gκ(x)

+
(

x2

4
+ κ2

)−3/4

(a+(x, κ)eiGκ(x) + a−(x, κ)e−iGκ(x))

+ O((x2 + κ2)−5/4),

where Gκ(x) is given by (3.2) and

(3.5) a±(x, κ) � 1,
∂

∂x
a±(x, κ) � 1/x.

This is deduced from the well-known asymptotic formulas for the
J-Bessel function (see A. Erdélyi et al . [6] or T. Meurman [20]). We shall
also need two lemmas on integrals with the J-Bessel function. Henceforth
we let for brevity

(3.6) J :=
−J2iκ(u) + J−2iκ(u)

sin(iπκ)
, K :=

u2

4
+ κ2.

Then we have

Lemma 5. For κ � 1 the integral

I :=
∞∫

0

{uJ − π−1/2(u2K−3/4 sinGκ(u))′} du

is convergent , and moreover ,

(3.7) I � κ−1/2.

P r o o f. We have

(3.8) (u2K−3/4 sinGκ(u))′ = 2uK−3/4 sinGκ(u) + u2(K−3/4 sinGκ(u))′,
(3.9) G′

κ(u) = 2u−1K1/2.

Therefore by the first derivative test
∫∞
0

uK−3/4 sinGκ(u) du � κ−1/2, and
it remains to show that I = I(1) converges and that I(1) � κ−1/2, where
we set

I(s) :=
∞∫

0

us{J − π−1/2u(K−3/4 sinGκ(u))′} du.
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In fact, I(s) is holomorphic for 0 < Re s ≤ 1. Namely, by using (3.9) one
can write I(s) = I1(s) + I2(s), where

I1(s) =
3

8
√

π

∞∫
0

us+2K−7/4 sinGκ(u) du,

I2(s) =
∞∫

0

us{J − 2π−1/2K−1/4 cos Gκ(u)} du.

The holomorphy of I1(s) for 0 < Re s ≤ 1 follows then by the first derivative
test, and that of I2(s) by Lemma 4.

Let now 0 < Re s < 1/2. By using the Mellin transform formula
∞∫

0

Jν(x)xs−1 dx =
2s−1Γ ((s + ν)/2)
Γ ((ν − s)/2 + 1)

(−Re ν < Re s < 3/2)

it follows that

(3.10)
∞∫

0

usJ du = −π−12s+1 sin
(

πs

2

)
Γ

(
s + 1

2
+ iκ

)
Γ

(
s + 1

2
− iκ

)
.

Integration by parts yields

(3.11)
∞∫

0

us+1(K−3/4 sinGκ(u))′ du = −(s + 1)
∞∫

0

usK−3/4 sinGκ(u) du,

and the integral on the right-hand side of (3.11) is, by the first derivative
test, holomorphic for 0 < Re s ≤ 1. Hence by analytic continuation we infer
from (3.10) and (3.11) that

I(1) = −4π−1|Γ (1 + iκ)|2 + 2π−1/2
∞∫

0

uK−3/4 sinGκ(u) du.

By the first derivative test it is seen that the above integral converges and
is � κ−1/2. This proves the lemma.

Lemma 6. For κ � 1,

(3.12)
∞∫

U

{uJ − π−1/2(u2K−3/4 sinGκ(u))′} du � (U2 + κ2)−1/4.

P r o o f. We note that by (3.8) and (3.9),

(u2K−3/4 sinGκ(u))′ = 2uK−3/4 sinGκ(u)

− 3
8u3K−7/4 sinGκ(u) + 2uK−1/4 cos Gκ(u),

and we insert this expression in (3.12). The third term is cancelled by the
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main term given by Lemma 4. Hence it remains to show that

(3.13)
∣∣∣ ∞∫

U

uK−3/4 sinGκ(u) du
∣∣∣ +

∣∣∣ ∞∫
U

u3K−7/4 sinGκ(u) du
∣∣∣

� (U2 + κ2)−1/4,

(3.14)
∞∫

U

uK−3/4a±(u, κ)e±iGκ(u) du � (U2 + κ2)−1/4

and

(3.15)
∞∫

U

uK−5/4 du � (U2 + κ2)−1/4.

The bound in (3.13) follows from the first derivative test, from the one in
(3.14) by an integration by parts and from (3.5), and the one given by (3.15)
is trivial.

4. The explicit formula for Tj(x). In this section we derive an explicit
formula for Tj(x), which is suitable for the proof of Theorem 2. We start
from (3.3) of Lemma 3.

By using Lemmas 5 and 6 (Gκ(u) is defined by (3.2)) we find that

(4.1)
πi

sh(πκ)

x∫
0

{J2iκ(4π
√

nv)− J−2iκ(4π
√

nv)} dv

= 2
√

πx(4π2nx + κ2)−3/4 sinGκ(4π
√

nx)

+
1

8πn

4π
√

nx∫
0

{
u

J2iκ(u)− J−2iκ(u)
−i sh(πκ)

− 1√
π

(
u2

(
u2

4
+ κ2

)−3/4

sinGκ(u)
)′}

du

= 2
√

πx(4π2nx + κ2)−3/4 sinGκ(4π
√

nx)

+
1

8πn

∞∫
0

{
u

J2iκ(u)− J−2iκ(u)
−i sh(πκ)

− 1√
π

(
u2

(
u2

4
+ κ2

)−3/4

sinGκ(u)
)′}

du

+ O(n−1(nx + κ2)−1/4).
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To transform the second series in (3.3) note first that
∞∫

0

K2iκ(4π
√

nv) dv =
|Γ (1 + iκ)|2

8π2n
.

Hence

(4.2) 4εj ch(πκj)
x∫

0

K2iκj
(4π

√
nv) dv

= −4εj ch(πκj)
∞∫

x

K2iκj
(4π

√
nv) dv +

1
2π2n

εj ch(πκj)|Γ (1 + iκj)|2

= −4εj ch(πκj)
∞∫

x

K2iκj (4π
√

nv) dv +
{

Xj(0) +
1

2π2
|Γ (1 + iκj)|2

}
1
n

,

where Xj(s) is given by (1.3). At this point we recall that (see G. N. Wat-
son [31])

K2iκj
(x) =

1
2 ch(πκj)

∞∫
−∞

cos(x sh t) cos(2κjt) dt.

In the above integral write

cos(x sh t) = Re(eix sh t)

and shift the line of integration to Im t = π/2. Since

sh(t + πi/2) = i ch t

we obtain

(4.3) K2iκj (x) �
∞∫

0

e−x ch t dt ≤
∞∫

0

e−x(1+t2/2) dt =
(

π

2x

)1/2

e−x

uniformly in κj . At this point we suppose that X ≤ x ≤ Y ≤ 2X, and make
use of the condition κj ≤ X1/2, required for Theorem 2. Then by using
(4.3) we have

ch(πκj)
∞∫

x

K2iκj
(4π

√
nv) dv � eπκj

∞∫
x

(nv)−1/4e−4π
√

nv dv

� eπκj n−1
∞∫

4π
√

nx

u1/2e−u du

� n−1(nx)1/4eπκj−4π
√

nx

� n−1(nx + κ2
j )
−1/4,
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which is the same as the error term in (4.1). Thus (4.2) gives

(4.4) 4εj ch(πκj)
x∫

0

K2iκj
(4π

√
nv) dv

=
{

Xj(0) +
1

2π2
|Γ (1 + iκj)|2

}
1
n

+ O

(
1
n

(nx + κ2
j )
−1/4

)
.

We insert (4.1) and (4.4) in (3.3), noting that by the functional equa-
tion (1.2),

Xj(0)
∞∑

n=1

tj(n)n−1 = Xj(0)Hj(1) = Hj(0),

and using (see (1.13))
∞∑

n=1

|tj(n)|n−1(nx + κ2
j )
−1/4 �ε κε

jx
−1/4.

The resulting formula is contained in

Lemma 7. Suppose κj ≤ X1/2 and X ≤ x ≤ Y ≤ 2X, let Gκ(u) be given
by (3.2), and let

(4.5) Sj(x) :=
x1/4

π
√

2

∞∑
n=1

tj(n)
(

n +
1
x

(
κ2

j

2π

))−3/4

sinGκj
(4π

√
nx),

(4.6) h(κ) :=
{
|Γ (1 + iκ)|2

2π2
+

1
8π

∞∫
0

(
u

J2iκ(u)− J−2iκ(u)
−i sh(πκ)

−π−1/2

(
u2

(
u2

4
+ κ2

)−3/4

sinGκ(u)
)′)

du

}
Hj(1).

Then we have, uniformly in κj ,

(4.7) Tj(x) = Sj(x) + Hj(0) + h(κj) + Oε(κε
jX

−1/4).

We shall now further transform the above formula for Tj(x), but we wish
to note here that by Lemma 5,

(4.8) h(κj) �ε κ
ε−1/2
j ,

since Hj(1) �ε κε
j . Thus h(κj) is the “small” constant appearing in (4.7),

whereas Hj(0) may be considered “large”, in view of

|Hj(0)| = |Hj(1)Xj(0)| � κj |Hj(1)|.

Our goal is to truncate the series Sj(x) and estimate the resulting error.
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Let for brevity q = (κj/(2π))2 and consider

(4.9) V = V (x;M,κj) := x1/4
∑

n>M

tj(n)
(

n +
q

x

)−3/4

sinGκj
(4π

√
nx),

where M ≥ x3, so that κj ≤ X1/2 ≤ x1/2 ≤ M1/6. By partial summation
and (1.6) it follows that

V = − x1/4
∞∫

M

( ∑
n≤y

tj(n)
)
{(y + q/x)−3/4 sinGκj

(4π
√

yx)}′ dy

− x1/4
( ∑

n≤M

tj(n)
)
(M + q/x)−3/4 sinGκj

(4π
√

Mx)

= − 2πx3/4
∞∫

M

( ∑
n≤y

tj(n)
)
y−1(y + q/x)−1/4 cos Gκj (4π

√
yx) dy

+ Oε(x1/4M−1/4)

= − 2πx3/4
∞∑

k=0

I(2kM) + Oε(x1/4M−1/4),

where

(4.10) I(W ) :=
2W∫

W

( ∑
n≤y

tj(n)
)
y−1(y + q/x)−1/4 cos Gκj

(4π
√

yx) dy.

We replace the sum in (4.10) by the expression given by Lemma 2, namely∑
n≤y

tj(n) =
y1/4

π
√

2

∑
n≤W

tj(n)(n + q/y)−3/4 sinGκj (4π
√

ny)

+ Hj(0) + Oε(Wα+ε) (W ≤ y ≤ 2W ),

where α ≤ 1/5. Since Hj(0) �ε κ1+ε
j , we obtain

I(W ) =
1

π
√

2

∑
n≤W

tj(n)
2W∫

W

(y + q/x)−1/4(ny + q)−3/4

× cos Gκj
(4π

√
xy) sinGκj

(4π
√

ny) dy

+ Oε((κ1+ε
j + Wα+ε)W−1/4).

To evaluate the above integral we let

Ψ(y) := Gκj
(4π

√
yx)±Gκj

(4π
√

yn),
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so that

|Ψ ′(y)| =
∣∣∣∣ 4π2(x− n)
(4π2yx + κ2

j )1/2 ∓ (4π2yn + κ2
j )1/2

∣∣∣∣
�

 (x/y)1/2 if n ≤ x/2,
|x− n|(xy)−1/2 if x/2 < n ≤ 2x,
(n/y)1/2 if n > 2x.

Hence by the first derivative test

2W∫
W

(y + q/x)−1/4(ny + q)−3/4eiΨ(y) dy

�

{
n−3/4W−1/2x−1/2 if n ≤ x/2,
x−1/4W−1/2|x− n|−1 if x/2 < n ≤ 2x,
n−5/4W−1/2 if n > 2x.

This gives

I(W ) �
∑

n≤x/2

|tj(n)|n−3/4W−1/2x−1/2

+
∑

x/2<n≤2x,|n−x|≥1/2

|tj(n)|x−1/4W−1/2|x− n|−1

+
∑

n≥2x

|tj(n)|n−5/4W−1/2

+ min(x−1/4W−1/2‖x‖−1, x−3/4)|tj(nx)|
+ (κ1+ε

j + Wα+ε)W−1/4,

where ‖u‖ is the distance from u to the nearest integer, and nx is the integer
satisfying |nx − x| < 1/2, if it exists. All three sums above are easily seen
to be � W−1/2, and moreover,

min(x−1/4W−1/2‖x‖−1, x−3/4)|tj(nx)| � min(W−1/2‖x‖−1, 1),

(κ1+ε
j + Wα+ε)W−1/4 ≤ (M1/6+ε + Wα+ε)W−1/4 ≤ 2Wα+ε−1/4 ≤ W−1/25

for W ≥ W0(ε) if 0 < ε < 1/100. Altogether we certainly have, for W ≥ M ,

(4.11) I(W ) � min(W−1/25‖x‖−1, 1).

Let now

k0 := max
(

0,
log(M−1‖x‖−25)

log 2

)
.
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By using (4.11) we have, since M−1/4 ≤ x−3/4,

V � x3/4
∑

0≤k≤k0

|I(2kM)|+ x3/4
∑
k≥k0

|I(2kM)|+ x1/4M−1/4

� k0x
3/4 + x3/4‖x‖−1

∑
k≥k0

(2kM)−1/25 + x−1/2

� k0x
3/4 + x3/4‖x‖−1(2k0M)−1/25 + x−1/4.

It follows that

(4.12) V �
{

x−1/4 if ‖x‖ > xM−1/25,
x3/4 log(1/‖x‖) if ‖x‖ ≤ xM−1/25.

Indeed, in the first case k0 = 0 and we get V � x−1/4. But in any case
log(M−1‖x‖−25)

log 2
≤ k0 � log

1
‖x‖

so that

V � x3/4 log
1
‖x‖

+x3/4‖x‖−1(M−1‖x‖−25M)−1/25+x−1/4 � x3/4 log
1
‖x‖

.

Thus finally from Lemma 7, (4.9) and (4.12) we obtain the desired expression
for Tj(x). This is

Lemma 8. Suppose κj ≤ X1/2, M ≥ x3 and X ≤ x ≤ Y ≤ 2X, and let
Gκ(u) be given by (3.2) and h(κ) by (4.6). Then

Tj(x) =
x1/4

π
√

2

∑
n≤M

tj(n)
(

n +
1
x

(
κj

2π

)2)−3/4

sinGκj (4π
√

nx)(4.13)

+ Hj(0) + h(κj) + Rj(x),

where uniformly

(4.14) Rj(x) �ε

{
κε

jx
−1/4 if ‖x‖ > xM−1/25,

x3/4 log (1/‖x‖) if ‖x‖ ≤ xM−1/25.

5. Proof of Theorem 2. We can now use the fundamental Lemma 8
to prove Theorem 2. Suppose X < Y ≤ 2X, κj ≤ X1/2, choose M = X100

in (4.13), (4.14), and consider

Fj = Fj(X, Y ) :=
Y∫

X

(Tj(x)−Hj(0)− h(κj))2 dx.

Setting

Wj(x) :=
x1/4

π
√

2

∑
n≤M

tj(n)
(

n +
1
x

(
κj

2π

)2)−3/4

sinGκj (4π
√

nx)
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we have

(5.1) Fj =
Y∫

X

W 2
j (x) dx + 2

Y∫
X

Wj(x)Rj(x) dx +
Y∫

X

R2
j (x) dx.

We have by (4.14),
(5.2)

Y∫
X

R2
j (x) dx �ε κε

jX
1/2 + X3/2

∫
‖x‖�X−3

(
log

1
‖x‖

)2

dx �ε X1/2+ε.

We write

(5.3)
Y∫

X

W 2
j (x) dx = Fj1 + Fj2,

say, where

Fj1 =
1

2π2

∑
m,n≤M ;m6=n

tj(m)tj(n)
Y∫

X

x1/2

(
m +

1
x

(
κj

2π

)2)−3/4

×
(

n +
1
x

(
κj

2π

)2)−3/4

sinGκj (4π
√

mx) sinGκj (4π
√

nx) dx,

Fj2 =
1

2π2

∑
n≤M

t2j (n)
Y∫

X

x1/2

(
n +

1
x

(
κj

2π

)2)−3/2

sin2 Gκj (4π
√

nx) dx.

Consider first Fj1. In view of (3.9) we have∣∣∣∣ ∂

∂x
(Gκj

(4π
√

mx)±Gκj
(4π

√
nx))

∣∣∣∣ � |m− n|√
x(
√

m +
√

n)
,

and consequently by the first derivative test
Y∫

X

� X(mn)−3/4(m1/2 + n1/2)|m− n|−1.

Hence
Fj1 � X

∑
m<n≤M

|tj(m)tj(n)|m−3/4n−1/4(n−m)−1

= X
∑

n≤M

∑
m≤n/2

|tj(m)tj(n)|m
−3/4n−1/4

n−m

+ X
∑

n≤M

∑
n/2<m<n

|tj(m)tj(n)|m
−3/4n−1/4

n−m
.
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Trivially we have∑
n≤M

∑
m≤n/2

|tj(m)tj(n)|m
−3/4n−1/4

n−m

�
∑

n≤M

|tj(n)|n−5/4
∑

m≤n/2

|tj(m)|m−3/4 �ε Xε.

By writing m = n− k and using |ab| ≤ 1
2 (a2 + b2) we obtain∑

n≤M

∑
n/2<m<n

|tj(m)tj(n)|m
−3/4n−1/4

n−m

�
∑

n≤M

|tj(n)|n−1
∑

1≤k<n/2

|tj(n− k)|k−1

� log M · max
M1≤M

M−1
1

∑
k≤M1/2

k−1
∑

max(2k,M1/2)<n≤M1

|tj(n)tj(n− k)|

� log M · max
M1≤M

M−1
1

∑
k≤M1/2

k−1
∑

n≤M1

t2j (n) �ε Xε,

where (1.13) was used. Thus

(5.4) Fj1 �ε X1+ε.

It remains to consider Fj2. We use

sin2 Gκj
(4π

√
nx) = 1

2 (1− cos 2Gκj
(4π

√
nx))

and estimate the cosine terms by the first derivative test. This gives

Fj2 =
1

4π2

∑
n≤M

t2j (n)
Y∫

X

x1/2

(
n +

1
x

(
κj

2π

)2)−3/2

dx + Oε(X1+ε).

Since M = X100 we obtain∑
n>M

t2j (n)
Y∫

X

x1/2

(
n +

1
x

(
κj

2π

)2)−3/2

dx � X3/2
∑

n>M

t2j (n)n−3/2

�ε X3/2κε
jM

−1/2 � 1,

and consequently

(5.5) Fj2 =
1

4π2

∞∑
n=1

t2j (n)
Y∫

X

x1/2

(
n +

1
x

(
κj

2π

)2)−3/2

dx + Oε(X1+ε).
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Thus from (5.3)–(5.5) it follows that

(5.6)
Y∫

X

W 2
j (x) dx

=
1

4π2

∞∑
n=1

t2j (n)
Y∫

X

x1/2

(
n +

1
x

(
κj

2π

)2)−3/2

dx + Oε(X1+ε),

and the main term on the right-hand side of (5.6) is �ε κε
jX

3/2 �ε X3/2+ε.
By (5.2), (5.6) and the Cauchy–Schwarz inequality we obtain

Y∫
X

Wj(x)Rj(x) dx �ε X1+ε,

and (5.1) gives then (1.16).
To obtain (1.17) from (1.16) write first

2X∫
X

T 2
j (x) dx =

2X∫
X

(Tj(x)−Hj(0)− h(κj))2 dx(5.7)

+ (Hj(0) + h(κj))2X

+ 2(Hj(0) + h(κj))
2X∫

X

(Tj(x)−Hj(0)− h(κj)) dx.

The first integral on the right-hand side of (5.7) is evaluated by (1.16), if we
note that, for κj ≤ X1/2 and X ≤ x ≤ 2X,(

n +
1
x

(
κj

2π

)2)−3/2

= n−3/2

(
1 + O

(
κ2

j

nX

))
,

and the contribution of the error term is
∞∑

n=1

t2j (n)n−5/2κ2
j

2X∫
X

x1/2X−1 dx �ε κ2
jX

1/2+ε.

By Lemma 7 and the first derivative test we obtain

(5.8)
2X∫

X

(Tj(x)−Hj(0)− h(κj)) dx �ε X3/4+ε.

Since Hj(0) �ε κ1+ε
j and h(κj) �ε κ

ε−1/2
j , we then obtain (1.17) from (5.7)

and (5.8).
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6. Proof of Theorem 3. As stated in Section 1, N. V. Proskurin [27]
investigated the summatory function of %j1(n)%j2(n), where κj1 and κj2 are
not necessarily fixed. If κj1 = κj2 = κj , then his results are∑

n≤x

t2j (n) =
12

π2αj
+ Oε(x7/6+ε + x1+εκ

1/2
j + x1/2κ1+ε

j ),(6.1)

∑
n≤x

cj(n) = 2x ch(πκj) + Oε(αj ch(πκj)(κ
3/2+ε
j + x19/18+ε(6.2)

+ x7/10+εκ
4/5
j + x−1/2κ2+ε

j )),∑
n≤x

t2j (n) =
12x

π2αj
+ Oε(x3/4+ε + x2/3+εκ

1/3
j + x1/2κ

1/2+ε
j ),(6.3)

∑
n≤x

cj(n) = 2x ch(πκj)(6.4)

+ Oε(αj ch(πκj)(κ1+ε
j + x3/5+ε + x1/3κ

2/3+ε
j )),

where αj is defined by (1.9) and cj(n) by (1.20). In the proofs Proskurin
used the complex integration method and the bound (1.7) with α = 1/4 for
(6.1)–(6.2), and with α = 0 for (6.3)–(6.4). Since α = 0 is a form of the
Ramanujan–Petersson conjecture for Maass wave forms (Proskurin states,
erroneously, that it was proved by N. V. Kuznetsov), it follows that (6.3)
and (6.4) are conditional results. Note that the error terms in (6.1) and
(6.2) are very large.

The starting point in our proof is, as in [27], the Perron inversion formula
for Dirichlet series. For xε ≤ T ≤ x it gives

(6.5)
∑
n≤x

cj(n) =
1

2πi

1+ε+iT∫
1+ε−iT

Cj(s)
xs

s
ds + Oε(|%j(1)|2T−1x1+2α+ε),

where Cj(s) is defined by (1.22). It is in the nature of Perron’s inversion
formula that the exponent α must appear in (6.5). By using the method of
Chandrasekharan–Narasimhan [3] this could be avoided, but on the other
hand, considerable difficulties would arise since κj is not necessarily fixed.
Thus we found it expedient to use (6.5), but unlike Proskurin, who used
Perron’s formula also to evaluate the sum in (6.1), we find that for this sum
the convolution method seems to yield better results. In the course of the
proof we shall use (1.23), which was not available to Proskurin, and proceed
somewhat differently in treating the integral in (6.5). In fact, it does not
seem clear how Proskurin estimates the saddle-point exponential integrals
occurring in his proof.
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We apply the residue theorem and the fact that Cj(0) = 0 to obtain

1
2πi

1+ε+iT∫
1+ε−iT

Cj(s)
xs

s
ds = 2x ch(πκj) + I1 + I2 + I3 + I4 + I5,

where 2x ch(πκj) comes from the residue of the integrand at s = 1, and
where we set

I1 =
1

2πi

−ε+2i∫
−ε−2i

Cj(s)
xs

s
ds,

I2 =
1

2πi

−ε−2i∫
−ε−iT

Cj(s)
xs

s
ds, I3 =

1
2πi

−ε+iT∫
−ε+2i

Cj(s)
xs

s
ds,

I4 =
1

2πi

1+ε+iT∫
−ε+iT

Cj(s)
xs

s
ds, I5 =

1
2πi

−ε−iT∫
1+ε−iT

Cj(s)
xs

s
ds.

We may write the functional equation (1.24) as

(6.6) Cj(s) = γj(s)Cj(1− s),

where

γj(s) = π4s−2

Γ

(
1− s

2
+ iκj

)
Γ

(
1− s

2
− iκj

)
Γ 2

(
1− s

2

)
Γ

(
s

2
+ iκj

)
Γ

(
s

2
− iκj

)
Γ 2

(
s

2

) .

Hence, by Stirling’s formula, we have

(6.7) γj(−ε + it)

�ε (|t|+ 1)1+2ε(|κj − t/2|+ 1)1/2+ε(|κj + t/2|+ 1)1/2+ε.

In view of (1.23) we have Cj(1 + ε + it) �ε αj ch(πκj)κε
j , hence by (6.6)

and (6.7) we have, for |t| ≤ 2,

(6.8) Cj(−ε + it) �ε αjκ
1+ε
j ch(πκj),

and the same upper bound holds for I1. By applying convexity (the
Phragmén–Lindelöf principle) to Cj(s) it follows that

I4 + I5 � T−1
1+ε∫
−ε

|Cj(σ + iT )|xσ dσ(6.9)

�ε (κjx)εαj ch(πκj)(x/T + T + κj).

We note that I2 = I3, and use the functional equation (6.6) in I3. In view
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of the absolute convergence of the series for Cj(1− s) we obtain

(6.10) I3 =
1

2πxε

∞∑
n=1

cj(n)n−ε−1
T∫

2

γj(−ε + it)(xn)it dt

−ε + it
.

Stirling’s formula gives, for 2 ≤ t ≤ T and |κj − t/2| ≥ 2,

γj(−ε + it)

= A(κj , ε, t)t1+2ε|κ2
j − t2/4|1/2+εeiG(t)

(
1 + O

(
1
t

)
+ O

(
1

|κj − t/2|

))
.

Here

A(κj , ε, t) = Cε exp
(

iπ

4
sgn

(
t

2
− κj

))
,

and

G(t) = G(t, κj)(6.11)
:= 4t log π − (t− 2κj) log |t/2− κj |+ t− 2κj

− (t + 2κj) log(t/2 + κj) + t + 2κj − 2t log(t/2) + 2t.

The integral in (6.10) is estimated by the technique similar to the one used
for the proof of Theorem 1. The portion for which |κj − t/2| < 2, if it
is non-empty, is estimated trivially as �ε κ

1/2+ε
j , and its contribution will

be �ε αjκ
1/2+ε
j ch(πκj). The error terms in the formula for γj(−ε + it)

contribute a total �ε (κjx)εαj ch(πκj)(κj + T ). The integral coming from
the main term is split into O(log T ) subintegrals of the form

(6.12)
T2∫

T1

ϕ(κj , ε, t)eih(t) dt (T1 < T2 ≤ 2T1 ≤ T ),

where ϕ is piecewise monotonic and satisfies

ϕ(κj , ε, t) �ε T 2ε
1 max(κj , T1)1+2ε (T1 ≤ t ≤ T2),

while h(t) := t log(xn) + G(t) with G(t) given by (6.11). Hence

h′(t) = log(π4xn)− log |t/2− κj | − log(t/2 + κj)− 2 log(t/2),

h′′(t) =
8κ2

j − 4t2

t(t2 − 4κ2
j )

, h′′′(t) = 4
t4 − 2κ2

j t
2 + 8κ4

j

t2(t2 − 4κ2
j )2

.

Let us fix a small, positive δ. For the values of t for which

(6.13) |h′′(t)| ≥ δ/t

we estimate the corresponding portion of the integral in (6.12) as

�ε T
1/2+2ε
1 max(κj , T1)1+2ε �ε T 1/2+2ε max(κj , T )1+2ε.
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The values of t for which (6.13) fails to hold are those which lie in the interval

(6.14) 2
(

2− δ

4− δ

)1/2

κj < t < 2
(

2 + δ

4 + δ

)1/2

κj .

Hence if δ is sufficiently small and (6.14) holds, then h′′′(t) ≥ κ−2
j . Thus

the portion of the integral in I3 over the interval in (6.14) (which we denote
by J) can be estimated by the third derivative test (p. 90 of [29]) as

�ε κ1+4ε
j max

t∈J
|h′′′(t)|−1/3 �ε κ

5/3+4ε
j

uniformly in n. Note that this contribution can exist only if T ≥ κj . In this
case we thus obtain

(6.15)
∑
n≤x

cj(n) = 2x ch(πκj)

+ Oε(αj ch(πκj)(κjx)ε(xβT−1 + κ
5/3
j + T 1/2 max(κj , T ))),

where we have set β = 1 + 2α for brevity. If T < κj then in (6.15) the term
κ

5/3
j on the right-hand side may be omitted. The optimal T in the range

T ≥ κj is

T = max(κj , x
2β/5),

and we choose this T if κj ≤ x3β/8. The optimal T in the range T < κj is

T = 1
2 min(κj , κ

−2/3
j x2β/3),

and we choose this T if κj > x3β/8. In either case xε ≤ T ≤ x, as required.
Hence, from (6.15), it follows that

(6.16)
∑
n≤x

cj(n) = 2x ch(πκj)

+ Oε(αj ch(πκj)(κjx)ε min(κ5/3
j + x3β/5, κ−1

j xβ + κ
2/3
j xβ/3)).

Finally, we deduce (1.28) from (6.16). By the Möbius inversion formula,
(1.20) gives

|%j(n)|2 =
∑
d2|n

µ(d)cj(n/d2).

In view of %j(n) = %j(1)tj(n) and (1.9) it follows that

Σ :=
∑
n≤x

t2j (n) = (αj ch(πκj))−1
∑

d2m≤x

µ(d)cj(m).

Suppose now that max(1, xκ
−8/(3β)
j ) ≤ y ≤ x. (Values of y in the range

y < xκ
−8/(3β)
j give weaker estimates.) Using (6.16) we obtain
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Σ = (αj ch(πκj))−1

×
( ∑

d≤√y

µ(d)
∑

m≤x/d2

cj(m) +
∑

m≤x/y

cj(m)
∑

√
y<d≤

√
x/m

µ(d)
)

=
∑

d≤√y

µ(d)
2x

αjd2
+ Oε

( ∑
d≤x1/2κ

−4/(3β)
j

(κjx)ε(κ5/3
j + x3β/5d−6β/5)

)
+ Oε

( ∑
x1/2κ

−4/(3β)
j

<d≤√y

(κjx)ε(κ−1
j xβd−2β + κ

2/3
j xβ/3d−2β/3)

)
+ Oε

(
(αj ch(πκj))−1

∑
m≤x/y

cj(m)(x/m)1/2
)
.

Here the explicit term and the third error term together give
12x

π2αj
+ Oε(κε

jxy−1/2),

by (1.10) and (1.23). The first and the second error terms together give

Oε((κjx)ε(min(x1/2κ
(5β−4)/(3β)
j + x3β/5, κ−1

j xβ) + κ
2/3
j xβ/3y(3−2β)/6)),

by considering the cases κj ≤ x3β/8 and κj > x3β/8 separately. Now the
optimal y is y = xκ

−2/(3−β)
j and this satisfies the asumptions on y if κj ≤

x(3−β)/2. Thus we obtain

Σ = 12x/(π2αj)

+ Oε(xε(min(x1/2κ
(5β−4)/(3β)
j + x3β/5, κ−1

j xβ) + x1/2κ
1/(3−β)
j )).

Then (1.28) follows, since β = 1 + 2α.
The asymptotic formula (1.28) with α = 1/4 (α = 5/28 is known by [2])

improves (6.1), while (1.28) with α = 0 improves (6.3).
In conclusion, it may be remarked that in the course of the proof we

used the trivial bound
∑

n≤x µ(n) � x. However, if we assume the Riemann
hypothesis, which is equivalent to the statement (see Ch. 14 of [29]) that∑

n≤x

µ(n) �ε x1/2+ε,

then a conditional improvement of Theorem 3 may be obtained.
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