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Nonlinear orthogonal projection

by EwA DUDEK and KONSTANTY HoOLLY (Krakéw)

Abstract. We discuss some properties of an orthogonal projection onto a subset of a
Euclidean space. The special stress is laid on projection’s regularity and characterization
of the interior of its domain.

0. Introduction. Let M be a non-empty subset of a metric space Z.
We define a relation P C Z x M, which we call the orthogonal projection
onto M. Its domain is

domP := {z € Z : there exists a unique point 2z’ € M
such that d(z,2") = o(z, M)},

where d denotes the metric of Z and o(z, M) := inf,¢cps d(z,x). Obviously,
M C domP. The orthogonal projection of z € dom P is defined to be the
unique point (2’ =) P(z) € M which realizes the distance of z to M. If M
is a closed linear subspace of a Hilbert space Z, then P is the well-known
linear orthogonal projection: Z =domP — M.

The need of considering orthogonal projections onto non-linear sets has
been noticed since a long time. For example, if Z = R"™ and M is a smooth
(or analytic) submanifold, then the composition f o Plint domp iS the most
natural smooth (analytic) extension of a given smooth (analytic) function
f M — R on an open neighbourhood of M (because in this case M C
int dom P (see the generalization (3.8) of the classical result of Federer [5]
and (4.1))). Of course, there are other methods of extending such functions,
e.g. in the non-analytic case by local straightening of M or by applying
Whitney’s theory. However, in numerous problems the extension f o P is
most useful, since it is simple and effective. The set int dom P is in some
sense a star-shaped neighbourhood of M (see (1.5), (3.13)), so the retrac-
tion Plint dom is helpful in studies on differentiable homotopy, e.g. for a
given solenoidal vector field v : G — R™ vanishing on the boundary of a
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domain G C R"™ one can construct—with the aid of P—a sequence (¢,)52,
of solenoidal vector fields on G equal to zero in a neighbourhood of M = G
such that ¢, — v together with derivatives as v — oc.

The notion of the nonlinear orthogonal projection enables us to formulate
a new, curvilinear version of the theorem on the existence of the Fréchet
differential (see (4'.13)).

Furthermore, the differential properties of the distance function z +—
|z — P(2)| = o(z, M) are useful (see e.g. the lemma of Hopf in Lions [13]
(Part 1, Lemma 7.2) or Hopf [8] or applications of p in Serrin [16] and
Gilbarg—Trudinger [6]).

Literature we know contains only studies on restrictions of orthogonal
projections onto submanifolds (of a Riemannian manifold Z) to small neigh-
bourhoods of M (e.g. the tubular neighbourhood theorem in Hirsch [7]). In
this paper we present various properties of the mapping P without assuming
that M is a submanifold. These are topological properties; for example, we
formulate a criterion for z (€ domP) to be an interior point of dom P (see
(2.8)). In so general a situation one cannot expect the orthogonal projection
to be differentiable; G. Jasiniski [9] proved that the class M of values of a
Cl-retraction of a domain U € topR" is a differentiable submanifold (of
R™) whenever M € cotopU (i.e. M is closed in U). In the present work we
wish to investigate the orthogonal projection globally; in particular, almost
all theorems we formulate refer also to arguments z (€ dom P) which may
lie at a large distance from M.

The theorems presented here can, for the most part, be modified for the
case of a Riemannian manifold Z. Nevertheless, we restrict our attention to
the basic situation Z = R".

1. Projection onto an arbitrary subset of a Euclidean space. Let
Z denote a Euclidean space, i.e. a real finite-dimensional Hilbert space (e.g.
Z = R"™) with a scalar product (- | -), which defines the norm |- |. From now
on (2 stands for the interior of the domain of the projection P.

(1.1) ExaMPLE. If M is the unit sphere of Z, then
domP =Z\{0} and VzedomP: P(z)==z/|z|.
Generally, if M is the unit sphere of a linear subspace Y, then
2 =domP =Z\ker Py = Z\Y+ and P(z) = Py(2)/|Py(2)|
for any z € dom P, where Py is the usual projection Z — Y.

In general, neither has dom’P to be open, nor P to be a continuous
mapping, even if M is an analytic submanifold:



Nonlinear orthogonal projection 3

(1.2) ExamMPLE. If Z = R? and M = {(z,y) : |y| = 1} \ {(0,1)}, then
(0,0) € (domP) \ £2 and P is not continuous at (0,0).

(1.3) THEOREM. The restriction P|g is continuous.

Theorems (lemmas, examplesetc.) from Section k are proved or discussed
in Section k', k=1,...,6.

(1.4)

(1.5) THEOREM. If a € Z, o’ € M and |a — a'| = o(a, M), then:
(i) Ja,a’] C domP and Vz € Ja,a’] : P(z) = d/,

(ii) [a, P(a)[ C 2 for a € £2.

In general, P(a) ¢ 2, for example when Z = R?, M = {(z,y) : y = |z|}
and a = (0, —1).

COROLLARY. M N £2 is closed in §2.

(1.6) COROLLARY. Suppose that f : O — M is a continuous mapping of
an open set O C Z. Furthermore, assume thatVz € O : |z—f(2)| = o(z, M).
Then f C P; in particular, O C 2.

Finally, let us mention that the projection is invariant with respect to
isometries:

(1.7) REMARK. Let I : Z — Z be an isometry. Then I o P o I~ is the
orthogonal projection onto I(M).

2. Closedness of a set near a point. We say that a set M is closed
near z € Z ift
(2.1) 3Ir > o(2,M): MnNB(zr) € cotop Z,
where B(z,r) :=={x € Z : |x — z| <r} and B(z,r) = B(z,r) (Fig. 1).

Fig. 1
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(2.2) FACT. If M is closed near z, then there exists at least one element
of M which realizes the distance o(z, M).

(2.3) FACT. The set D :={z € Z : M is closed near z} is open in Z.

It is obvious that D = Z whenever M € cotop Z. Then dom P is dense
in Z. This results from the following general

(2.4) REMARK. D C domP.
And here is a kind of completing of Theorem (1.3):

(2.5) REMARK. The restriction P|pndomp 1S continuous. In particular,
P is continuous whenever M 1is closed.

(2.6) PROPOSITION. If M is locally compact, then 2 C D.

In general, D NdomP ¢ 2, even if M is an analytic submanifold. For
Z =R? and M = {(z,y) : y = 2} the point (0,1/2) is in (D NdomP) \ 2
(see (6.1)).

Now we formulate a counterpart of Theorem (1.5):

(2.7) THEOREM. Suppose that M 1is locally compact, a € Z, a’ € M and
la —a'| = o(a, M). Thenla,a’] C D.

The next theorem is a criterion for being an interior point of the projec-
tion’s domain.

(2.8) THEOREM. Let M be closed near a € domP. Fixt € ]0,1]. Then
the following conditions are equivalent:

(i) a € $2;
(ii) P(a) + t(a — P(a)) € £2 and the mapping

wi—w— (1 —1t)P(w)
is an injection on a neighbourhood of P(a) + t(a — P(a)).

3. Projection onto a submanifold. We start with recalling a well-
known property of the tangent space to a submanifold:

(3.1) REMARK. If M is a C'-submanifold of Z and a € Z and o’ € M
satisfy |a — d'| = o(a, M), then

a—ad L TyM,

where T, M denotes the tangent space to M at o'. In particular, Ya €
domP : a € P(a) + (Tp@yM)™ .

For z € M and r > 0 we define the disc of radius r with center at z
orthogonal to M by

K.(r):=z+{Ce(T.M)*:|¢| <r}.
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(3.2) THEOREM. Let M be a C*-submanifold such that

(3.3)  the mapping: M > z — T.M € & satisfies locally the Lipschitz
condition in the Hausdorff metric (in the set & of all non-zero linear
subspaces of 7).

Then for any compact subset F' C M there is r > 0 such that:
(i) Vy,z€ F: {y#z= K,(r)NK,(r) = 0};
(i) Vz € F': K.(r) CdomP, Plk, ) = 2.

The Hausdorff distance of two non-zero linear subspaces A, B is, by
definition, the number
(3.4) d(A,B) :=d(ANS,BNS),

where S := {z € Z : |z| = 1} and d(A N S,BNS) is the usual Hausdorff
distance of the compact sets ANS, BNS. Note that the metric (3.4) defines
the usual topology on the Grassmann manifold Gy (Z) of all k-dimensional
linear subspaces of Z; moreover,

(35) Gu(Z)2 A At e Gy x(Z2) 1 <k < N-1,N =dimZ) is an
isometry in this metric.

One can also prove that
(3.6)  all C%-submanifolds satisfy (3.3).
Submanifolds of class C'* generally do not:

(3.7) EXaMPLE.  The curve M := {(t, 2|t|3/?) : t € R} is a C'-sub-
manifold of Z = R2. One can check that

Vir>03ze M\ {0}: K.(r)NnKo(r)#0.

In particular, (3.3) is not satisfied.
The following theorem is important in the local analysis of a nonlinear
orthogonal projection:

(3.8) THEOREM. Let M be a C*'-submanifold satisfying (3.3). Then for
a € M there exists an open O C Z such that a € O C domP and

VzeOVeeONM: {z—x2 L T,M=P(z)=uz}.
In particular, M C 2.

This is a generalization of Federer’s theorem from [5] which states that
M C 2 whenever M is a hypersurface of class C?.

(3.9) COROLLARY. If M is a Ct-submanifold satisfying (3.3), then
Va € 2 3H € top(TpyM)" : 0€ H and Plorn = Pla).
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(3.10) COROLLARY. Suppose that M is a C-submanifold satisfying (3.3)
and closed near a € domP. Let ¢ : O — M be a continuous map on a
neighbourhood O of a such that

¢(a) =P(a) and YVzeO: z—¢(z) LTy )M.
Then a € 2 and ¢ =P in a neighbourhood of a.

This result is a differential counterpart of Corollary (1.6). And here is a
differential counterpart of the criterion (2.8):

(3.11) THEOREM. Let M be a C?-submanifold. Fiz zy € domP and an
inverse chart f C R™ x M of M which takes on the value P(zg). Consider
of | 2F

the matrix
312) 40 = [(FEa0) | 2L o)) + (Pl = 20 | 52dten) |

where xog = f~Y(P(20)). Then the following conditions are equivalent:
(1) zo € §2;
(ii) M is closed near zy and det As(zy) # 0.

The additional assumption “M € C?” lets us strengthen the conclusion
of Theorem (1.5):

(3.13) THEOREM. Let M be a C?-submanifold. Then

(a) |la,a’] C 2 for all (a,a’) € Z x M such that |a — d’'| = o(a, M);
(b) for every (a,a’) € (domP) x M the following conditions are equiva-
lent:

(i) P(a) = a';
(ii) Ja,d'| C 2 and a —a’ L Ty M.

(3.14) COROLLARY. If M is a C?-submanifold, then 2 is dense in
domP. If M is also closed in Z, then §2 = Z (compare with (2.4)).

4. Differentiability of an orthogonal projection

(4.1) THEOREM. Let M be a C*-submanifold of a Euclidean space Z,
where k € {2,3,...,00,w} and C¥ denotes R-analyticity. Then P|q is of
class C*~1 (as usual co — 1 := 00, w — 1 := w) and

(i) for all z € M, the Fréchet differential d,P is the linear orthogonal
projection onto T, M;
(ii) Vze (2: dzP(Z) = Tp(Z)M, kerd,P = (T,P(Z)M)J-‘

Regularity of the projection P is higher along M itself; for example, for
a C?-submanifold the following improvement of regularity may be achieved:
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(4.2) THEOREM. If M is a C*-submanifold, then

(i) for all z € M, the mapping P is twice differentiable at z;

(ii) the mapping M > z +— d*P € So(Z, Z) is continuous. (The symbol
So(Z,Z) stands for the Banach space of all symmetric bilinear operators
7?2 - 7 )

Despite the fact that P|p; = idas, the restriction to M of the second
derivative of P may have a non-trivial structure. For example, if M is the
unit sphere in Z, then

(dZP)(n,€) =3(n | 2)(€ | 2)z = (| &)z — (n | 2)6 = (€] 2)n
for z € M and n,§ € Z.
Theorem (4.2) cannot be generalized to any neighbourhood of M:

(4.3) EXAMPLE. The curve M := {(¢,0) : t <0} U {(t,3t*) : t > 0} is a
C?-submanifold of Z = R%. The projection P is not twice differentiable in
any neighbourhood of (0,0).

(4.4) PROPOSITION. Let
o(x) :=o(x,M) (=|x—"P(z)| for z € domP).
If M is of class C?, then
x —P(x)
Veo=7———=— foranyxec 2\ M.
|z —P(x)]
This fact and Theorem (4.1) immediately give the following

(4.5) COROLLARY. The function o is of class C* in 2\ M for M being
a submanifold of class C* (k € {2,3,...,00,w}).

One of the first formulations of differential properties of o was presented
in Serrin [16] (Chapter I, Lemma 3.1) in the following form:

If a hypersurface M (i.e. a submanifold in Z of codimension 1) is of
class C3, then there is an open neighbourhood O of M such that olo\m is
of class C2.

Later on Gilbarg and Trudinger proved the following local version of
Corollary (4.5) in the Appendix to [6]:

The restriction olo\n is of class C* for some neighbourhood O of a
C*-hypersurface M for k =2,3,...,00,w.

Obviously, the continuous function g is not differentiable at any point
of M. However, in the case of M being a hypersurface one can smooth g by
one-sided change of its sign:
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(4.6) THEOREM (see Krantz—Parks [12]). Assume that the boundary M
of some set G € top Z is a compact C*-submanifold (k € {1,2,...,00,w}).
Suppose also that M C 2 (this assumption is relevant only for k = 1).
Consider the signed distance function to M:

_Jol@) ifred,
oz) = {gg(x) if ve€Z\G.

Then 6 is of class C* in some neighbourhood of M.

5. When is the whole space the domain of an orthogonal pro-
jection? If dom P = Z then M is called a Chebyshev set.

(5.1) THEOREM. FEvery non-empty closed and conver subset of Z is a
Chebyshev set.

The above theorem also holds for an infinite-dimensional Hilbert space
(see Rudin [15], Theorem 4.10). Moreover, in finite-dimensional spaces also
the converse theorem holds:

(5.2) THEOREM (see Bunt [2], Motzkin [14]). If dom P = Z, then M is
non-empty, closed and convez.

A bounded Chebyshev set cannot be a submanifold of Z:

(5.3) THEOREM. Assume that M is a C?-submanifold of a Euclidean
space Z and domP = Z. Then M is an affine subspace of Z.

Under some additional assumptions the implication (5.2) is valid also
for infinite-dimensional Hilbert spaces or even Banach spaces (see Efimov—
Stechkin [4], Klee [10], Asplund [1]). Klee in [11] conjectures that in some
(possibly non-separable) Hilbert spaces there exist non-convex Chebyshev
sets. The question of existence of “Klee caverns” is also considered in As-
plund [1].

6. Domains of projections onto graphs of some elementary func-
tions. Now we illustrate the above theory with examples of orthogonal pro-
jections onto graphs of some numerical functions. In this section Z = R2.

(6.1) EXAMPLE. The set M := {(x,2?) : € R} is a closed analytic
submanifold of Z. The domain of the orthogonal projection onto M is
domP =R2\ {(0,t) : t > 1/2} (see (3.14) and Fig. 2).

(6.2) EXAMPLE. If we take M := {(z,22) : z > 0} (clearly, M is not
a submanifold but it is closed), then domP = R? \ {(z,y) : < 0, y =
3(—2)?/3 + 1} (see (2.4) and Fig. 3).
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M
R2\dom?P
1
2
Fig. 2
y
M
R?\domP
1
P2
Fig. 3

(6.3) EXAMPLE. Removing the point (0,0) from the set M of the pre-
ceding example we obtain a non-closed submanifold M’ with

dom P — R2\<{<0, %)}U {(x,y) <0,y < g(—x)2/3 + %})

(see (3.14) and Fig. 4).

(6.4) EXAMPLE. Let M be the graph of R 5 x +— cosz. Then domP =
R2\ Upez{(km,y) : (=1)**1y > 0} (see (3.14) and Fig. 5).

(6.5) EXAMPLE. We did not manage to find the exact shape of the
domain of the orthogonal projection onto M := {(z,e”) : x € R} (naturally,
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o=

Fig. 4

M \4’/

Fig. 5

M is a closed analytic submanifold). The relation

R?\ dom P
CH{(z,y) 1y > 2V2, —InV2e —uy(y/2V2) < 2 < —Inv2e —ui(y/2V2)},

where

ui(z) :=z2(z — V22 —1)+In(z+ V22 - 1),
ug(z) :==z(z+V22—-1)—In(z+v22—-1) forall z>1,

is all we know about dom P (see (3.14) and (5.3); Fig. 6).
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Y= —%(m—l—l—ﬁ—ln V2e)+24/2
\\
~N
~N

—1—In+/2e

Fig. 6

1’. Proofs

(1".1) LEMMA. If a € 2 and V is a neighbourhood of P(a) in M, then
ola, M\ V) > o(a,M).

Proof. If the inequality were inverse, then g(a, M\V') = o(a, M). There
is a sequence ()%, € (M\V)N for which |a—x,| — o(a, M\ V) = o(a, M)
as v — o0o. Since |z, | < |z, —a|+|a| (Vv), there are also an infinite set A C N
and b € Z such that z, — bas A 3 v — oo. Clearly, |a —b| = o(a, M),
b+ P(a), b M and b # a. Choosing z € ]a,b] Ndom P (# ) we obtain

[b— 2|
- ]z—a\(z_a)

and |a —b| <|a—Pa)| <|la—z|+ |z =P()| < |a—z|+ |z —b =|b—al.

b— =z

This means that for u := z —a and v := P(2) — z we have |u| + |[v| = |u+ v
and |v| = |z — b|, i.e. v = %u Therefore, b — z = %u = P(z) — z, contrary
tobg M. m

Proof of Theorem (1.3). Suppose that P is not continuous at a € £2.
There is a neighbourhood of P(a) on M and a sequence (a,) € (dom P)N
with a, — a as v — oo and P(a,) ¢ V for all v. Then

YveN: gla, M\V)<l|a—"P(a,)| <l|a—a,|+|a, —P(a,)|
=la —a,|+ o(a,, M) .
As a consequence, o(a, M\V') < o(a, M), which contradicts Lemma (1'.1). m
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(1".2) LEMMA. For t € ]0,1] define f; : domP — Z by fi(z) := P(z) +
t(z —P(2)). Then fi is an injection.

Proof. The case t =1 is easy. For t€]0, 1] suppose a,be dom P satisfy
fi(a) = fi(b). By Remark (1.7) we can assume fi(a) = fi(b) = 0 without
loss of generality. So, for s := —t/(1 —t) we have

a' :="P(a)=sa, b :=P(b)=sb.

Assume that |a| > |b] and |a] > 0. If a, b were linearly dependent,
then we would get b € [0,a] (if not, there is £ € |—1,0[ for which b = a;
this yields b = s€a € ]0,00[ - a and g(a, M) < |a = V| = |1 — s&| - |a|] <
(I+]s]-€])]a] < (1—9)|a| = |a—a'| = o(a, M)). Therefore b € [0,a] C [d’, al.
By Theorem (1.5)(i), ¥ = P(b) = a’. Thus a = b.

So it suffices to establish linear dependence of a and b. Suppose not, i.e.
(a]b) <|al-|b] <lal® It follows that

a— b>

a|a— b)

and for

. (a|a—b)
X .:S<(I+ W(b—a)
we get [r—a’|? > |z —b'|2. We have ((1—t)(a—z) | a—b) = 0,80 a—x L b—a.
Moreover, a—x L x—a’ and a—z L x—V', because x —a’,x—b" € R-(b—a).
By Pythagoras’ Theorem,

ola, M?* <la—V)P>=la—x*+|z -V <|a—2z]*+ |z —d?
= la —d'[* = o(a, M)?.
This contradiction completes the proof. m

Proof of Theorem (1.5). The indirect proof of the fact that |z—a’| <
|z — x| for all z € M \ {a’} uses the method of proof of Lemma (1’.1).

To show (ii), fix a € £2 and a point ([a, P(a)[ 3) 2o := P(a)+t(a—P(a))
(for some t € ]0,1]). The Brouwer theorem on the invariance of domain
applied to the continuous injection f; : 2 2 2z — P(2) + t(z — P(z)) €
[2,P(z)] C dom P completes the proof. m

Proof of Corollary (1.6). Fix a € O and suppose that [b — a| =
o(a, M) for some b € M\ {f(a)}. It is clear that a # b. In view of The-
orem (1.5), Ja,b] € domP and P(z) = b for all z € ]a,b]. So, there
is a sequence (2,) € (Ja,b] N (domP) N O)N convergent to a. Of course,
b= P(z,) = f(z,) for all v. Since f is continuous, we obtain the equality
b = f(a) contradicting the choice of b. m
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2'. Proofs
Proof of Fact (2.2) is easy. m

Proof of Fact (2.3). Fix a € D. Then there is r > p(a, M) = Ur
(for some ¥ € [0,1]) such that M N B(a,r) € cotopZ. The inclusion
B(a,(1 — 9)r/2) C D holds, because for a € B(a,(1 — ¢)r/2) we have
o(a,M) < (1+9)r/2, B(a,(14+9)r/2) C B(a,r) and B(a, (1+9)r/2)NM €
cotopZ. =

Proof of Remark (2.4) rests on the simple
(2.1) REMARK. If 0 # O C D is open, then O Ndom P is dense in O.

Proof. Consider G € (topO) \ {0} and a € G (C D). Thereis o’ € M
for which |a — a'| = g(a, M). Thus Ja,a’] C domP. Clearly, G N]a,a’] # 0,
and consequently GNONdom?P # (). m

(2".2) LEMMA. If a € DNdomP and V is a neighbourhood of P(a)
in M, then o(a, M \' V') > o(a, M).

Proof. For an indirect proof suppose that o(a, M\V') = o(a, M'). There
is a sequence (z,) € (M \ V)N for which |a — z,| — o(a, M) as v — oo.
It is bounded, so there is an infinite set A C N and b € Z \ {P(a)} such
that x, — b as A > v — oo. Obviously, |a — b| = o(a, M). There is a radius
r > o(a, M) such that M N B(a,r) € cotop Z, so we have x, € B(a,r) N M
(for almost all v € N). Hence, b € B(a,7) N M C M and b # P(a), which
contradicts |a — b| = o(a, M). m

Proof of Remark (2.5) is analogous to the one of Theorem (1.3). m

Proof of Proposition (2.6). For a given point a € {2 there is a
closed neighbourhood F' of P(a) in M. By Lemma (1".1) there exists  with
ola, M) <r < ola, M\ F). Clearly, M N B(a,r) = FN B(a,r). =

Proof of Theorem (2.7). Suppose a # a’. Without loss of generality
we can assume a = 0. According to Theorem (1.5), ]0,a’] C domP and
P(z) =d for all z €]0,ad']. Fix z € ]0,a’] and set d := o(z, M) = |z —d'| <
la’| =: 7. There is 0 < § < \/r(r + d) for which M N B(a’,d) € cotop Z. We

have
o(z, M) < \/d2+52T;d =:r(z) (<r).

To show that B(z,7(z)) N M € cotop Z (which will complete the proof)
it suffices to prove that B(z,r(z)) C B(0,r) U B(a’,d). Indeed, let z €

B(z,r(z)) with |z| > r. Then (z | z) > 0 and consequently (z | a’) > 0. If

p_ (@ld)
T = PIE a
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denotes the orthogonal projection of z onto Ra’, then
, |22 + 72 — |z — d/|?
/] = .
2r

Further, |z’ — z| = ||2’| — (r — d)|, since 2/, z € Rya’. Hence

r(2)? >z —z2* = |z — 2|+ |2’ — 2)?

r—d
= (j* = &) + 2" = 2" = — |z — '] + &*,
which means that indeed § > |z — d/|. »

Proof of Theorem (2.8). Define

fe:domP 3z +— P(z) +t(z — ) €

P(z
It is an injection with values in dom P (by Lemma (1’.2) and Theorem (1.5)).
Moreover, P o f; =P, fi(2) C 2 and f; '(w) = 1(w — (1 = )P(w)).

(i)=(ii). In view of the Brouwer theorem on invariance of domain, f;({2)
is a neighbourhood of f;(a) = P(a)+t(a—P(a)). Clearly, tf, ' is an injection
on it.

(ii)=(i). According to the assumptions a € DNdom P. There is an open
neighbourhood U C {2 of @ := fi(a) such that the mapping @Q : U > w
(w—(1—t)P(w)) € Z is a continuous injection (see Theorem (1.3)). By the
Brouwer theorem, Q(U) € top Z and Q : U — Q(U) is a homeomorphism.
Also, Q7'(2) = fi(2) and (PoQ ") (2) = P(2) forany 2 € f(U) (C Q(U)).
The map fi|p is continuous by Remark (2.5), hence there is O € top Z for
which (fi|p)~*(U) = O N DNdomP. By (23), Dy := ONDNQU)
is an open neighbourhood of a. It remains to show that Dy C domP. For
z € Dy, Remark (2'.1) enables us to choose a sequence (z,) € (DyNdom P)N
convergent to z. Then

|z —(Po Q_l)(z)’ B |z — (Po Q_l)(ZV)’ = |2, — P(2)] o o(z, M) .

Consequently, Vz € Dy : |2 — (PoQ71)(2)| = o(z, M). From Corollary (1.6)
it follows directly that Dy C dom P, which completes the proof. m

3'. Proofs

Proof of Remark (3.1) is based on the necessary condition for a
local minimum of a differentiable function. m

(3.1) LEMMA. If M C Z is a submanifold and F C M a compact set,
then

sup{g(ﬁ,ﬂ,M) cze€Mye F,0< |z—y <5} —0 asd—0.
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Proof. It is sufficient to show that this condition holds locally on M,
i.e. Va € M 40 € top M : O is a neighbourhood of a and

Sllp{g(ﬁ,TyM) cy,2€0, 0< |z —y| < 5} —0 asd—0.

Fix a € M and an inverse chart f : H - M for which f(ap) = a
(where H is a linear subspace of a Euclidean space X, with dim X = dim Z;
- denotes a partial mapping). We can assume, diminishing the domain if
necessary, that f—! satisfies the Lipschitz condition on its domain. For a
fixed convex compact neighbourhood V' C dom f of ag, the set O := f(V)
will prove to be the suitable neighbourhood of a. The mapping

a:]0,00[ 30 = sup{|f'(u) = f'(v)[ s w0 €V, Ju—v| <6}

is increasing and lims_,g a(0) =0. Define ¥ := infj, ey min{|d f(§)| : |§] = 1}
(= |dn, f(&)| > 0 for some h; € V and & € {z : |z| = 1}). Let L be the
Lipschitz constant for f~!. Fix € € ]0,1] and r > 0 for which a(r) < &9/2.
For 6 €]0,7/L[ and z,2y € f(V) with 0 < |z — 29| < 6, set ho := f~1(20),
h:= f~1(z). We have |h — ho| < r and, by the Lagrange theorem,

7h) — (o) — diy F( — ho)] < )| — hol < | — hol ..

In particular, for € = 1 we obtain

9 | f(h) — f(ho) b h (R — F(ho)
27 |h—ho|0‘dh°f<|h—h3|>‘”‘ ol

and consequently

[h—=ho| _2
[f(h) = f(ho)| = 9
Going back to the general case of € > 0 and noticing that
z-20 _ |h — ho| p f< h — hg )
2=zl — 1F() = Fho)l " \[F(B) = F (o))
n |h — hol <f(h)_f(h0)—dh f< h —ho >>
|f(h) = f(ho)| |h — hol *T\[f(h) = f(ho)|

(the first component is in T, M) we come to the desired conclusion:
ol =22 1. M
|z — 20|
|h — hol f(h) — f(ho) h —hg
S - dhof Tr/1 N  r/771 NI
|f(h) = f(ho)| \ [~ — hol £ (h) = f(ho)]

<2.ev_
=37 2—5.-
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Reasoning by reductio ad absurdum it is easy to derive from Lemma (3'.1)
the following

(3.2) LEMMA. If M C Z is a submanifold and F C M is compact, then

Ir>0vVze F:MN(K.(r)\{z}) =0.

(3.3) LEMMA. Let S := {z € Z : |z| = 1}. Fiz subspaces X, Y in Z.
Denote by d(X,Y) their distance in the Hausdorff metric (see (3.4)). For
0+ A BC Z put o(A,B) :=inf{la —b| : a € A,b € B}. Consider R,n >0
for which RA(X,Y) < n and a point a € Bgr N X, where B :== {z € Z :
|z| < R}. Assume that o([— Ry, Ry|, a+[—Rx, Rx]) > n whenevery € SNY,
xeSNX and |z —y| <d(X,Y). Then (BRNY)N(a+ (BgNX))=0.

Proof. Let Il : Z — Y stand for the linear orthogonal projection.
There is y € SNY such that I1(a) € [-Ry, Ry], and = € S N X for which
|z —y|=0(y,SNX) (< d(X,Y)). Hence |a — II(a)| >n. Therefore (Br N
Y)N(a+ (BrNX)) =0, because if a +tx € Y N (a+ (BgN X)) (for some
|t| <R and z € SN X) then IT(a + tz) = a + tz implies

n < |H(a) —a| < Rlz - I(z)] < RA(X,Y),
which contradicts our assumptions. m
Proof of Theorem (3.2). To prove (i) we only need to consider the
case dim M < dim Z. Let L > 0 be the Lipschitz constant for 7" on F. Fix

¥,¢ > 0 so that ¥ < ¢ and ¥ + ¢ < 1. From Lemma (3'.1) it follows that
there is 6 € |0,9/L] for which

z—y 1+ (c+9)?
—T,M ) : F 0 — Op < —n—~
SUP{Q<|Z_y|, y > y,z €F, 0<|z—y| < }_2(1—1—04—19)

If we show that K, (¢/L) N K,,(9/L) = () whenever 21,25 € F and 0 <

|z1 — 22| < 0, then r := §/2 will suit the assertion.
First, we put S :={z € Z : |z| = 1} and prove the auxiliary fact:

9 Y
(3'.4) Q<Z1 + E[—Cb Ci], 22 + Z[—Cg, Cg]) > c|z1 — 22| whenever 21, 25 €
F,0<|z1—2| <6, eSNTE (i=1,2) and |G — G| < d(TH,T3)
(of course, T+ := (T, M)%).

If (3'.4) were false we could find ¢;,ty € [—9/L,9/L] for which |z +t1¢1 —
29—1t2(a| < ¢|z1 — 22| and hence c|z1 — 23| > |(21—22)+ (t1 —t2) (2| —t1]C1 — (ol
The following inequalities hold:

U 9
|ti(<l - <Q)| < Ed(sziszJ;) = _d(TZ17T32) < 19|Zl - 22|

L
(see (3.5)). Putting s := (ta — t1)/|22 — 21| we obtain
M%—sﬁg <c+9 and |s|<c+I+1.
|21 — 2|
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Combining these two inequalities we get

)12

Z9 — X%
>1-2(c+0+ 1)Q<ﬁ,Tz2>

1—(c+9)? 5
— = ¥)=.
erorn _et?
This contradiction proves (3'.4).

Now, to show (i) fix 21,22 € F such that 0 < |z; — 23] < 6. We can
apply Lemma (3'.3) to X :=T:-, Y := T, R:=V/L, n:= c|z; — 22| and
a := zo — z1, for we have

(c+19)2>1+32+2s< 2=

2T A
|21 — 22|

>1-2(c+9+1)

d(TZl,TZQ) < L’Zl — 22’ = % : g < %,

and in view of (3'.4) all the assumptions of Lemma (3’.3) hold. Thus indeed
K., (0/L)NK.,(9/L) = 0.

To prove (i) consider a compact set F' C M for which F C inty F. Fix
20 € F and anumber 0 < r < g(z9, M \inty; F) satisfying (i). For z € K, (r)
and § := |z — 29| (< 7) we have zy € F := B(2,6) N M = B(z,8) N F. Since
E is compact, there is zq € E (C M) for which |z — z| = o(z, E) = o(z, M).
But |z — z1] < ¢ < r, thus, by Remark (3.1), z € K., (r) (NK,,(r)) and
consequently z; = zg. m

EXAMPLE 3.7 is easy to analyze. m

(3".5) LEMMA. Consider a submanifold M C Z and a continuous function
r: M —]0,00[ such that for all z € M, K.(r(z)) C domP and P|x_(r())
=z Then M C U,cp K. (r(2)) € top Z.

Proof. Fix zpe M, o€ K,,(r(20)) and ¥ €R such that |zg — xo| < ¥ <
r(20). For a fixed compact neighbourhood F' C M of zy we put V := FN{z €
M :r(z) > 9}. Compactness of 9V enables us to choose yg € IV such that
0(xo, V') = |zo—yo| (> |z0—20]). We claim that B(zo, s) C |, K=(r(2)),
where s := min{d/2,9 — |zo —zo|} and d := p(xo, V) — |20 — xo|. Indeed, fix
x € B(zg,s) and z € V for which |z —z| = go(z,V). Then z € M’ :=int) V,
for otherwise, i.e. if z € 9V, we would have |z — 29| < —0/2 + o(x¢,0V) <
|zg— 2| —0/2 < |z —z|, contrary to the choice of z. Hence, by Remark (3.1),
x—z LT,M" =T,M. Moreover, |z — z| < |z — xo| + |xo — 20| < ¥ — |20 —
xo| + |20 — 0| < 7(2), 80 x € K,(r(2)). =

(3'.6) THEOREM. Consider a C*-submanifold M C Z (k € {1,2,...,00})
satisfying condition (3.3). Then there exists a C*-function v : M — ]0, 00|
such that for all z € M, K.(r(z)) C domP and P|g_(r(z)) = 2. Moreover,
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UzeM K,(r(z)) € top Z and
Vz,ye M: (z#y= K.(r(z)) N K, (r(y)) =0).

Proof. There exists a family {F;}5°, of compact subsets of M such that
M =J;Z, F; and F; C intp Fipq (1 =1,2,...). Also there are C*-functions
it M — 10,1 (i =1,2,...) with A\j|p, = 1 and supp\; C intp Fi4q (i =
1,2,...). Put A\g = 0. By Theorem (3.2), for any i € {1,2,...} there is
r; > 0 such that for all z € Fiyy, K. (r;) C domP and Plg () = 2.
Clearly, we can assume that r > ro > ... For a fixed i € {1,2,...} define
hi : (intM Fi+1) \supp)\i,l — R by hl(z) = Ti)\i(z) + Ti+1(1 — )\Z(Z))
Obviously, this is a C*-function. If i # j and z € (dom h;) N (dom h;), then
hi(z) = h;(2), so r:=J;o; hi C M x R is a C*-function on M. Moreover,
for any z € dom h; we have 0 < r(z) < ry, sor: M — R satisfies the desired
condition. m

Proof of Theorem (3.8). Theorem (3'.6) ensures the existence of a
continuous function r : M — ]0,00[ such that for all x € M, K,(r(z)) C
domP and P|g, (rz)) = ¢. Fix ¥ € ]0,7(a)[. There is s > 0 for which
B(a,s)NM C {x € M :r(x) >V} If o := min{s,9/2}, then

0= |J K@= |J Kl

x€MNB(a,rg) zxeMNO

is an open neighbourhood of a in Z (see (3'.5)). For any z € O there ex-
ists z € O N M such that z € K,(rg), thus O C domP. The remaining
assertion results from the fact that any two distinct elements of the family
{K.(ro)}zeconm are disjoint. m

Proof of Corollary (3.9). Theorem (3.8) implies the existence of
V € top Z for which P(a) € V CdomP andVz eV Ve VNM:(z—z L
T,M = P(z) = z). For some A € ]0,1[ we have @ := P(a)+Aa—P(a)) € V.
The injection fy : domP > z — P(z) + A(z — P(z)) is continuous (see
(1.3) and (1.2)); moreover, fi(a) € V N fA(£2) € top Z. Hence, there exists
O € topT;(a)M such that 0 € O and a + A0 C V N f\(£2). Applying
Theorem (3.8) to a fixed u € O we obtain P(a + Au) = P(a). Since a+u =
1@+ M) € 2, it follows that P(a + u) = P(a), completing the proof. m

Proof of Corollary (3.10). Theorem (3.8) lets us choose a set
V € top Z for which P(a) e VCdomP andVze VVeeVNM:(z—x L
T.M = P(z) = z). Assume that P(a) # a and fix ¢t € ]0,1] such that
a :=P(a) +tla —P(a)) € V. Define ¢, : O 3 2z +— ¢(2) + t(z — ¢(2)) € Z
and G := ¢; *(V) N ¢~ 1(V); obviously, a € G. By the choice of V we have
Pogi(z) = ¢(z) for any z € G. In order to show injectivity of ¢;|g consider
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the map
Q:domP 3>v— %(v —(1=t)Pv)).

For any z € G we have Q(¢¢(2)) = 2, so ¢s|c¢ (and surely Q|s,(c)) is an
injection. Hence, by the Brouwer theorem, ¢.(G) is open. Therefore, a €
¢¢(G) C £2, which together with injectivity of Ql4,(¢) and Theorem (2.8)
means that a € (2.

To show that ¢ = P in some neighbourhood of a—and end the proof
in this way—it suffices to prove that f; = ¢, in this neighbourhood, where
fi :domP 2 2 — P(2) + t(z — P(2)). Indeed, for every z from the open
set Go := G N (fi]le) Hé:(Q)) we have Q o ¢4(2) = Q o fi(z), which, by
injectivity of @ on the set ¢:(G) (D ¢+(Go), ft(Go)), leads to the conclusion
that fi|q, = ¢tlc,, and consequently Plg, = ¢|c,. ®

(3.7) THEOREM. Let M C Z be a C*-submanifold, k € {2,...,00,w}.
Fiz zo € domP and consider an inverse chart f : R"™ s M for which
f(zo) = P(z0). Then the following conditions are equivalent:

(1) zg € §2;
(ii) M is closed near z (see (2.1)) and the matriz (3.12) is nonsingular.

Moreover, if one of these conditions is satisfied, then P is of class C*~1 in

a neighbourhood of zo and imd,, P = Tp(., )M, kerd., P = T;(zO)M.

Proof. (i)=(ii). According to Proposition (2.6), M is closed near zj.

Suppose, contrary to our claim, that det A;(z9) = 0. This enables us to
choose £ € R™ such that |{| = 1 and

| of | of s
Vi : Zj: <8:17i (z0) %j(%))& - Zg: <P(ZO) ~ | Bx0; (x0)>£j'
By the Taylor formula,
fao +16) = F(w0) = daof(#) 1 o pye)

t2 2t2 =0 t—0

where d2_f(t€) = d2, f(t&,t€). Computations using Remark (3.1) lead to
the conclusion that

(20 — P(20) | f(wo +t§) — f(x0))
t2
Corollary (3.9) gives € > 0 such that P(Zy) = P(z0) for zy := 2o + (20 —
P(20)). So for all z € dom f we obtain

20 — P(20))* < |20 — f(2)]?
= |20 — P(20)]> + 2(1 + €)(20 — P(20) | f(zo) — f(x))
+ [ f(wo) — f(=)]?,

1
- §‘dxof(§)’2 — 0.

t—0
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which for x = zy + t£ implies

(20 = P(20) | f(zo + &) — f(w0)) _ | flzo+t) — f(w0)
12 - t

and further, as ¢ tends to zero,

e|0* f (o) <0

(0% f(z0) is the Gateaux derivative of f). This means that d,,f is not a
monomorphism, which is impossible.
(ii))=(i). Consider the C*-mapping B : Z x dom f — R",

e (12| Lo (10| L))

Notice that for (zg,x0) (€ dom B) the differential d,, B(zo, -) is an automor-
phism of R™ (for Af(zg) is its matrix in the canonical basis of R™). Since
B(zg,0) = 0, there exists a C*~!-map v : Z = R™ such that 9(z) = g
and ¢ C {(z,2z) : B(z,x) = 0}. Its differential d, 1 is an epimorphism.
Therefore, the mapping ¢ := f o1, of class C*~!, satisfies im d,, ¢ = T,, M.
Obviously, for all i€ {1,...,n}, ¢(z) —z L g—i@(z)) (see (3.1)), so ¢ satis-
fies the assumptions of Corollary (3.10) (see (3.6)). Thus zp € 2 (and ¢ =P
in a neighbourhood of zy), which is our claim.

Now assume that either (i) or (ii) is satisfied. Repeating the construction
from the proof of (ii)=>(i) we conclude that P (= ¢) is of class C*¥~1 in a
neighbourhood of z5. We also know that imd,,P = T,,M. In order to find
ker d,, P we choose O € top T%(ZO) such that 0 € O and P = P(zp) on 2o+ O

(see (3.9)). For u € T#(ZO) such that tu € O, we have

Pz + tu) — P(z0) R

t t—0
Thus T%(ZO) C kerd,,P. Also dim T%(ZO) = dimker d,,P, so these spaces
are indeed equal. m

Proof of Theorem (3.11). This follows directly from Theorem
(3.7). m
Proof of Theorem (3.13). (a) Fix (a,a’) € ZxM such that |a—d'| =

o(a, M) and an inverse chart f : R™ = M of class C? for which a’ € im f.
For any z € ]a,a’] consider the matrix (3.12) and the polynomial

w:[0,1[ 3t det Ap(a’ +t(a—a')).
Clearly, w(0) # 0; thus #{w = 0} < co. There is 6 >0 such that w(t) # 0 for
allte|1—4,1[. Fixte]|l1—46,1]. Since M is closed near z; := a’+t(a—a') (see
(2.7)), z1 € £2 (see (3.11)). We conclude from Theorem (1.5) that [z;,a'[ C £2
for all ¢t € |1 — 0, 1[. Consequently, |a,a’] C 2.

2(1+¢) ’

0= 9P (20) .
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(b) Let @ € dom P and o’ € M.

(i)=(ii). This results from (a) and Remark (3.1).

(ii)=(i). Assume that Ja,a'] C 2 and a —a’ L T,y M. The set

I:={te0,1]:P(a' +t(a—d'))=d'}

is non-empty (0 € I) and closed in [0, 1[. It is also open in [0, 1[, because for
fixed t € I and z := o’ +t(a’ —a) (€ £2) one can choose § > 0 such that
P+ (t+0)(a—da")) =P((a—a')+x) =a (see (3.9)), which means that
[0,min{1,¢ 4+ §}[ C I. Hence I = [0,1], i.e. P(z) = d’ for any z € ]a,d'].
From this we deduce that g(a, M) = |a —a'| and P(a) =d'. =

Proof of Corollary (3.14). Fix z € domP and a sequence (z,) €
(dom P)Y convergent to z. By Theorem (3.13), ]z,,P(2,)] C 2 for any
v € N. Define

1
a:l,::z,,—i—;(P(z,,)—z,,)EQ, v=12,...

This sequence is convergent to z, since (|z, —P(2,)|)pZ; is bounded. Hence
domP C 2 (CdomP). m

4'. Proofs

Proof of Theorem (4.1). We only need to show (i) (see (3'.7)). It
follows from the equalities PoP =P and d,Pod,P =d,P (Vz€ M). m

(4’.1) LEMMA. Let M C Z be a C?*-submanifold. Fiz z € 2 and an in-
verse chart f : R™ e M of class C? such that f(x) = P(z). Let gf(z) stand
for the endomorphism of R™ given by the matriz (3.12) in the canonical
basis. Then

wez: a0 = Ao (¢| fhw). (<] FEw)).

Proof. This follows from the proof of Theorem (3'.7) ((ii)=-(i)). =

The following two definitions are useful in formulating and proving the
next theorems:

Let X, Y be finite-dimensional real linear spaces. Fix z € X, a subspace
H in X and a mapping g : X - Y of a neighbourhood of z.

We say that ¢ is differentiable at z with respect to H iff g o1, o1y
is differentiable at zero (where vy : H 5 h +— h € X, while 7, denotes
translation by z). We write

(4'.2) Hi,g:=do(gor,ouy).

Next, we say that a sequence of linear operators a, : X - Y with
non-zero domains (v = 1,2,...) is convergent to a non-zero linear operator
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a: X e Yiff a, - aasv— ooin X XY with respect to the Hausdorff
metric.
We will use the following properties of this kind of convergence:

(4'.3) Letl € L(X,Y) and (I,) € L(X,Y)N. Then l, — [ in the Banach
space L(X,Y) iff l, — 1 in the Hausdorff metric in X X Y.

(4'.4) The map
A, B are non-zero linear subspaces
(A, B) : > (A, B)
of X with ANB =0
— A+ Be{E #0:FE is a linear subspace of X}
18 continuous.

(4'.5) Let L : Y — W be a linear operator with W a finite-dimensional
space, and let a : X = Y be a partial linear operator. Also, let a, : X Y
and L, : Y — W be linear operators (Vv € N). If o, — « and L, — L as
v — 00, then L, oa, — Loa.

(4'.6) For a linear subspace A of X let 1a: A — X denote the canonical
inclusion. Then the map

{non-zero linear subspaces of X} > B
— 1p € {non-zero linear subspaces of X*}

18 continuous.

The proofs of the above facts are based on the following criterion:

(4".7) A function f : X — {a:Y o W | {(0,0)} # « is linear} is
continuous at rg € X iff
Ve>030 >0Vr € X : {|z—x9| <d,v, € SNdom f(z),v € SNdom f(xo),

v —va| <0} = [f(2)(v2) — fzo)(v)] <€,

where S stands for the unit sphere in'Y. (Clearly, the last condition is inde-
pendent of the choice of norms in X, Y, W.)

The criterion (4'.7) is a consequence of the following facts:

(4.8) Let C C X be a cone in X, i.e. by definition, |0,00[-C C C. If
C is open, then the class

C:={EegG,(X): E\{0}cC}
is open in the Grassmann manifold G,(X) of p-dimensional subspaces of X .

(4'.9) Let a family {C,}22, of closed cones be a base of cone neighbour-
hoods of a subspace E € G,(X), i.e. by definition:

eV :C,y CCy
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o Vv : E\{0} CintCy;

e, C,=E.
Then {int/vC’,,}ﬁozl is a meighbourhood base of E in the topological space
Gp(X).

Let ag := f(z0) : Y = W be a partial linear operator from the criterion

(4'.7), while Q : Y — dom g the linear orthogonal projection in the sense
of a fixed inner product in Y. Then the family

C, ={(y,w) €Y xW:
QW)Y — WlQW)| + QW) lw — ao(ly1QW))] < £yl |Q)I}
N{(y,w) : lw—ao(Q())| < 3yl < 1QW)I}

(v =1,2,...) of closed cones is a base of cone neighbourhoods of the sub-
space ag C Y x W. The proof of (4’.7) rests on this fact.

(4'.10) LEMMA. Let M C Z be a C*-submanifold. Let z € §2 and let
f:R™ e M be an inverse chart for which f(x) = P(z). Fizx ( € Z and put
Y= f~1oPn. Then 0 is differentiable at z with respect to T#(z) and

I
forv e Tp(z)7

1 o? ~ _
P01 (0 (v) = U (0P)(2) = Y (v / (@) )% (2)-Ap(2) " (ea),
i3 Oxl&nj
where 1 denotes the j-th coordinate function of 1, {e1, ..., ey} is the canon-

ical basis in R™ and Zf(z) is the endomorphism of R™ with matriz A (z)
(see (3.12)), i.e. (Ap(2))(€) = 22; 5 Af(2)ij - &jei for £ € R™.
Proof. By (3.6) we can apply Corollary (3.9) to find O € top Tﬁ(z) such

that 0€ O and P = P(z) on z+ O. In view of Lemma (4'.1) for every ve O
we have z + v € dom v and

(4/.11) afqp(zm)zﬁf(zﬂ)—l((g %(:@),...,(g a%(@)).
Also

O f () )€l -e;
i 83:1833] J v

where {e7, ..., e’} is the dual basis to {ey,...,e,}. The mapping x : Aut R™
> E — E~! € AutR" is analytic (as the solution of the implicit equation
R(E,u(E)) = 0, where R : (AutR")? 5> (E,F) — Eo F —idgn). For
L € EndR" we have dpu(L) = —E~'o Lo E~!. Also each £ € R" defines
the analytic mapping £** : EndR” € L +— L(§) € R™. In this notation, for

(] ) )

Ap(z+v) =Ap(z) = ) <v
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the relation (4’.11) takes the form
Ow(z +v) = (€7 0 p)(As(2 +v)

= (& op) <Zf(z) Z< ‘ 3525;;;]( )>e;'ei>'

Z?]

So 0%% is differentiable at z with respect to T%(z).
In order to find the explicit form of 9% (9%%)(2) for v € Tﬁ(z), put

V(1) = —tZ( ‘8:1:8;1:] ))aj-ei fort € R.
Then
0'(O0)() = SOV 4 1) = (o€ o) (0))
= () 07'(0) 207

(5

which is the desired conclusion. m

(4’.12) LEMMA (the curvilinear version of the theorem on the existence
of the Fréchet differential). Let M C Z be a C?-submanifold and a € M. Let
Y denote a finite-dimensional linear space, and g : Z - Y a mapping of a
neighbourhood of a such that gy := glar is differentiable at a. Assume that
in a neighbourhood of a the differentials

L
L,:= TP(Z)dzg
exist, and
L,—L,.
z—a

Then g is differentiable at a.

Proof. We will reduce this problem to the classical theorem. Consider a
Euclidean space X of dimension dim Z, its subspace H of dimension dim M
and an inverse chart f : H - M of class C? for which f(0) = a. There exists
a C2-diffeomorphism @ : X - Z such that ®(0) = a, f|gndome C @ and for
all z € dom @, the map H+ > vre» (x + v) — @(x) is contained in the linear
isometry of H+ and T fL( N (where 2/ stands for the orthogonal projection
of x onto H). In view of Theorem (3.8) we can assume that im @ C dom P
and P(z) = w whenever z € im®, w € M Nim® and z —w L T,,M. We
will show that g o @ satisfies the assumptions of the classical theorem on the
existence of the Fréchet differential, which will complete the proof.
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Obviously, the differential #dy(g o @) exists. Write O := (dom®) N
II'(dom f N dom ®) (€ top X), where IT : X — H is the linear orthogo-
nal projection. Also, fix z € O and put 2’ := II(x). Then &(z) — f(2') =
O+ (x —2')) — P2 € Tfl(x,), therefore P(P(x)) = f(2') and Lg,) =
do(g © Ta(a) © by ,/))‘ Consider u € H+ such that z + u € dom ®. Then

(go@)(ut2)=(g0Ta@ e )Pz +u)—P(z)).
The differential of H+ > ures ®(z + u) — &(x) at zero is an isometry of H+
and TfL(l,,), contains the function itself and is the differential of @ at x with

respect to H+. Thus in a neighbourhood of zero we have

(goP)oTr oty = (g0 Tow) O lri /))OdIQOLHL,

from which it follows that 7 d, (g o @) exists for all z € O and is equal to
Lp(z) O dzP O Ly,
Knowing that 7 dy(g o @) exists we are reduced to proving that

Hde(gogb) " HLdo(Q o)

in the Banach space L(H*,Y) or, which is equivalent, in the Hausdorff
metric (see (4'.3)). We will use the criterion (4'.7). Fix e>0. Since L, — L,
as z — a, there is 6 > 0 such that

V|z—al <0, v, € SﬂTfL(Z,), veSNTE, [v—v,| <6: |L.(v,)—La(a)| <e.
Since 0 € O and @ and &’ (the derivative of @) are continuous, there is ¢ > 0
such that if |z] < 9, then z € O, |®(z) —a| < § and |d, @ —dpP| < 6. Now fix
r € X such that |z| < § and define vg(,) 1= H* g, &(u), v :=H" dy®(u). The
functions d, @ oty and dg®ory . are isometries, therefore [vp(y) | = [v] = 1.
Hence |2 dy(go ®)(u) — H dy(go ®)(u)| <c. m

(4’.13) THEOREM (global version of (4’.12)). Consider a C?-submani-

fold M C Z and a mapping g : Z = Y of a subset domg € top Z of the
domain of P with values in a finite-dimensional linear space Y . Suppose that

€
g = gl is of class C' and TP(2>dzg exists for any z € dom g. Moreover,
assume that the function

€
domg > z — TP(2>dzg
is continuous in the Hausdorff metric at any point of M Ndomg. Then

(i) g is differentiable at a for all a € M N dom g;
(ii) the function M Ndomg > a > d,g is continuous.

Proof. By Lemma (4'.12) it remains to prove (ii). The map G:=g,s o
Po (Po := Pl|g) is of class C* (see (4.1)) and M Ndom G = M N dom g.
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For z € M Ndom g we denote by «, : T, — Z the inclusion. Theorem (4.1)
states that d,P is the orthogonal projection onto T, so

Ve MNdomg: d.Goa,=d,goa, (="=d,g).

The map M > z +— T, M is of class C'. On the other hand, Ggim 1 (Z)
Uy € L(U, Z) is continuous (see (4'.6)). This yields the continuity of
MNdomG 3z d,Goo, ="2d,g € Gaimz(Z x Y)

(see (4.5)). From this we conclude that

d.g= T d.g® T d.g — Ta dag ® T dog = dag
M>z—a
(see (4.4)). m

Proof of Theorem (4.2). It is sufficient to show that the assertion
holds locally. Let f : R™ - M be an inverse chart of class C? and, according
to the notation of Lemma (4’.10), set 1) := f~! o P. This is a C'-mapping.
The proof will be completed when we prove that for any ¢ € Z, 9% is
differentiable and the function im f > x — d,(9%%) is continuous.

Fix ¢ € Z. Intending to make use of Theorem (4'.13) we have to
show that (9%%)as is of class C! and that for z € dom 1, the differentials
Té(z)dz(aci/)) exist and converge to T2 d.,(0%) as z — zy (€ M). In the
notation of (4’.11),

9°y(2)

- (3@ | a@)s- ) (o) (<] 3e))

for z = f(z) (z € dom f). The right-hand side is a C'-function of z, thus
(0%9) s is of class C'. Now we only have to show that

Té(z)dz(agw) — & d20(8<¢)7

where zg € im f. This follows from the criterion (4'.7) and from Tp(,) — T,

and T#(z) — T as 2z — 2y (see (3.5)). m

Discussion of Example (4.3). Consider the C%-embedding f :
R — R? given by

_J@t3t%), t>0,
f(t)'_{@,g), t <0,

and the submanifold M := f(R). Suppose, contrary to our claim, that

(4'.14) P is twice differentiable in a neighbourhood of (0, 0).

Then there is r > 0 such that P is twice differentiable in U := |—r,[* and
VeeUVweUNM: z—wlT,M = Piz)=w
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(see (3.8)). Thus, for z = (21,22) € UN{(x,y) : © < 0} we have
(4/.15) 2= (f1oP)(2).
Fix A €]0,r[ and define the C2-curve

g RSt f(t)+ (A2,
There is § > 0 such that for all ¢ € [0, 6], t* —2X\t+1 > 0 and gy (t), f(t) € U
and P(ga(t)) = f(t). In view of (4'.14) the map

K(t) = 0 (f1 0 Pa)(9a(t))
is differentiable in a neighbourhood of zero. We have det Af(gx(t)) = t* —
2Mt+1 #£ 0 for t € [0,6] (see (3.12)), so by (4'.11), x(t) = 1/(t* —2Xt+1) for
any t € [0,6]. Therefore ’'(07) = 2\ # 0. On the other hand, (4'.15) yields
0% (f~1oPg) =1in UN{(z,y) : < 0}, thus x'(07) = 0, a contradiction. m

Proof of Proposition (4.4). The mapping

0: 2\ M>3>z—|z—Px) €eR

is of class C!. For all b € Z \ {0} one obtains
9"0*(z) = 2(x — P(z) | b— "P())

=2(z—P(x) | b) = 2(x — P(z) | dP(b))

— 2z —P) |b).
since x — P(z) € T%(x) and d,P(b) € Tp(z). On the other hand, 8°(\?) =
20-0%0, so 20(z) - O%o(z) = 2(x — P(x) | b), and finally,

D o(x) — (m b). .

|z — P(z)]
(5'.1) REMARK. For every submanifold M C Z the following conditions
are equivalent:

5'. Proofs

(i) M is non-empty, convex and closed,
(il) M is an affine subspace of Z.

Proof. (ii)=(i) is obvious.

(i)=-(ii). One can assume that 0 € M. Let H := Lin M, n := dim H
(> dim M), {e1,...,en,} C M be a basis of H and {e7,...,e}} the dual
basis. The set

{heH:(ef+...+e)(h) <1}n[{h € H:ef(h) >0}
=1
C conv{0,eq1,...,e,}
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is non-empty, open in H and contained in M. Therefore dim M = n, and
consequently M € top H. Finally, H =M. =

Proof of Theorem (5.3). This follows (even for M being a C1-
submanifold) immediately from (5.2) and (5’.1). We will present a more
elementary proof without the use of Theorem (5.2). The set M is closed,
because if (z,,) € MY converges to z € Z, then 0 = |z, —P(z,)| — |2—P(2)|
as n — oo. Hence z = P(z) € M. In view of Remark (5'.1) it suffices to
prove the convexity of M. Fix a € Z and set

J:={teRy:P(P(a) +tla—P(a))) =P(a)},
where R := [0, 00[. Notice that J € (cotopR4) \ {0#}. Simultaneously J €
topR. In order to prove this, fix ty € J and put b := P(a) + to(a — P(a)).
By Corollary (3.9) there exists O € top Tﬁ(a) such that 0 € O and P =
P(a) on b+ O. Moreover, there is 6 > 0 for which é(a — P(a)) € O. Thus
P(a) = P(b+d6(a—P(a))), which means that [0, ¢y + ] C J. Consequently,
J == R+.

Now we show that M is contained in the half-space II(a) := {z € Z :
(z—P(a) | a—P(a)) <0}. Fixx € M and t € J (=Ry). We have

[P(a) +t(a —P(a)) — z[ = [P(a) + t(a — P(a)) — Pla)l,

which is equivalent to the inequality
1
(¢~ Pla) | o~ P(a)) < o [P(a) —
for all t > 0, so indeed z € II(a) (Va € Z). Therefore M C (,c, II(a). The
inverse inclusion also holds, since for z€(,., I1(a) we have, in particular,
z € II(z). Thisimplies z = P(z) € M. As a consequence, M (=(),c, II(a))
is convex. m

6’. Proofs

(6.1) REMARK. Consider a concave function f :R* — R (i.e. such that
the set {(z,y) € RExR : f(x) > y} is convex) and the orthogonal projection
P:REX R f. Then {(z,y) € RF xR : f(r) <y} C domP.

(6’.2) REMARK. Consider a Fuclidean space Z, a set M C Z, the orthog-
onal projection P : Z - M and a subset U C Z. Assume that I : Z — Z is
an isometry such that I(M) = M. Then I(U \ domP) = I(U) \ domP.

Let us introduce the symbols and notions constantly used throughout
this section. We view Z = R? as the complex plane C. For all a € R for
which the following definition makes sense, we denote by L(a) the affine line
(a+ f(a)i) +T¢j_+f(a)iM’ where f : R - R is the function under consideration

and M (= f) is its graph.
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Discussion of Example (6.1). For a € R\ {0} the normal line
L(a) = {z+iy:y—a® = 2 (z —a)} intersects Ri at (a? 4+ 1/2)i. Therefore
[0,4/2] C dom P and Pljg /o) = 0. Also, for z € ]1/2,00[ - i there exists a
unique a > 0 such that z € L(a). Moreover, {b € R: z € L(b)} = {—a,0,a}.
But since |a + a%i — z| = | — a + a%i — 2| < |z|, we have z ¢ dom P. Hence

RyiNdomP = [0,i/2].
By Remark (6".1), {z + iy : y < 22} C domP. We are left with considering
points zg = xg + iyg for which xy # 0 and yo > azg. For such zy there exists
a+a?i # 0 realizing the distance of zg from f. Thus zy € Ja+a?i, (a®>+1)i[ C
dom P and P(zg) = a+ a?i (see (1.5)). Finally, domP = C\ (]1/2,00[ 7). m

Discussion of Example (6.2). The results obtained in the discus-
sion of Example (6.1) imply

{z€C:Rez>0} CdomP.
Next, for z = z + iy such that x < 0 define
h=h,:[0,00[2ar |z+iy—(a+a?)|? = a*+(1—2y)a® —2ax+2*+y?,
which is either increasing or reaches one minimum. Therefore
r+iy ¢ domP < Jag > 0: h'(ag) =0 and h(0) = h(ap).

The system of equations on the right-hand side of the above equivalence has
a solution ag > 0 iff y = 3(3(—2)** +1). Then ag = (—z)'/3. So the graph
of the function

(6.3) G i ]=00,0[5 2 — %(3(—17)2/3 +1)eR

coincides with R? \ dom P. m

Discussion of Example (6.3). When we delete zero from the M
of Example (6.2), all the points that were previously projected onto zero
disappear from domP. These are exactly the points z € {w : Rew < 0}
for which, in the notation of Discussion of (6.2), either z € |[—o00,1/2[- ¢, or
R (ap) = 0 and h(0) = h(ag) for some ag > 0. Finally,

domP =C\ ({i/2} U{z+iy:2 <0,y < G(x)}) (see (6".3)). m

Discussion of Example (6.4). First consider points of Ri. If a+
i(cos a) realizes such a point’s distance from f = cos, then |a] < 7. The
normal at a 4 i(cos a),

L(a) = {x+iy:y—cosa: “._“} (for 0 < |a| < ),
Sin a

intersects Ri at y(a) := (cosa — a/sina)i. Since the function

y:]0,7[ > aw y(a) € |]—00,0[ 14



30 E. Dudek and K. Holly

is continuous and bijective, for any z € [0, o[- the point a = 0 is the unique
point a in |—m, 7| for which z lies on L(a). Therefore [0,00] -7 C dom P.

Next, for fixed yp < 0 there exists a unique a € ]0, 7| such that ygi €
L(a). Simultaneously, {b € |—m, 7| : yoi € L(b)} = {—a,0,a}. If we had
lyoi — (a + icosa)| > |yot — i|, then ypi € domP and P(ypi) = i, hence
0 € Jyoi,i] C 2 (see (3.13)) and, by Theorem (3.11), 0 # det Ar(0), where
F:R >aw (a,cosa) € R2. But the matrix Ag(0) is singular. Therefore,
the distance of ygi from f is realized by two points: a + i cosa, —a + i cos a.
This means that Ri N dom P = [0, oo - .

Now, consider zy = z + iyg such that xzy € ]0,7[ and yg < coszy. As
mentioned at the beginning, there exists a € |0,7[ such that a + icosa
realizes the distance of zy from f. But zy € ]y(a),a + icosa] C domP.
Therefore, for

U:=RiU{z+iy:x€]0,n[, y <cosz}
we have U \ dom P = |—00,0[-i. Put M := f. Consider the family J :=
{Tokr © I }rez of isometries of the plane C, where 7o, is translation by 2k,
while I is either idc, Sryri, Rr/2, OF Sxyri0 Ry /o (Where Sy is the symmetry
about a straight line b and Rp the symmetry about a point B). Then
JJw)=C and vieg: J(M)=M.
JeJg
Applying Remark (6'.2) to our U we obtain
C\domP = ( U J(U)> \domP = | J(km +]0,00[ - (~1)"*%). m
Jeg keZ
Discussion of Example (6.5). Remark (6’.1) yields {x + iy : y <
e’} C domP. Fix z =z + iy € C and consider the function
h=h,:R3ar |z —(a+ie")]? = (x—a)*+ (y —e*)?.

For |y| < 2v/2, h reaches one minimum, so {w € C : Imw < 2v/2} C dom P.
If y = Imz > 2v/2, then h”(a) = 0 has two solutions a; < ap. A sufficient
condition for z € dom P is:

(6'.4) h'(a1) >0 and h'(a2) <O0.
This is equivalent to

—Inv2e —uy(t) <z < —Inv2e —uy(t),
where ¢ := y/2v/2 (> 1) and

uy (t) :=t(t — V12 — 1) + In(t + V12 — 1),

ug(t) :==t({t+t2 —1) —In(t + vVt2 - 1).

Moreover, lim;_, o u1(t) = lim;_, o u2(t) = oo and the graphs of u; and us
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are tangent at the point corresponding to t = 1, i.e. at —1 — In v/2e 4 2v/2i.
The condition (6’.4) is satisfied by points of the set

{z+iy :y >2V2 and —uy(y/2V2) < x < —u1(y/2V2)}

which contains C \ domP. =

References

[1] E. Asplund, Cebysev sets in Hilbert space, Trans. Amer. Math. Soc. 144 (1969),
235-240.

[2] L. N. H. Bunt, Contributions to the theory of convex point sets, Ph.D. Thesis,
Groningen, 1934 (in Dutch).

[3] E.Dudek, Orthogonal projection onto a subset of a Fuclidean space, Master’s the-
sis, Krakéw, 1989 (in Polish).

[4] N. V. Efimov and S. B. Stechkin, Support properties of sets in Banach spaces
and Chebyshev sets, Dokl. Akad. Nauk SSSR 127 (1959), 254-257 (in Russian).

[5] H. Federer, Curvature measures, Trans. Amer. Math. Soc. 93 (1959), 418-491.

[6] D. Gilbarg and N. Trudinger, Elliptic Partial Differential Equations of Second
Order, Springer, Berlin, 1977.

[7] M. W. Hirsch, Differential Topology, Springer, New York, 1976.

[8] E.Hopf, On non-linear partial differential equations, in: Lecture Series of the Sym-
posium on Partial Diff. Equations, Berkeley, 1955, The Univ. of Kansas, 1957, 1-29.

[9] G. Jasinski, A characterization of the differentiable retractions, Univ. lagell. Acta
Math. 26 (1987), 99-103.

[10] V. L. Klee, Convezity of Chebyshev sets, Math. Ann. 142 (1961), 292-304.

[11] —, Remarks on nearest points in normed linear spaces, in: Proc. Colloquium on
Convexity (Copenhagen, 1965), Kobenhavns Univ. Mat. Inst., Copenhagen, 1967,
168-176.

[12] S. G. Krantz and H. R. Parks, Distance to ck hypersurfaces, J. Differential
Equations 40 (1981), 116-120.

[13] J. L. Lions, Quelques méthodes de résolution des problémes aux limites non
linéaires, Dunod and Gauthier-Villars, Paris, 1969.

[14] T. Motzkin, Sur quelques propriétés caractéristiques des ensembles convezes, Atti
R. Accad. Lincei Rend. (6) 21 (1935), 562-567.

[15] W. Rudin, Real and Complex Analysis, McGraw-Hill, New York, 1974.

[16] J. Serrin, The problem of Dirichlet for quasilinear elliptic differential equations
with many independent variables, Philos. Trans. Roy. Soc. London Ser. A 264 (1969),
413-496.

Ewa Dudek Konstanty Holly

INSTITUTE OF MATHEMATICS INSTITUTE OF MATHEMATICS

PEDAGOGICAL UNIVERSITY JAGIELLONIAN UNIVERSITY

PODCHORAZYCH 2 REYMONTA 4

30-084 KRAKOW, POLAND 30-059 KRAKOW, POLAND

Regu par la Rédaction le 28.6.1991
Révisé le 4.1.1993



