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1. Introduction. Let ζ(s) be the Riemann zeta-function. Suppose
that T ≥ 2 and define

E(T ) =
T∫

0

∣∣∣∣ζ(
1
2

+ it

)∣∣∣∣2 dt− T

(
log

T

2π
+ 2γ − 1

)
,

where γ is Euler’s constant. It is known (see e.g. [2]) that E(T ) � T θ,
where θ is slightly less than 1/3, but the average order of E(T ) is T 1/4.
More precisely, defining

F (T ) =
T∫

2

E(t)2 dt− 2
3
(2π)−1/2 ζ(3/2)4

ζ(3)
T 3/2,

Heath-Brown [1] proved that F (T ) � T 5/4 log2 T . Meurman [6] and Moto-
hashi [8], [9] independently improved this to F (T ) � T log5 T , and Preiss-
mann [10] (and independently, Ivić [3]) obtained a further improvement by
showing that F (T ) � T log4 T .

It is our purpose to investigate the analogue of F (T ) in the critical strip.
This work was initiated by Matsumoto [5], and his paper contains most
of the background relevant for this paper. From now on we assume that
1/2 < σ < 3/4. Define

Eσ(T ) =
T∫

0

|ζ(σ + it)|2 dt− ζ(2σ)T − (2π)2σ−1 ζ(2− 2σ)
2− 2σ

T 2−2σ

and

Fσ(T ) =
T∫

2

Eσ(t)2 dt− c0T
5/2−2σ,

[369]
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where

c0 =
2

5− 4σ
(2π)2σ−3/2 ζ(3/2)2

ζ(3)
ζ(5/2− 2σ)ζ(1/2 + 2σ).

Theorem 3 of Matsumoto [5] asserts that Fσ(T ) � T 7/4−σ log T . We shall
prove the following refinement:

Theorem. For 1/2 < σ < 3/4 and T ≥ 2 we have

Fσ(T ) = O(T ),

where the implied constant depends on σ.

A simple argument, based on (3.29) below, shows that
T∫

2

Eσ(t) dt ∼ −2πζ(2σ − 1)T.

Thus perhaps Fσ(T ) ∼ 4π2ζ(2σ−1)2T . This would imply that the estimate
in our theorem is essentially the best possible. This is one of the reasons
why we do not confine ourselves to the weaker estimate Fσ(T ) � T log T ,
the proof of which would be simpler. Indeed, to drop the log-factor here,
we need an idea which has not been used in the papers concerning F (T ).

Another simple argument shows that if Fσ(T ) � Tα(log T )β then Eσ(T )
� Tα/3(log T )β/3 + T 3/4−σ. Our theorem thus implies that Eσ(T ) � T 1/3.
But this is weaker than the estimate Eσ(T ) � T 1/(1+4σ) log2 T of Mat-
sumoto [5]. The result Eσ(T ) = Ω(T 3/4−σ), given also by Matsumoto [5],
is not sufficient to yield an Ω-result for Fσ(T ). However, we can prove that
Eσ(T ) = Ω(T 3/4−σ(log T )σ−1/4). We shall show this in a subsequent paper.
Therefore it follows that

Fσ(T ) = Ω(T 9/4−3σ(log T )3σ−3/4).

Notation. The symbols O, �, �, � and Σ′ have their usual meaning
(see p. xiii of [2]), and the implied constants may depend on σ.

Acknowledgements. We wish to express our gratitude to Prof. Alek-
sandar Ivić for his useful comments concerning this work.

2. Estimates involving σ1−2σ(n). Define σa(n) =
∑

d|n da, as usual.
We have the elementary estimates∑

n≤x

σ1−2σ(n) � x,
∑
n≤x

σ1−2σ(n)2 � x

and

(2.1)
∑

x<n≤x+y

σ1−2σ(n) � y +
√

x.
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In fact, the first estimate is obvious. Since∑
n≤x

σ1−2σ(n)2 =
∑

km≤x

σ1−2σ(km)k1−2σ

≤
∑

km≤x

σ1−2σ(m)σ1−2σ(k)k1−2σ

�
∑
m≤x

σ1−2σ(m)(x/m)2−2σ � x,

the second estimate follows. Since∑
x<n≤x+y

σ1−2σ(n) ≤ 2
∑

x<n≤x+y

∑
d|n

d≤
√

n

d1−2σ �
∑

d≤
√

x+y

d1−2σ
∑

x<n≤x+y
n≡0 (mod d)

1

�
∑

d≤
√

x+y

d1−2σ(y/d + O(1))

� y + (x + y)1−σ � y +
√

x,

the third estimate follows. The first two of these will be used several times
without referring to them explicitly.

We have∑′

n≤x

σ1−2σ(n) = ζ(2σ)x +
ζ(2− 2σ)
2− 2σ

x2−2σ − 1
2ζ(2σ − 1) + ∆1−2σ(x),

where

∆1−2σ(x) =
1

π
√

2
x3/4−σ

∞∑
n=1

σ1−2σ(n)nσ−5/4(2.2)

×
{

cos(4π
√

nx− π/4) +
c1√
nx

sin(4π
√

nx− π/4)
}

+ O(x−1/4−σ),

c1 depends only on σ and the series is boundedly convergent for x in any
fixed finite interval (see Section 2 in [5]).

For any fixed ε > 0 we have

(2.3)
x∫

1

∆1−2σ(ξ)2dξ = c2x
5/2−2σ + O(x7/4−σ+ε),

where c2 depends only on σ. This is a special case of Theorem 2 of Kiuchi [4].

3. A formula for Eσ(T ). The aim of this section is to obtain for
Eσ(T ) a formula which is a refinement of Theorem 2 in [5] and, up to a
minor modification, an analogue of Lemma 2 in [6].
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By a straightforward calculation based on Stirling’s formula

Γ (z) =
√

2πe−zzz−1/2

(
1 +

1
12z

+ O(|z|−2)
)

it can be shown that

Re
(

Γ (1− σ − it)
Γ (σ − it)

)
− sin(πσ)t1−2σ � t−1−2σ

for t ≥ 2. Hence
∞∫

T

(
Re

(
Γ (1− σ − it)

Γ (σ − it)

)
− sin(πσ)t1−2σ

)
dt � T−2σ.

Denote the integral on the left by c3 when T = 0. It follows that

(3.1)
T∫

0

{
Γ (1− σ − it)

Γ (σ − it)
+

Γ (1− σ + it)
Γ (σ + it)

}
dt

=
sin(πσ)
1− σ

T 2−2σ + 2c3 + O(T−2σ).

We need not know the value of the constant c3 to prove our theorem. But c3

contributes to the constant term in (3.29) and therefore it may be of some
interest to know that c3 = 0. We prove this in the Appendix. Combining
(3.1), where c3 = 0, with formula (3.4) in [5], observing that

ζ(2σ − 1)Γ (2σ − 1) sin(πσ) = 1
2 (2π)2σ−1ζ(2− 2σ)

and recalling our definition of Eσ(T ) we obtain

Eσ(T ) =− iGσ(T ) + O(T−2σ),(3.2)
where

Gσ(T ) =
σ+iT∫

σ−iT

g(z, 2σ − z) dz

and g(z, 2σ − z) is defined as at the beginning of Section 4 in [5].
Define

(3.3) f(T, x) = 2T arsinh
√

πx

2T
+ 2πx

(
T

2πx
+

1
4

)1/2

− π

4

and

q(x) =
(

arsinh
√

πx

2T

)−1(
T

2πx
+

1
4

)−1/4((
T

2πx
+

1
4

)1/2

+
1
2

)−1

.

According to Sections 4 and 5 in [5] we have

(3.4) Gσ(T ) = G1 −G2 + G3 −G4,
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where

G1 =
i√
2

(
T

2π

)1/2−σ ∑
n<X

(−1)nnσ−1σ1−2σ(n)(3.5)

×
(

arsinh
√

πn

2T

)−1(
T

2πn
+

1
4

)−1/4

cos(f(T, n))

+ O(T 1/4−σ),
G2 � T−1/2|∆1−2σ(X)|,(3.6)
G3 =− 2πiζ(2σ − 1) + O(T σ−1),

G4 = G40 + O
(
T 1/2−σ

∞∫
X

|∆1−2σ(ξ)|ξσ−2 dξ
)
,(3.7)

G40 = iπ
√

2
(

T

2π

)3/2−σ ∞∫
X

∆1−2σ(ξ)ξσ−2q(ξ) cos(f(T, ξ)− πξ + π/2) dξ,

X = N + 1/2 � T and N is an integer. In fact, the estimate (3.6) has not
been displayed in [5], but it is implicitly there. The only reason for assuming
X = N + 1/2 was to ensure X is not an integer. Hence the decomposition
(3.4) remains valid even on the weaker assumption that X is not an integer.

By Schwarz’s inequality and (2.3) the integral in (3.7) is O(X−1/4) so
that

(3.8) G4 = G40 + O(T 1/4−σ).

If a � T 1/2 and U � T 1/4 then the numbers X = (a + u)2, where
0 ≤ u ≤ U , satisfy X � T , as required. Then, setting

(3.9) G∗
j = U−1

U∫
0

Gj du,

we deduce from (3.4) that

(3.10) Gσ(T ) = G∗
1 −G∗

2 + G∗
3 −G∗

4,

since Gσ(T ) is independent of X.
By Schwarz’s inequality and (2.3) we have

G∗
2 � T−1/2U−1

U∫
0

|∆1−2σ((a + u)2)| du(3.11)

� T−1/2U−1a−1

(a+U)2∫
a2

|∆1−2σ(x)| dx
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� (TUa)−1/2
( (a+U)2∫

a2

∆1−2σ(x)2 dx
)1/2

� T 1/4−σ + T−σ/2+ε.

Trivially

(3.12) G∗
3 = −2πiζ(2σ − 1) + O(T σ−1).

To evaluate G∗
4 consider U−1

∫ U

0
G40 du. Substitute the expression in

(2.2) into the expression defining G40. Then change the order of
∫∫

and
∑

and substitute ξ = x2. This yields

(3.13) U−1
U∫

0

G40 du

= 2i

(
T

2π

)3/2−σ ∞∑
n=1

σ1−2σ(n)nσ−5/4Kn + O(T 1/4−σ),

where the O-term is due to the O-term in (2.2) (note that q(ξ) � 1 for
ξ ≥ X) and

Kn = U−1
U∫

0

∞∫
a+u

x−3/2q(x2) cos(f(T, x2)− πx2 + π/2)(3.14)

× {cos(4πx
√

n− π/4) + c1n
−1/2x−1 sin(4πx

√
n− π/4)} dx du.

The term-by-term integration can be justified as in [5]. But here we show
a different argument. The idea was suggested by Prof. Yoichi Motohashi.
Clearly it is sufficient to consider only the “worse” part of the series in (2.2).
Then, since this is boundedly convergent on finite intervals, it is sufficient
to show that

lim
λ→∞

∞∑
n=1

σ1−2σ(n)nσ−5/4
∞∫

λ

x−3/2q(x2)eih(x)dx = 0,

where we have set h(x) = f(T, x2)− πx2 ± 4πx
√

n. Since

h′(x) = 2T

(
x

2
+

(
x2

4
+

T

2π

)1/2)−1

± 4π
√

n,

it follows that h′ is monotonic and |h′(x)|≥
√

n. Also the function x−3/2q(x2)
is monotonic and its value is � x−3/2. It follows that the integral in our
claim is � λ−3/2n−1/2 (using formula (2.3) in [2]), which proves our claim.

Consider Kn. Define

(3.15) ξ(T, n, a) = max
(

0,min
(

1, U−1

(
T

2π
√

n
−
√

n− a

)))
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and

(3.16) B(y) = B(y, T ) =
T

2π
+

1
2
y2 − y

(
T

2π
+

1
4
y2

)1/2

so that B(a+u) equals what was denoted by Z(u) in [6]. For y ≥ 0 we have

(3.17) n ≤ B(y, T ) ⇔ T

2π
√

n
−
√

n ≥ y.

Up to the value of c1, which is irrelevant, the expression in (3.14) is exactly
the same as Kn in [6]. By Lemma 1 in [6] and after some simplifications
depending on the fact that if ξ(T, n, a) 6= 0 then n < B(a) and T/(2π)−n �
T (see (3.15) and (3.17)) we find that

Kn = 2πξ(T, n, a)T−1n1/4

(
log

T

2πn

)−1

cos
(

T log
T

2πn
− T +

π

4

)
(3.18)

+ O
(
U−1T−3/4

1∑
j=0

min(1, (
√

n−
√

B(a + jU))−2)
)

+ O(R(n)T−3/2n1/4),

where

R(n) =

 T−1/2 for n < B(a + U),
1 for B(a + U) ≤ n < B(a),
0 for n ≥ B(a).

Substitute (3.18) into (3.13). The first O-term in (3.18) then contributes

� U−1T 3/4−σ
1∑

j=0

∞∑
n=1

σ1−2σ(n)nσ−5/4 min(1, (
√

n−
√

B(a + jU))−2).

We claim that this is � U−1 � T−1/4. In fact, split up the inner sum at
B/2, B −

√
B, B +

√
B and 2B, where B = B(a + jU) � T (see (3.16)).

The estimates of the first and the last subsums are easy. Since min(1, (
√

n−√
B)−2) ≤ 1, it follows using (2.1) that the middle subsum is � U−1. The

fourth subsum is decomposed further as∑
B+

√
B≤n≤2B

=
∑

k

∑
B+2k

√
B≤n<B+2k+1

√
B

and here we have min(1, (
√

n −
√

B)−2) � B(n − B)−2 � 2−2k. Then
we estimate each subsum by using (2.1), and sum up to obtain the estimate
O(U−1). The second subsum can be treated similarly, so the claim is proved.

The second O-term in (3.18) contributes

� T−σ
∑

n<B(a)

R(n)σ1−2σ(n)nσ−1.
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The terms with n < B(a + U) contribute � T−1/2. The other terms con-
tribute

� T−1
∑

B(a+U)≤n<B(a)

σ1−2σ(n)

� T−1(B(a)−B(a + U) + T 1/2) � UT−1/2 � T−1/4,

by (2.1) and since B′(y) = −B(y)(T/(2π) + y2/4)−1/2 �
√

T (see (3.16)).
On combining these results with (3.13) and (3.8) we get

G∗
4 = 2i

(
T

2π

)1/2−σ ∑
n

ξ(T, n, a)σ1−2σ(n)nσ−1(3.19)

×
(

log
T

2πn

)−1

cos
(

T log
T

2πn
− T +

π

4

)
+ O(T−1/4 + T 1/4−σ).

We have assumed that a � T 1/2. Now let V � T 1/2 and a = V + v, and
denote by w a differentiable function supported on the interval [0, 2V ] such
that w′(v) � V −1 and 0 ≤ w(v) ≤ 1 and∫

w(v) dv = V.

Define
G̃j = V −1

∫
w(v)G∗

j dv.

Then (3.10) yields

(3.20) Gσ(T ) = G̃1 − G̃2 + G̃3 − G̃4.

By (3.9) and (3.5) we have

(3.21) G̃1 = iΣ1,σ(T ) + O(T 1/4−σ),

where

Σ1,σ(T ) =
1√
2

(
T

2π

)1/2−σ ∑
n

w1(n)(−1)nnσ−1σ1−2σ(n)(3.22)

×
(

arsinh
√

πn

2T

)−1(
T

2πn
+

1
4

)−1/4

cos(f(T, n)),

w1(n) = (V U)−1
∫∫

w(v) du dv

and the limits of the double integral are determined by the inequalities
0 ≤ u ≤ U and n ≤ (V + v + u)2. For our purpose it is sufficient to know
that 0 ≤ w1(n) ≤ 1 and

(3.23) w1(n) =
{

1 for n ≤ V 2,
0 for n ≥ (3V + U)2.
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Setting
w2(n, T ) = V −1

∫
w(v)ξ(T, n, V + v) dv

we obtain, by (3.19),

(3.24) G̃4 = iΣ2,σ(T ) + O(T−1/4 + T 1/4−σ),

where

Σ2,σ(T ) = 2
(

T

2π

)1/2−σ ∑
n

w2(n, T )σ1−2σ(n)nσ−1(3.25)

×
(

log
T

2πn

)−1

cos
(

T log
T

2πn
− T +

π

4

)
.

Writing r = T/(2π
√

x)−
√

x we have

(3.26) w2(x, T ) = V −1
U∫

0

w(r − V − y)U−1y dy + V −1
∞∫

U

w(r − V − y) dy

by (3.15). Since w′(v) � V −1, it follows that

(3.27)
∂

∂x
w2(x, T ) =

∂

∂r
w2(x, T )

∂r

∂x
� V −1T−1/2 � T−1

if x � T . But x � T if r < 3V + U . And if r ≥ 3V + U then w2(x, T ) = 1
whence (3.27) holds trivially.

By (3.11) and (3.12),

(3.28) −G̃2 + G̃3 = −2πiζ(2σ − 1) + O(T 1/4−σ + T−σ/2+ε + T σ−1).

On combining (3.20), (3.21), (3.28) and (3.24) we find that

Gσ(T ) = iΣ1,σ(T )− iΣ2,σ(T )− 2πiζ(2σ − 1) + O(T−1/4).

Together with (3.2) this gives finally

(3.29) Eσ(T ) = Σ1,σ(T )−Σ2,σ(T )− 2πζ(2σ − 1) + O(T−1/4),

where V � T 1/2 and U � T 1/4.

R e m a r k. For the proof of our theorem it would be sufficient to have
O(T−1/4+ε) in (3.29). Averaging with respect to a had no effect on the O-
term in (3.29). The purpose of this averaging process is to provide Σ2,σ(T )
with a weight function w2(n, T ) of sufficiently slow decay. This makes it
possible to save a logarithm in the estimation of I22 in the next section.

4. The estimate for Fσ(T ). This section is based on Heath-Brown’s
[1] method (given also in [2]) supplied with ideas of Meurman [6] and Preiss-
mann [10]. A new feature is the way we estimate I22 (see below). Heath-
Brown’s method alone would give Theorem 3 in [5] and adding the idea in
[6] would yield Fσ(T ) = O(T log T ).
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Let U = T 1/4 and V = (T 1/2−U)/3. By (3.29) and Schwarz’s inequality
we have

(4.1)
2T∫

T

Eσ(t)2 dt

= I11 − 2I12 + I22 − 4πζ(2σ − 1)I1 + O(T 1/4I
1/2
11 + T 1/2I

1/2
22 + T ),

where

Ijk =
2T∫

T

Σj,σ(t)Σk,σ(t) dt and I1 =
2T∫

T

Σ1,σ(t) dt.

Let N = 0 or N = T/A, where A is a large constant. Denote by I11(N) the
integral which arises on replacing Σ1,σ(t) in I11 by its subsum with n > N .
Clearly we have I11(0) = I11.

Consider I11(N) and recall (3.22). Square out and integrate term-by-
term. The non-diagonal terms give us

(4.2) �
∣∣∣ ∑

N<m≤T
N<n≤T

m6=n

aman

2T∫
T

k(t)eiϕ(t) dt
∣∣∣

(see (3.23)), where

an = w1(n)(−1)nnσ−1σ1−2σ(n),
k(t) = km(t)kn(t),

kn(t) = t1/2−σ

(
arsinh

√
πn

2t

)−1(
t

2πn
+

1
4

)−1/4

and

ϕ(t) = f(t, m)− f(t, n).

(The sum with f(t,m) + f(t, n) is easily estimated by using Lemma 2 of
Heath-Brown [1].) The integral in (4.2) is by partial integration

(4.3)
[
− i

k(t)
ϕ′(t)

eiϕ(t)

]2T

T

+ i
2T∫

T

k(t)
ϕ′(t)

(
k′(t)
k(t)

− ϕ′′(t)
ϕ′(t)

)
eiϕ(t) dt.

We have f ′(t,m) = 2 arsinh
√

πm/(2t) (see (3.3)), km(t) � t3/4−σm−1/4,
and for any fixed m, minn( 6=m) |ϕ′(t)| � (mt)−1/2. Hence the Montgomery–
Vaughan inequality (see [7]) gives us∑

m6=n

aman
k(t)
ϕ′(t)

eiϕ(t) �
∑

N<n≤T

a2
nkn(t)2(nt)1/2 � T
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for t = T and t = 2T (see also Corollary of Preissmann [10]). Hence and by
(4.3) we see that the expression in (4.2) is

(4.4) � T +
2T∫

T

∣∣∣∣ ∑
m6=n

aman
k(t)
ϕ′(t)

(
k′(t)
k(t)

− ϕ′′(t)
ϕ′(t)

)
eiϕ(t)

∣∣∣∣ dt.

Since f ′′(t, m)=− t−1 tanh(f ′(t,m)/2), (tanhx)′=(coshx)−2 and (tanhx)′′

� 1, it follows that

ϕ′′(t) = − 1
2t

ϕ′(t)
(

cosh
(

1
2
f ′(t, m)

))−2

+ O

(
ϕ′(t)2

t

)
.

The O-term here contributes trivially � T . Therefore ϕ′′(t)/ϕ′(t) may
be replaced by a function g(t) such that g(t) = O(1/t) and g(t) depends
on only one of the variables m and n. A simple calculation shows that
k′(t)/k(t) is a sum of functions sharing these properties. Now, after using
the Montgomery–Vaughan inequality, we conclude that the expression in
(4.4) is O(T ).

Following Heath-Brown’s [1] argument and using (3.23), we see that the
diagonal terms of I11(N) yield

2(2π)2σ−3/2

5− 4σ

∑
n>N

σ1−2σ(n)2n2σ−5/2((2T )5/2−2σ − T 5/2−2σ) + O(T ).

For N = T/A this is O(T ) and for N = 0 we may determine the value of
the series by Ramanujan’s identity (see formula (1.3.3) in [12]). Altogether
we have now

(4.5) I11 = c0((2T )5/2−2σ − T 5/2−2σ) + O(T ),

where c0 is given in Section 1, and

(4.6) I11(T/A) � T.

Consider I22. By (3.25) we have

Σ2,σ(t) � T 1/2−σ

∣∣∣∣∑
n

w2(n, t)σ1−2σ(n)
(

log
t

2πn

)−1

nσ−1+it

∣∣∣∣.
Let us remove w2(n, t)(log(t/(2πn)))−1 by partial summation. By (3.26)
and (3.17) we have w2(x, t) = 0 if x ≥ B(V, t). If x < B(V, t), then
log(t/(2πx)) � 1, by (3.17). Noting also that B(V, t) ≤ T and w2(x, t) � 1
and using (3.27) we obtain

Σ2,σ(t) � T 1/2−σ
T∫

1

1
x log2(2T/x)

∣∣∣∑
n≤x

σ1−2σ(n)nσ−1+it
∣∣∣ dx.

Hence, using Schwarz’s inequality and changing the order of the integrations,
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we obtain

I22 � T 1−2σ
T∫

1

1
x

2T∫
T

∣∣∣∑
n≤x

σ1−2σ(n)nσ−1+it
∣∣∣2 dt dx.

Here we use the mean value theorem for Dirichlet polynomials (see Theo-
rem 5.2 in [2]) to obtain

(4.7) I22 � T.

To estimate I12 we follow closely the argument in [6] and make use
of (4.6) and (4.7). Here it is important that A is large. We obtain

(4.8) I12 � T.

An integration term-by-term gives easily

I1 � T 5/4−σ.

Combining this with (4.1), (4.5), (4.7) and (4.8) yields

2T∫
T

Eσ(t)2 dt = c0((2T )5/2−2σ − T 5/2−2σ) + O(T ).

Our theorem follows from this immediately.

Appendix. Here we prove that c3 = 0 for 1/2 < σ < 1. It is enough to
show that

∞∫
0

(
1
π

ch(πt)|Γ (1− σ + it)|2 − t1−2σ

)
dt = 0.

Define

H(w) =
∞∫

0

(
|Γ (1− σ + it)|2

Γ (1/2 + w + it)Γ (1/2 + w − it)
− e−1/tt1−2σ−2w

)
dt,

and let K be any compact subset of the half-plane Re(w) > 1/2 − σ. For
any w ∈ K and any t ≥ maxz∈K |Im(z)| + 1 we can by Stirling’s formula
show that

|Γ (1− σ + it)|2

Γ (1/2 + w + it)Γ (1/2 + w − it)
= t1−2σ−2w(1 + O(t−1)).

It follows that the integral H(w) is uniformly convergent in K. Hence H(w)
is holomorphic in Re(w) > 1/2− σ.
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Now, let w be real, satisfying w > 3/2− σ. Then
∞∫

0

∣∣∣∣ Γ (1− σ + it)
Γ (1/2 + w + it)

∣∣∣∣2 dt =
1
2i

i∞∫
−i∞

∣∣∣∣ Γ (1− σ + z)
Γ (1/2 + w + z)

∣∣∣∣2 dz

=
πΓ (2− 2σ)Γ (2w + 2σ − 2)

Γ (w + σ − 1/2)2Γ (2w)
,

where the last equality follows from (7.8.4) of Titchmarsh [11]. Titchmarsh
stated (7.8.4) under the conditions −α < k, −β < k, γ > k and δ > k, but
it seems that the further conditions β > α and δ > γ + 1 (or, instead, the
conditions β > α + 1 and δ > γ) are necessary, because (7.8.4) is verified by
using Theorem 42 in [11]. Therefore, in our case we assume w > 3/2 − σ.
We now obtain

H(w) =
πΓ (2− 2σ)Γ (2w + 2σ − 2)

Γ (w + σ − 1/2)2Γ (2w)
− Γ (2σ + 2w − 2)

for w > 3/2− σ, and by analytic continuation we have H(0) = −Γ (2σ− 2).
Our claim follows from this fact and the formulas

∞∫
0

t1−2σ(e−1/t − 1) dt = Γ (2σ − 2)

and |Γ (1/2 + it)|2 = π/ch(πt).
N o t e. This article was completed already in 1991, and was submitted to J. Number

Theory in early 1992, but was withdrawn in early 1994, because J. Number Theory finally
replied “We have no record of your paper”. Meanwhile a subsequent paper The mean
square of the Riemann zeta-function in the critical strip III was published in Acta Arith.
64 (1993), 357–382. In the references of that paper, the publication data of the present
paper and of [13] are to be interchanged.
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