ANNALES POLONICI MATHEMATICI LIX.1 (1994)

Nonlinear orthogonal projection

by EWA DUDEK and KONSTANTY HOLLY (Kraków)

Abstract. We discuss some properties of an orthogonal projection onto a subset of a Euclidean space. The special stress is laid on projection's regularity and characterization of the interior of its domain.

0. Introduction. Let M be a non-empty subset of a metric space Z. We define a relation $\mathcal{P} \subset Z \times M$, which we call the *orthogonal projection* onto M. Its domain is

dom $\mathcal{P} := \{z \in Z : \text{ there exists a unique point } z' \in M$

such that $d(z, z') = \varrho(z, M)$,

where d denotes the metric of Z and $\varrho(z, M) := \inf_{x \in M} d(z, x)$. Obviously, $M \subset \operatorname{dom} \mathcal{P}$. The orthogonal projection of $z \in \operatorname{dom} \mathcal{P}$ is defined to be the unique point $(z' =) \mathcal{P}(z) \in M$ which realizes the distance of z to M. If M is a closed linear subspace of a Hilbert space Z, then \mathcal{P} is the well-known linear orthogonal projection: $Z = \operatorname{dom} \mathcal{P} \to M$.

The need of considering orthogonal projections onto non-linear sets has been noticed since a long time. For example, if $Z = \mathbb{R}^n$ and M is a smooth (or analytic) submanifold, then the composition $f \circ \mathcal{P}|_{int \operatorname{dom} \mathcal{P}}$ is the most natural smooth (analytic) extension of a given smooth (analytic) function $f: M \to \mathbb{R}$ on an open neighbourhood of M (because in this case $M \subset$ int dom \mathcal{P} (see the generalization (3.8) of the classical result of Federer [5] and (4.1))). Of course, there are other methods of extending such functions, e.g. in the non-analytic case by local straightening of M or by applying Whitney's theory. However, in numerous problems the extension $f \circ \mathcal{P}$ is most useful, since it is simple and effective. The set int dom \mathcal{P} is in some sense a star-shaped neighbourhood of M (see (1.5), (3.13)), so the retraction $\mathcal{P}|_{int \operatorname{dom} \mathcal{P}}$ is helpful in studies on differentiable homotopy, e.g. for a given solenoidal vector field $v: G \to \mathbb{R}^n$ vanishing on the boundary of a

¹⁹⁹¹ Mathematics Subject Classification: 58B10, 51Kxx.

Key words and phrases: projection's regularity and interior of its domain.

domain $G \subset \mathbb{R}^n$ one can construct—with the aid of \mathcal{P} —a sequence $(\Phi_{\nu})_{\nu=1}^{\infty}$ of solenoidal vector fields on G equal to zero in a neighbourhood of $M = \partial G$ such that $\Phi_{\nu} \to v$ together with derivatives as $\nu \to \infty$.

The notion of the nonlinear orthogonal projection enables us to formulate a new, curvilinear version of the theorem on the existence of the Fréchet differential (see (4'.13)).

Furthermore, the differential properties of the distance function $z \mapsto |z - \mathcal{P}(z)| = \varrho(z, M)$ are useful (see e.g. the lemma of Hopf in Lions [13] (Part 1, Lemma 7.2) or Hopf [8] or applications of ϱ in Serrin [16] and Gilbarg–Trudinger [6]).

Literature we know contains only studies on restrictions of orthogonal projections onto submanifolds (of a Riemannian manifold Z) to small neighbourhoods of M (e.g. the tubular neighbourhood theorem in Hirsch [7]). In this paper we present various properties of the mapping \mathcal{P} without assuming that M is a submanifold. These are topological properties; for example, we formulate a criterion for $z \ (\in \text{dom } \mathcal{P})$ to be an interior point of dom \mathcal{P} (see (2.8)). In so general a situation one cannot expect the orthogonal projection to be differentiable; G. Jasiński [9] proved that the class M of values of a C^1 -retraction of a domain $U \in \text{top } \mathbb{R}^n$ is a differentiable submanifold (of \mathbb{R}^n) whenever $M \in \text{cotop } U$ (i.e. M is closed in U). In the present work we wish to investigate the orthogonal projection globally; in particular, almost all theorems we formulate refer also to arguments $z \ (\in \text{dom } \mathcal{P})$ which may lie at a large distance from M.

The theorems presented here can, for the most part, be modified for the case of a Riemannian manifold Z. Nevertheless, we restrict our attention to the basic situation $Z = \mathbb{R}^n$.

1. Projection onto an arbitrary subset of a Euclidean space. Let Z denote a Euclidean space, i.e. a real finite-dimensional Hilbert space (e.g. $Z = \mathbb{R}^n$) with a scalar product $(\cdot | \cdot)$, which defines the norm $|\cdot|$. From now on Ω stands for the interior of the domain of the projection \mathcal{P} .

(1.1) EXAMPLE. If M is the unit sphere of Z, then

dom $\mathcal{P} = Z \setminus \{0\}$ and $\forall z \in \operatorname{dom} \mathcal{P} : \mathcal{P}(z) = z/|z|$.

Generally, if M is the unit sphere of a linear subspace Y, then

 $\Omega = \operatorname{dom} \mathcal{P} = Z \setminus \ker P_Y = Z \setminus Y^{\perp} \quad \text{and} \quad \mathcal{P}(z) = P_Y(z) / |P_Y(z)|$

for any $z \in \text{dom } \mathcal{P}$, where P_Y is the usual projection $Z \to Y$.

In general, neither has dom \mathcal{P} to be open, nor \mathcal{P} to be a continuous mapping, even if M is an analytic submanifold:

(1.2) EXAMPLE. If $Z = \mathbb{R}^2$ and $M = \{(x, y) : |y| = 1\} \setminus \{(0, 1)\}$, then $(0, 0) \in (\operatorname{dom} \mathcal{P}) \setminus \Omega$ and \mathcal{P} is not continuous at (0, 0).

(1.3) THEOREM. The restriction $\mathcal{P}|_{\Omega}$ is continuous.

Theorems (lemmas, examples etc.) from Section k are proved or discussed in Section k', k = 1, ..., 6.

(1.4) COROLLARY. $M \cap \Omega$ is closed in Ω .

(1.5) THEOREM. If $a \in Z$, $a' \in M$ and $|a - a'| = \varrho(a, M)$, then:

- (i) $]a,a'] \subset \operatorname{dom} \mathcal{P} \ and \ \forall z \in]a,a'] : \mathcal{P}(z) = a',$
- (ii) $[a, \mathcal{P}(a)] \subset \Omega$ for $a \in \Omega$.

In general, $\mathcal{P}(a) \notin \Omega$, for example when $Z = \mathbb{R}^2$, $M = \{(x, y) : y = |x|\}$ and a = (0, -1).

(1.6) COROLLARY. Suppose that $f : \mathcal{O} \to M$ is a continuous mapping of an open set $\mathcal{O} \subset Z$. Furthermore, assume that $\forall z \in \mathcal{O} : |z - f(z)| = \varrho(z, M)$. Then $f \subset \mathcal{P}$; in particular, $\mathcal{O} \subset \Omega$.

Finally, let us mention that the projection is invariant with respect to isometries:

(1.7) REMARK. Let $I: Z \to Z$ be an isometry. Then $I \circ \mathcal{P} \circ I^{-1}$ is the orthogonal projection onto I(M).

2. Closedness of a set near a point. We say that a set M is closed near $z \in Z$ iff

(2.1) $\exists r > \varrho(z, M) : \quad M \cap \overline{B}(z, r) \in \operatorname{cotop} Z,$

where $B(z,r) := \{x \in Z : |x - z| < r\}$ and $\overline{B}(z,r) = \overline{B(z,r)}$ (Fig. 1).

Fig. 1

(2.2) FACT. If M is closed near z, then there exists at least one element of M which realizes the distance $\varrho(z, M)$.

(2.3) FACT. The set $D := \{z \in Z : M \text{ is closed near } z\}$ is open in Z.

It is obvious that D = Z whenever $M \in \operatorname{cotop} Z$. Then dom \mathcal{P} is dense in Z. This results from the following general

(2.4) REMARK. $D \subset \overline{\operatorname{dom} \mathcal{P}}$.

And here is a kind of completing of Theorem (1.3):

(2.5) REMARK. The restriction $\mathcal{P}|_{D\cap \operatorname{dom} \mathcal{P}}$ is continuous. In particular, \mathcal{P} is continuous whenever M is closed.

(2.6) PROPOSITION. If M is locally compact, then $\Omega \subset D$.

In general, $D \cap \operatorname{dom} \mathcal{P} \not\subset \Omega$, even if M is an analytic submanifold. For $Z = \mathbb{R}^2$ and $M = \{(x, y) : y = x^2\}$ the point (0, 1/2) is in $(D \cap \operatorname{dom} \mathcal{P}) \setminus \Omega$ (see (6.1)).

Now we formulate a counterpart of Theorem (1.5):

(2.7) THEOREM. Suppose that M is locally compact, $a \in Z$, $a' \in M$ and $|a - a'| = \rho(a, M)$. Then $[a, a'] \subset D$.

The next theorem is a criterion for being an interior point of the projection's domain.

(2.8) THEOREM. Let M be closed near $a \in \text{dom } \mathcal{P}$. Fix $t \in [0, 1]$. Then the following conditions are equivalent:

(i)
$$a \in \Omega$$
;
(ii) $\mathcal{P}(a) + t(a - \mathcal{P}(a)) \in \Omega$ and the mapping

 $w \mapsto w - (1-t)\mathcal{P}(w)$

is an injection on a neighbourhood of $\mathcal{P}(a) + t(a - \mathcal{P}(a))$.

3. Projection onto a submanifold. We start with recalling a well-known property of the tangent space to a submanifold:

(3.1) REMARK. If M is a C¹-submanifold of Z and $a \in Z$ and $a' \in M$ satisfy $|a - a'| = \varrho(a, M)$, then

$$a - a' \perp T_{a'}M,$$

where $T_{a'}M$ denotes the tangent space to M at a'. In particular, $\forall a \in \text{dom } \mathcal{P} : a \in \mathcal{P}(a) + (T_{\mathcal{P}(a)}M)^{\perp}$.

For $z \in M$ and r > 0 we define the disc of radius r with center at z orthogonal to M by

$$K_z(r) := z + \{ \zeta \in (T_z M)^{\perp} : |\zeta| < r \}.$$

(3.2) THEOREM. Let M be a C^1 -submanifold such that

(3.3) the mapping: $M \ni z \mapsto T_z M \in \mathcal{E}$ satisfies locally the Lipschitz condition in the Hausdorff metric (in the set \mathcal{E} of all non-zero linear subspaces of Z).

Then for any compact subset $F \subset M$ there is r > 0 such that:

(i) $\forall y, z \in F : \{y \neq z \Rightarrow K_y(r) \cap K_z(r) = \emptyset\};$ (ii) $\forall z \in F : K_z(r) \subset \operatorname{dom} \mathcal{P}, \ \mathcal{P}|_{K_z(r)} \equiv z.$

The Hausdorff distance of two non-zero linear subspaces A, B is, by definition, the number

(3.4)
$$d(A,B) := d(A \cap S, B \cap S),$$

where $S := \{x \in Z : |x| = 1\}$ and $d(A \cap S, B \cap S)$ is the usual Hausdorff distance of the compact sets $A \cap S$, $B \cap S$. Note that the metric (3.4) defines the usual topology on the Grassmann manifold $\mathcal{G}_k(Z)$ of all k-dimensional linear subspaces of Z; moreover,

(3.5) $\mathcal{G}_k(Z) \ni A \mapsto A^{\perp} \in \mathcal{G}_{N-k}(Z) \ (1 \le k \le N-1, N = \dim Z) \ is \ an isometry in this metric.$

One can also prove that

(3.6) all C^2 -submanifolds satisfy (3.3).

Submanifolds of class C^1 generally do not:

(3.7) EXAMPLE. The curve $M := \{(t, \frac{2}{3}|t|^{3/2}) : t \in \mathbb{R}\}$ is a C^1 -submanifold of $Z = \mathbb{R}^2$. One can check that

 $\forall r > 0 \; \exists z \in M \setminus \{0\} : \quad K_z(r) \cap K_0(r) \neq \emptyset.$

In particular, (3.3) is not satisfied.

The following theorem is important in the local analysis of a nonlinear orthogonal projection:

(3.8) THEOREM. Let M be a C^1 -submanifold satisfying (3.3). Then for $a \in M$ there exists an open $\mathcal{O} \subset Z$ such that $a \in \mathcal{O} \subset \operatorname{dom} \mathcal{P}$ and

$$\forall z \in \mathcal{O} \ \forall x \in \mathcal{O} \cap M : \quad \{z - x \perp T_x M \Rightarrow \mathcal{P}(z) = x\}.$$

In particular, $M \subset \Omega$.

This is a generalization of Federer's theorem from [5] which states that $M \subset \Omega$ whenever M is a hypersurface of class C^2 .

(3.9) COROLLARY. If M is a C^1 -submanifold satisfying (3.3), then $\forall a \in \Omega \ \exists H \in \operatorname{top}(T_{\mathcal{P}(a)}M)^{\perp}: \quad 0 \in H \text{ and } \mathcal{P}|_{a+H} \equiv \mathcal{P}(a).$ (3.10) COROLLARY. Suppose that M is a C^1 -submanifold satisfying (3.3) and closed near $a \in \operatorname{dom} \mathcal{P}$. Let $\phi : \mathcal{O} \to M$ be a continuous map on a neighbourhood \mathcal{O} of a such that

$$\phi(a) = \mathcal{P}(a) \quad and \quad \forall z \in \mathcal{O} : \quad z - \phi(z) \perp T_{\phi(z)}M.$$

Then $a \in \Omega$ and $\phi = \mathcal{P}$ in a neighbourhood of a.

This result is a differential counterpart of Corollary (1.6). And here is a differential counterpart of the criterion (2.8):

(3.11) THEOREM. Let M be a C^2 -submanifold. Fix $z_0 \in \text{dom } \mathcal{P}$ and an inverse chart $f \subset \mathbb{R}^n \times M$ of M which takes on the value $\mathcal{P}(z_0)$. Consider the matrix

$$(3.12) \quad A_f(z_0) := \left[\left(\frac{\partial f}{\partial x_i}(x_0) \middle| \frac{\partial f}{\partial x_j}(x_0) \right) + \left(\mathcal{P}(z_0) - z_0 \middle| \frac{\partial^2 f}{\partial x_i \partial x_j}(x_0) \right) \right]$$

where $x_0 = f^{-1}(\mathcal{P}(z_0))$. Then the following conditions are equivalent:

- (i) $z_0 \in \Omega$;
- (ii) M is closed near z_0 and det $A_f(z_0) \neq 0$.

The additional assumption " $M \in C^2$ " lets us strengthen the conclusion of Theorem (1.5):

(3.13) THEOREM. Let M be a C^2 -submanifold. Then

(a) $[a, a'] \subset \Omega$ for all $(a, a') \in Z \times M$ such that $|a - a'| = \varrho(a, M)$;

(b) for every $(a, a') \in (\operatorname{dom} \mathcal{P}) \times M$ the following conditions are equivalent:

(i)
$$\mathcal{P}(a) = a';$$

(ii) $|a, a'| \subset \Omega$ and $a - a' \perp T_{a'}M$

(3.14) COROLLARY. If M is a C^2 -submanifold, then Ω is dense in dom \mathcal{P} . If M is also closed in Z, then $\overline{\Omega} = Z$ (compare with (2.4)).

4. Differentiability of an orthogonal projection

(4.1) THEOREM. Let M be a C^k -submanifold of a Euclidean space Z, where $k \in \{2, 3, \ldots, \infty, \omega\}$ and C^{ω} denotes \mathbb{R} -analyticity. Then $\mathcal{P}|_{\Omega}$ is of class C^{k-1} (as usual $\infty - 1 := \infty$, $\omega - 1 := \omega$) and

(i) for all $z \in M$, the Fréchet differential $d_z \mathcal{P}$ is the linear orthogonal projection onto $T_z M$;

(ii) $\forall z \in \Omega : d_z \mathcal{P}(Z) = T_{\mathcal{P}(z)} M$, ker $d_z \mathcal{P} = (T_{\mathcal{P}(z)} M)^{\perp}$.

Regularity of the projection \mathcal{P} is higher along M itself; for example, for a C^2 -submanifold the following improvement of regularity may be achieved:

- (4.2) THEOREM. If M is a C^2 -submanifold, then
- (i) for all $z \in M$, the mapping \mathcal{P} is twice differentiable at z;

(ii) the mapping $M \ni z \mapsto d_z^2 \mathcal{P} \in S_2(Z, Z)$ is continuous. (The symbol $S_2(Z, Z)$ stands for the Banach space of all symmetric bilinear operators $Z^2 \to Z$.)

Despite the fact that $\mathcal{P}|_M = \mathrm{id}_M$, the restriction to M of the second derivative of \mathcal{P} may have a non-trivial structure. For example, if M is the unit sphere in Z, then

$$(d_z^2 \mathcal{P})(\eta, \xi) = 3(\eta \mid z)(\xi \mid z)z - (\eta \mid \xi)z - (\eta \mid z)\xi - (\xi \mid z)\eta$$

for $z \in M$ and $\eta, \xi \in Z$.

Theorem (4.2) cannot be generalized to any neighbourhood of M:

(4.3) EXAMPLE. The curve $M := \{(t,0) : t < 0\} \cup \{(t,\frac{1}{3}t^3) : t \ge 0\}$ is a C^2 -submanifold of $Z = \mathbb{R}^2$. The projection \mathcal{P} is not twice differentiable in any neighbourhood of (0,0).

(4.4) Proposition. Let

$$\varrho(x) := \varrho(x, M) \quad (= |x - \mathcal{P}(x)| \text{ for } x \in \operatorname{dom} \mathcal{P}).$$

If M is of class C^2 , then

$$abla_x \varrho = rac{x - \mathcal{P}(x)}{|x - \mathcal{P}(x)|} \quad \text{for any } x \in \Omega \setminus M.$$

This fact and Theorem (4.1) immediately give the following

(4.5) COROLLARY. The function ρ is of class C^k in $\Omega \setminus M$ for M being a submanifold of class C^k $(k \in \{2, 3, \dots, \infty, \omega\}).$

One of the first formulations of differential properties of ρ was presented in Serrin [16] (Chapter I, Lemma 3.1) in the following form:

If a hypersurface M (i.e. a submanifold in Z of codimension 1) is of class C^3 , then there is an open neighbourhood \mathcal{O} of M such that $\varrho|_{\mathcal{O}\setminus M}$ is of class C^2 .

Later on Gilbarg and Trudinger proved the following local version of Corollary (4.5) in the Appendix to [6]:

The restriction $\varrho|_{\mathcal{O}\backslash M}$ is of class C^k for some neighbourhood \mathcal{O} of a C^k -hypersurface M for $k = 2, 3, \ldots, \infty, \omega$.

Obviously, the continuous function ρ is not differentiable at any point of M. However, in the case of M being a hypersurface one can smooth ρ by one-sided change of its sign: (4.6) THEOREM (see Krantz–Parks [12]). Assume that the boundary M of some set $G \in \text{top } Z$ is a compact C^k -submanifold ($k \in \{1, 2, \ldots, \infty, \omega\}$). Suppose also that $M \subset \Omega$ (this assumption is relevant only for k = 1). Consider the signed distance function to M:

$$\delta(x) := \begin{cases} \varrho(x) & \text{if } x \in G, \\ -\varrho(x) & \text{if } x \in Z \setminus G \end{cases}$$

Then δ is of class C^k in some neighbourhood of M.

5. When is the whole space the domain of an orthogonal projection? If dom $\mathcal{P} = Z$ then M is called a *Chebyshev set*.

(5.1) THEOREM. Every non-empty closed and convex subset of Z is a Chebyshev set.

The above theorem also holds for an infinite-dimensional Hilbert space (see Rudin [15], Theorem 4.10). Moreover, in finite-dimensional spaces also the converse theorem holds:

(5.2) THEOREM (see Bunt [2], Motzkin [14]). If dom $\mathcal{P} = Z$, then M is non-empty, closed and convex.

A bounded Chebyshev set cannot be a submanifold of Z:

(5.3) THEOREM. Assume that M is a C^2 -submanifold of a Euclidean space Z and dom $\mathcal{P} = Z$. Then M is an affine subspace of Z.

Under some additional assumptions the implication (5.2) is valid also for infinite-dimensional Hilbert spaces or even Banach spaces (see Efimov– Stechkin [4], Klee [10], Asplund [1]). Klee in [11] conjectures that in some (possibly non-separable) Hilbert spaces there exist non-convex Chebyshev sets. The question of existence of "Klee caverns" is also considered in Asplund [1].

6. Domains of projections onto graphs of some elementary functions. Now we illustrate the above theory with examples of orthogonal projections onto graphs of some numerical functions. In this section $Z = \mathbb{R}^2$.

(6.1) EXAMPLE. The set $M := \{(x, x^2) : x \in \mathbb{R}\}$ is a closed analytic submanifold of Z. The domain of the orthogonal projection onto M is dom $\mathcal{P} = \mathbb{R}^2 \setminus \{(0, t) : t > 1/2\}$ (see (3.14) and Fig. 2).

(6.2) EXAMPLE. If we take $M := \{(x, x^2) : x \ge 0\}$ (clearly, M is not a submanifold but it is closed), then dom $\mathcal{P} = \mathbb{R}^2 \setminus \{(x, y) : x < 0, y = \frac{3}{2}(-x)^{2/3} + \frac{1}{2}\}$ (see (2.4) and Fig. 3).

(6.3) EXAMPLE. Removing the point (0,0) from the set M of the preceding example we obtain a non-closed submanifold M' with

dom
$$\mathcal{P} = \mathbb{R}^2 \setminus \left(\left\{ \left(0, \frac{1}{2}\right) \right\} \cup \left\{ (x, y) : x \le 0, y < \frac{3}{2} (-x)^{2/3} + \frac{1}{2} \right\} \right)$$

(see (3.14) and Fig. 4).

(6.4) EXAMPLE. Let M be the graph of $\mathbb{R} \ni x \mapsto \cos x$. Then dom $\mathcal{P} = \mathbb{R}^2 \setminus \bigcup_{k \in \mathbb{Z}} \{ (k\pi, y) : (-1)^{k+1} y > 0 \}$ (see (3.14) and Fig. 5).

(6.5) EXAMPLE. We did not manage to find the exact shape of the domain of the orthogonal projection onto $M := \{(x, e^x) : x \in \mathbb{R}\}$ (naturally,

Fig. 5

M is a closed analytic submanifold). The relation

 $\begin{aligned} \mathbb{R}^2 \setminus \operatorname{dom} \mathcal{P} \\ &\subset \left\{ (x,y) : y > 2\sqrt{2}, -\ln\sqrt{2e} - u_2(y/2\sqrt{2}) < x < -\ln\sqrt{2e} - u_1(y/2\sqrt{2}) \right\}, \end{aligned}$ where

$$\begin{split} u_1(z) &:= z(z - \sqrt{z^2 - 1}) + \ln(z + \sqrt{z^2 - 1}) \,, \\ u_2(z) &:= z(z + \sqrt{z^2 - 1}) - \ln(z + \sqrt{z^2 - 1}) \quad \text{ for all } z > 1 \,, \end{split}$$

is all we know about dom \mathcal{P} (see (3.14) and (5.3); Fig. 6).

1'. Proofs

(1'.1) LEMMA. If $a \in \Omega$ and V is a neighbourhood of $\mathcal{P}(a)$ in M, then $\varrho(a, M \setminus V) > \varrho(a, M)$.

Proof. If the inequality were inverse, then $\rho(a, M \setminus V) = \rho(a, M)$. There is a sequence $(x_{\nu})_{\nu=1}^{\infty} \in (M \setminus V)^{\mathbb{N}}$ for which $|a - x_{\nu}| \to \rho(a, M \setminus V) = \rho(a, M)$ as $\nu \to \infty$. Since $|x_{\nu}| \leq |x_{\nu} - a| + |a| \ (\forall \nu)$, there are also an infinite set $A \subset \mathbb{N}$ and $b \in Z$ such that $x_{\nu} \to b$ as $A \ni \nu \to \infty$. Clearly, $|a - b| = \rho(a, M)$, $b \neq \mathcal{P}(a), b \notin M$ and $b \neq a$. Choosing $z \in [a, b] \cap \operatorname{dom} \mathcal{P} \ (\neq \emptyset)$ we obtain

$$b-z = \frac{|b-z|}{|z-a|}(z-a)$$

and $|a-b| \leq |a-\mathcal{P}(a)| \leq |a-z|+|z-\mathcal{P}(z)| \leq |a-z|+|z-b| = |b-a|$. This means that for u := z-a and $v := \mathcal{P}(z)-z$ we have |u|+|v| = |u+v|and |v| = |z-b|, i.e. $v = \frac{|v|}{|u|}u$. Therefore, $b-z = \frac{|v|}{|u|}u = \mathcal{P}(z)-z$, contrary to $b \notin M$.

Proof of Theorem (1.3). Suppose that \mathcal{P} is not continuous at $a \in \Omega$. There is a neighbourhood of $\mathcal{P}(a)$ on M and a sequence $(a_{\nu}) \in (\operatorname{dom} \mathcal{P})^{\mathbb{N}}$ with $a_{\nu} \to a$ as $\nu \to \infty$ and $\mathcal{P}(a_{\nu}) \notin V$ for all ν . Then

$$\forall \nu \in \mathbb{N} : \quad \varrho(a, M \setminus V) \le |a - \mathcal{P}(a_{\nu})| \le |a - a_{\nu}| + |a_{\nu} - \mathcal{P}(a_{\nu})|$$
$$= |a - a_{\nu}| + \varrho(a_{\nu}, M).$$

As a consequence, $\rho(a, M \setminus V) \leq \rho(a, M)$, which contradicts Lemma (1'.1).

(1'.2) LEMMA. For $t \in [0,1]$ define $f_t : \operatorname{dom} \mathcal{P} \to Z$ by $f_t(z) := \mathcal{P}(z) + t(z - \mathcal{P}(z))$. Then f_t is an injection.

Proof. The case t = 1 is easy. For $t \in [0, 1[$ suppose $a, b \in \text{dom } \mathcal{P}$ satisfy $f_t(a) = f_t(b)$. By Remark (1.7) we can assume $f_t(a) = f_t(b) = 0$ without loss of generality. So, for s := -t/(1-t) we have

$$a' := \mathcal{P}(a) = sa$$
, $b' := \mathcal{P}(b) = sb$

Assume that $|a| \geq |b|$ and |a| > 0. If a, b were linearly dependent, then we would get $b \in [0, a]$ (if not, there is $\xi \in]-1, 0[$ for which $b = \xi a$; this yields $b' = s\xi a \in]0, \infty[\cdot a \text{ and } \varrho(a, M) \leq |a - b'| = |1 - s\xi| \cdot |a| < (1+|s|\cdot|\xi|)|a| < (1-s)|a| = |a-a'| = \varrho(a, M))$. Therefore $b \in [0, a] \subset [a', a]$. By Theorem (1.5)(i), $b' = \mathcal{P}(b) = a'$. Thus a = b.

So it suffices to establish linear dependence of a and b. Suppose not, i.e. $(a \mid b) < |a| \cdot |b| \le |a|^2$. It follows that

$$|a|^{2} - |b|^{2} \ge 0 > 2\left(a + \frac{(a \mid a - b)}{t|a - b|^{2}}(b - a) \mid a - b\right)$$

and for

$$x := s \left(a + \frac{(a \mid a - b)}{t \mid a - b \mid^2} (b - a) \right)$$

we get $|x-a'|^2 > |x-b'|^2$. We have ((1-t)(a-x) | a-b) = 0, so $a-x \perp b-a$. Moreover, $a-x \perp x-a'$ and $a-x \perp x-b'$, because $x-a', x-b' \in \mathbb{R} \cdot (b-a)$. By Pythagoras' Theorem,

$$\begin{split} \varrho(a,M)^2 &\leq |a-b'|^2 = |a-x|^2 + |x-b'|^2 < |a-x|^2 + |x-a'|^2 \\ &= |a-a'|^2 = \varrho(a,M)^2 \,. \end{split}$$

This contradiction completes the proof. \blacksquare

Proof of Theorem (1.5). The indirect proof of the fact that |z-a'| < |z-x| for all $x \in M \setminus \{a'\}$ uses the method of proof of Lemma (1'.1).

To show (ii), fix $a \in \Omega$ and a point $([a, \mathcal{P}(a)] \ni) z_0 := \mathcal{P}(a) + t(a - \mathcal{P}(a))$ (for some $t \in [0, 1]$). The Brouwer theorem on the invariance of domain applied to the continuous injection $f_t : \Omega \ni z \mapsto \mathcal{P}(z) + t(z - \mathcal{P}(z)) \in$ $[z, \mathcal{P}(z)] \subset \text{dom } \mathcal{P}$ completes the proof.

Proof of Corollary (1.6). Fix $a \in \mathcal{O}$ and suppose that $|b - a| = \varrho(a, M)$ for some $b \in M \setminus \{f(a)\}$. It is clear that $a \neq b$. In view of Theorem (1.5), $[a,b] \subset \operatorname{dom} \mathcal{P}$ and $\mathcal{P}(z) = b$ for all $z \in [a,b]$. So, there is a sequence $(z_{\nu}) \in (]a,b] \cap (\operatorname{dom} \mathcal{P}) \cap \mathcal{O})^{\mathbb{N}}$ convergent to a. Of course, $b = \mathcal{P}(z_{\nu}) = f(z_{\nu})$ for all ν . Since f is continuous, we obtain the equality b = f(a) contradicting the choice of b.

2'. Proofs

Proof of Fact (2.2) is easy.

Proof of Fact (2.3). Fix $a \in D$. Then there is $r > \varrho(a, M) = \vartheta r$ (for some $\vartheta \in [0,1[)$ such that $M \cap \overline{B}(a,r) \in \operatorname{cotop} Z$. The inclusion $B(a,(1-\vartheta)r/2) \subset D$ holds, because for $\widetilde{a} \in B(a,(1-\vartheta)r/2)$ we have $\varrho(\widetilde{a},M) < (1+\vartheta)r/2, \overline{B}(\widetilde{a},(1+\vartheta)r/2) \subset \overline{B}(a,r)$ and $\overline{B}(\widetilde{a},(1+\vartheta)r/2) \cap M \in \operatorname{cotop} Z$.

Proof of $\operatorname{Remark}(2.4)$ rests on the simple

(2'.1) REMARK. If $\emptyset \neq \mathcal{O} \subset D$ is open, then $\mathcal{O} \cap \operatorname{dom} \mathcal{P}$ is dense in \mathcal{O} .

Proof. Consider $G \in (\text{top } \mathcal{O}) \setminus \{\emptyset\}$ and $a \in G (\subset D)$. There is $a' \in M$ for which $|a - a'| = \rho(a, M)$. Thus $]a, a'] \subset \text{dom } \mathcal{P}$. Clearly, $G \cap]a, a'] \neq \emptyset$, and consequently $G \cap \mathcal{O} \cap \text{dom } \mathcal{P} \neq \emptyset$.

(2'.2) LEMMA. If $a \in D \cap \operatorname{dom} \mathcal{P}$ and V is a neighbourhood of $\mathcal{P}(a)$ in M, then $\varrho(a, M \setminus V) > \varrho(a, M)$.

Proof. For an indirect proof suppose that $\rho(a, M \setminus V) = \rho(a, M)$. There is a sequence $(x_{\nu}) \in (M \setminus V)^{\mathbb{N}}$ for which $|a - x_{\nu}| \to \rho(a, M)$ as $\nu \to \infty$. It is bounded, so there is an infinite set $A \subset \mathbb{N}$ and $b \in Z \setminus \{\mathcal{P}(a)\}$ such that $x_{\nu} \to b$ as $A \ni \nu \to \infty$. Obviously, $|a - b| = \rho(a, M)$. There is a radius $r > \rho(a, M)$ such that $M \cap \overline{B}(a, r) \in \operatorname{cotop} Z$, so we have $x_{\nu} \in \overline{B}(a, r) \cap M$ (for almost all $\nu \in \mathbb{N}$). Hence, $b \in \overline{B}(a, r) \cap M \subset M$ and $b \neq \mathcal{P}(a)$, which contradicts $|a - b| = \rho(a, M)$.

Proof of Remark (2.5) is analogous to the one of Theorem (1.3). ■

Proof of Proposition (2.6). For a given point $a \in \Omega$ there is a closed neighbourhood F of $\mathcal{P}(a)$ in M. By Lemma (1'.1) there exists r with $\varrho(a, M) < r < \varrho(a, M \setminus F)$. Clearly, $M \cap \overline{B}(a, r) = F \cap \overline{B}(a, r)$.

Proof of Theorem (2.7). Suppose $a \neq a'$. Without loss of generality we can assume a = 0. According to Theorem (1.5), $]0, a'] \subset \operatorname{dom} \mathcal{P}$ and $\mathcal{P}(z) = a'$ for all $z \in]0, a']$. Fix $z \in]0, a']$ and set $d := \varrho(z, M) = |z - a'| < |a'| =: r$. There is $0 < \delta < \sqrt{r(r+d)}$ for which $M \cap \overline{B}(a', \delta) \in \operatorname{cotop} Z$. We have

$$\varrho(z,M) < \sqrt{d^2 + \delta^2 \frac{r-d}{r}} =: r(z) \ (< r) \,.$$

To show that $\overline{B}(z, r(z)) \cap M \in \operatorname{cotop} Z$ (which will complete the proof) it suffices to prove that $\overline{B}(z, r(z)) \subset B(0, r) \cup \overline{B}(a', \delta)$. Indeed, let $x \in \overline{B}(z, r(z))$ with $|x| \ge r$. Then $(x \mid z) > 0$ and consequently $(x \mid a') > 0$. If

$$x' := \frac{(x \mid a')}{|a'|^2} a'$$

denotes the orthogonal projection of x onto $\mathbb{R}a'$, then

$$|x'| = \frac{|x|^2 + r^2 - |x - a'|^2}{2r}.$$

Further, |x'-z| = ||x'| - (r-d)|, since $x', z \in \mathbb{R}_+a'$. Hence

$$\begin{split} r(z)^2 &\geq |x-z|^2 = |x-x'|^2 + |x'-z|^2 \\ &= (|x|^2 - |x'|^2) + |x'-z|^2 \geq \frac{r-d}{r} |x-a'|^2 + d^2 \,, \end{split}$$

which means that indeed $\delta \ge |x - a'|$.

Proof of Theorem (2.8). Define

$$f_t: \operatorname{dom} \mathcal{P} \ni z \mapsto \mathcal{P}(z) + t(z - \mathcal{P}(z)) \in Z$$

It is an injection with values in dom \mathcal{P} (by Lemma (1'.2) and Theorem (1.5)). Moreover, $\mathcal{P} \circ f_t = \mathcal{P}$, $f_t(\Omega) \subset \Omega$ and $f_t^{-1}(w) = \frac{1}{t}(w - (1-t)\mathcal{P}(w))$.

(i) \Rightarrow (ii). In view of the Brouwer theorem on invariance of domain, $f_t(\Omega)$ is a neighbourhood of $f_t(a) = \mathcal{P}(a) + t(a - \mathcal{P}(a))$. Clearly, tf_t^{-1} is an injection on it.

(ii) \Rightarrow (i). According to the assumptions $a \in D \cap \operatorname{dom} \mathcal{P}$. There is an open neighbourhood $U \subset \Omega$ of $\tilde{a} := f_t(a)$ such that the mapping $Q : U \ni w \mapsto \frac{1}{t}(w - (1-t)\mathcal{P}(w)) \in Z$ is a continuous injection (see Theorem (1.3)). By the Brouwer theorem, $Q(U) \in \operatorname{top} Z$ and $Q : U \to Q(U)$ is a homeomorphism. Also, $Q^{-1}(z) = f_t(z)$ and $(\mathcal{P} \circ Q^{-1})(z) = \mathcal{P}(z)$ for any $z \in f_t^{-1}(U) (\subset Q(U))$. The map $f_t|_D$ is continuous by Remark (2.5), hence there is $\mathcal{O} \in \operatorname{top} Z$ for which $(f_t|_D)^{-1}(U) = \mathcal{O} \cap D \cap \operatorname{dom} \mathcal{P}$. By (2.3), $D_0 := \mathcal{O} \cap D \cap Q(U)$ is an open neighbourhood of a. It remains to show that $D_0 \subset \operatorname{dom} \mathcal{P}$. For $z \in D_0$, Remark (2'.1) enables us to choose a sequence $(z_\nu) \in (D_0 \cap \operatorname{dom} \mathcal{P})^{\mathbb{N}}$ convergent to z. Then

$$|z - (\mathcal{P} \circ Q^{-1})(z)| \underset{\nu \to \infty}{\leftarrow} |z_{\nu} - (\mathcal{P} \circ Q^{-1})(z_{\nu})| = |z_{\nu} - \mathcal{P}(z_{\nu})| \underset{\nu \to \infty}{\longrightarrow} \varrho(z, M).$$

Consequently, $\forall z \in D_0 : |z - (\mathcal{P} \circ Q^{-1})(z)| = \varrho(z, M)$. From Corollary (1.6) it follows directly that $D_0 \subset \operatorname{dom} \mathcal{P}$, which completes the proof.

3'. Proofs

Proof of Remark (3.1) is based on the necessary condition for a local minimum of a differentiable function.

(3'.1) LEMMA. If $M \subset Z$ is a submanifold and $F \subset M$ a compact set, then

$$\sup\left\{\varrho\left(\frac{z-y}{|z-y|},T_yM\right): z\in M, y\in F, 0<|z-y|<\delta\right\}\to 0 \quad as \ \delta\to 0.$$

Proof. It is sufficient to show that this condition holds locally on M, i.e. $\forall a \in M \exists \mathcal{O} \in \text{top } M : \mathcal{O} \text{ is a neighbourhood of } a$ and

$$\sup\left\{\varrho\left(\frac{z-y}{|z-y|}, T_yM\right) : y, z \in \mathcal{O}, \ 0 < |z-y| < \delta\right\} \to 0 \quad \text{as } \delta \to 0.$$

Fix $a \in M$ and an inverse chart $f : H \twoheadrightarrow M$ for which $f(a_0) = a$ (where H is a linear subspace of a Euclidean space X, with dim $X = \dim Z$; \Rightarrow denotes a partial mapping). We can assume, diminishing the domain if necessary, that f^{-1} satisfies the Lipschitz condition on its domain. For a fixed convex compact neighbourhood $V \subset \text{dom } f$ of a_0 , the set $\mathcal{O} := f(V)$ will prove to be the suitable neighbourhood of a. The mapping

$$\alpha:]0,\infty[\ni \delta \mapsto \sup\{|f'(u) - f'(v)| : u, v \in V, \ |u - v| \le \delta\}$$

is increasing and $\lim_{\delta \to 0} \alpha(\delta) = 0$. Define $\vartheta := \inf_{h \in V} \min\{|d_h f(\xi)| : |\xi| = 1\}$ $(= |d_{h_1} f(\xi_0)| > 0$ for some $h_1 \in V$ and $\xi_0 \in \{z : |z| = 1\}$). Let L be the Lipschitz constant for f^{-1} . Fix $\varepsilon \in]0, 1]$ and r > 0 for which $\alpha(r) \leq \varepsilon \vartheta/2$. For $\delta \in]0, r/L[$ and $z, z_0 \in f(V)$ with $0 < |z - z_0| \leq \delta$, set $h_0 := f^{-1}(z_0)$, $h := f^{-1}(z)$. We have $|h - h_0| \leq r$ and, by the Lagrange theorem,

$$|f(h) - f(h_0) - d_{h_0}f(h - h_0)| \le \alpha(r)|h - h_0| \le |h - h_0|\frac{\varepsilon\vartheta}{2}$$

In particular, for $\varepsilon = 1$ we obtain

$$\frac{\vartheta}{2} \ge \left| \frac{f(h) - f(h_0)}{|h - h_0|} - d_{h_0} f\left(\frac{h - h_0}{|h - h_0|}\right) \right| \ge \vartheta - \frac{|f(h) - f(h_0)|}{|h - h_0|}$$

and consequently

$$\frac{|h-h_0|}{|f(h)-f(h_0)|} \le \frac{2}{\vartheta} \,.$$

Going back to the general case of $\varepsilon > 0$ and noticing that

$$\frac{z-z_0}{|z-z_0|} = \frac{|h-h_0|}{|f(h)-f(h_0)|} d_{h_0} f\left(\frac{h-h_0}{|f(h)-f(h_0)|}\right) + \frac{|h-h_0|}{|f(h)-f(h_0)|} \left(\frac{f(h)-f(h_0)}{|h-h_0|} - d_{h_0} f\left(\frac{h-h_0}{|f(h)-f(h_0)|}\right)\right)$$

(the first component is in $T_{z_0}M$) we come to the desired conclusion:

$$\begin{split} \varrho \bigg(\frac{z - z_0}{|z - z_0|}, T_{z_0} M \bigg) \\ & \leq \frac{|h - h_0|}{|f(h) - f(h_0)|} \bigg(\frac{f(h) - f(h_0)}{|h - h_0|} - d_{h_0} f\bigg(\frac{h - h_0}{|f(h) - f(h_0)|} \bigg) \bigg) \\ & \leq \frac{2}{\vartheta} \cdot \frac{\varepsilon \cdot \vartheta}{2} = \varepsilon \,. \quad \blacksquare \end{split}$$

Reasoning by reductio ad absurdum it is easy to derive from Lemma (3'.1) the following

(3'.2) LEMMA. If $M \subset Z$ is a submanifold and $F \subset M$ is compact, then $\exists r > 0 \ \forall z \in F : M \cap (\overline{K}_z(r) \setminus \{z\}) = \emptyset.$

(3'.3) LEMMA. Let $S := \{z \in Z : |z| = 1\}$. Fix subspaces X, Y in Z. Denote by d(X,Y) their distance in the Hausdorff metric (see (3.4)). For $\emptyset \neq A, B \subset Z$ put $\varrho(A, B) := \inf\{|a - b| : a \in A, b \in B\}$. Consider $R, \eta > 0$ for which $Rd(X,Y) < \eta$ and a point $a \in B_R \cap X$, where $B_R := \{z \in Z : |z| \leq R\}$. Assume that $\varrho([-Ry, Ry], a + [-Rx, Rx]) \geq \eta$ whenever $y \in S \cap Y$, $x \in S \cap X$ and $|x - y| \leq d(X, Y)$. Then $(B_R \cap Y) \cap (a + (B_R \cap X)) = \emptyset$.

Proof. Let $\Pi : Z \to Y$ stand for the linear orthogonal projection. There is $y \in S \cap Y$ such that $\Pi(a) \in [-Ry, Ry]$, and $x \in S \cap X$ for which $|x - y| = \varrho(y, S \cap X) \ (\leq d(X, Y))$. Hence $|a - \Pi(a)| \geq \eta$. Therefore $(B_R \cap Y) \cap (a + (B_R \cap X)) = \emptyset$, because if $a + tx \in Y \cap (a + (B_R \cap X))$ (for some $|t| \leq R$ and $x \in S \cap X$) then $\Pi(a + tx) = a + tx$ implies

$$\eta \le |\Pi(a) - a| \le R|x - \Pi(x)| \le Rd(X, Y),$$

which contradicts our assumptions. \blacksquare

Proof of Theorem (3.2). To prove (i) we only need to consider the case dim $M < \dim Z$. Let L > 0 be the Lipschitz constant for T on F. Fix $\vartheta, c > 0$ so that $\vartheta < c$ and $\vartheta + c < 1$. From Lemma (3'.1) it follows that there is $\delta \in [0, \vartheta/L]$ for which

$$\sup\left\{\varrho\left(\frac{z-y}{|z-y|}, T_yM\right) : y, z \in F, \ 0 < |z-y| < \delta\right\} \le \frac{1+(c+\vartheta)^2}{2(1+c+\vartheta)}.$$

If we show that $K_{z_1}(\vartheta/L) \cap K_{z_2}(\vartheta/L) = \emptyset$ whenever $z_1, z_2 \in F$ and $0 < |z_1 - z_2| \le \delta$, then $r := \delta/2$ will suit the assertion.

First, we put $S := \{z \in Z : |z| = 1\}$ and prove the auxiliary fact:

$$(3'.4) \qquad \varrho \left(z_1 + \frac{\vartheta}{L} [-\zeta_1, \zeta_1], z_2 + \frac{\vartheta}{L} [-\zeta_2, \zeta_2] \right) \ge c |z_1 - z_2| \text{ whenever } z_1, z_2 \in F, 0 < |z_1 - z_2| < \delta, \, \zeta_i \in S \cap T_{z_i}^{\perp} \ (i = 1, 2) \text{ and } |\zeta_1 - \zeta_2| \le d(T_{z_1}^{\perp}, T_{z_2}^{\perp}) \\ (\text{of course, } T_z^{\perp} := (T_z M)^{\perp}).$$

If (3'.4) were false we could find $t_1, t_2 \in [-\vartheta/L, \vartheta/L]$ for which $|z_1+t_1\zeta_1-z_2-t_2\zeta_2| < c|z_1-z_2|$ and hence $c|z_1-z_2| > |(z_1-z_2)+(t_1-t_2)\zeta_2|-t_1|\zeta_1-\zeta_2|$. The following inequalities hold:

$$|t_i(\zeta_1 - \zeta_2)| \le \frac{\vartheta}{L} d(T_{z_1}^\perp, T_{z_2}^\perp) = \frac{\vartheta}{L} d(T_{z_1}, T_{z_2}) \le \vartheta |z_1 - z_2|$$

(see (3.5)). Putting $s := (t_2 - t_1)/|z_2 - z_1|$ we obtain

$$\left|\frac{z_2 - z_1}{|z_1 - z_2|} + s\zeta_2\right| < c + \vartheta \quad \text{and} \quad |s| \le c + \vartheta + 1$$

Combining these two inequalities we get

$$(c+\vartheta)^2 > 1 + s^2 + 2s \left(\frac{z_2 - z_1}{|z_1 - z_2|} \middle| \zeta_2 \right) \ge 1 - 2|s| \cdot \left| \left(\frac{z_2 - z_1}{|z_1 - z_2|} \middle| \zeta_2 \right) \right|$$

$$\ge 1 - 2(c+\vartheta+1)\varrho \left(\frac{z_2 - z_1}{|z_1 - z_2|}, T_{z_2} \right)$$

$$\ge 1 - 2(c+\vartheta+1) \frac{1 - (c+\vartheta)^2}{2(c+\vartheta+1)} = (c+\vartheta)^2 .$$

This contradiction proves (3'.4).

Now, to show (i) fix $z_1, z_2 \in F$ such that $0 < |z_1 - z_2| \leq \delta$. We can apply Lemma (3'.3) to $X := T_{z_1}^{\perp}$, $Y := T_{z_2}^{\perp}$, $R := \vartheta/L$, $\eta := c|z_1 - z_2|$ and $a := z_2 - z_1$, for we have

$$d(T_{z_1}, T_{z_2}) \le L|z_1 - z_2| = \frac{c|z_1 - z_2|}{\vartheta/L} \cdot \frac{\vartheta}{c} < \frac{\eta}{R},$$

and in view of (3'.4) all the assumptions of Lemma (3'.3) hold. Thus indeed $K_{z_1}(\vartheta/L) \cap K_{z_2}(\vartheta/L) = \emptyset$.

To prove (ii) consider a compact set $\widetilde{F} \subset M$ for which $F \subset \operatorname{int}_M \widetilde{F}$. Fix $z_0 \in F$ and a number $0 < r < \varrho(z_0, M \setminus \operatorname{int}_M \widetilde{F})$ satisfying (i). For $z \in K_{z_0}(r)$ and $\delta := |z - z_0| \ (< r)$ we have $z_0 \in E := \overline{B}(z, \delta) \cap M = \overline{B}(z, \delta) \cap F$. Since E is compact, there is $z_1 \in E \ (\subset M)$ for which $|z_1 - z| = \varrho(z, E) = \varrho(z, M)$. But $|z - z_1| \leq \delta < r$, thus, by Remark (3.1), $z \in K_{z_1}(r) \ (\cap K_{z_0}(r))$ and consequently $z_1 = z_0$.

EXAMPLE 3.7 is easy to analyze. \blacksquare

(3'.5) LEMMA. Consider a submanifold $M \subset Z$ and a continuous function $r: M \to]0, \infty[$ such that for all $z \in M$, $K_z(r(z)) \subset \operatorname{dom} \mathcal{P}$ and $\mathcal{P}|_{K_z(r(z))} \equiv z$. Then $M \subset \bigcup_{z \in M} K_z(r(z)) \in \operatorname{top} Z$.

Proof. Fix $z_0 \in M$, $x_0 \in K_{z_0}(r(z_0))$ and $\vartheta \in \mathbb{R}$ such that $|z_0 - x_0| < \vartheta < r(z_0)$. For a fixed compact neighbourhood $F \subset M$ of z_0 we put $V := F \cap \{z \in M : r(z) \ge \vartheta\}$. Compactness of ∂V enables us to choose $y_0 \in \partial V$ such that $\varrho(x_0, \partial V) = |x_0 - y_0| (> |x_0 - z_0|)$. We claim that $B(x_0, s) \subset \bigcup_{z \in M} K_z(r(z))$, where $s := \min\{\delta/2, \vartheta - |z_0 - x_0|\}$ and $\delta := \varrho(x_0, \partial V) - |z_0 - x_0|$. Indeed, fix $x \in B(x_0, s)$ and $z \in V$ for which $|x - z| = \varrho(x, V)$. Then $z \in M' := \inf_M V$, for otherwise, i.e. if $z \in \partial V$, we would have $|x - z_0| < -\delta/2 + \varrho(x_0, \partial V) \le |x_0 - z| - \delta/2 < |x - z|$, contrary to the choice of z. Hence, by Remark (3.1), $x - z \perp T_z M' = T_z M$. Moreover, $|x - z| \le |x - x_0| + |x_0 - z_0| < \vartheta - |z_0 - x_0| < x_0| + |z_0 - x_0| \le r(z)$, so $x \in K_z(r(z))$. ■

(3'.6) THEOREM. Consider a C^k -submanifold $M \subset Z$ $(k \in \{1, 2, ..., \infty\})$ satisfying condition (3.3). Then there exists a C^k -function $r : M \to]0, \infty[$ such that for all $z \in M$, $K_z(r(z)) \subset \operatorname{dom} \mathcal{P}$ and $\mathcal{P}|_{K_z(r(z))} \equiv z$. Moreover, $\bigcup_{z \in M} K_z(r(z)) \in \operatorname{top} Z$ and

$$\forall z, y \in M : \quad (z \neq y \Rightarrow K_z(r(z)) \cap K_y(r(y)) = \emptyset)$$

Proof. There exists a family $\{F_i\}_{i=1}^{\infty}$ of compact subsets of M such that $M = \bigcup_{i=1}^{\infty} F_i$ and $F_i \subset \operatorname{int}_M F_{i+1}$ (i = 1, 2, ...). Also there are C^k -functions $\lambda_i : M \to [0,1]$ (i = 1, 2, ...) with $\lambda_i|_{F_i} \equiv 1$ and $\operatorname{supp} \lambda_i \subset \operatorname{int}_M F_{i+1}$ (i = 1, 2, ...). Put $\lambda_0 \equiv 0$. By Theorem (3.2), for any $i \in \{1, 2, ...\}$ there is $r_i > 0$ such that for all $z \in F_{i+1}$, $K_z(r_i) \subset \operatorname{dom} \mathcal{P}$ and $\mathcal{P}|_{K_z(r_i)} \equiv z$. Clearly, we can assume that $r_1 \geq r_2 \geq \ldots$. For a fixed $i \in \{1, 2, ...\}$ define h_i : $(\operatorname{int}_M F_{i+1}) \setminus \operatorname{supp} \lambda_{i-1} \to \mathbb{R}$ by $h_i(z) := r_i \lambda_i(z) + r_{i+1}(1 - \lambda_i(z))$. Obviously, this is a C^k -function. If $i \neq j$ and $z \in (\operatorname{dom} h_i) \cap (\operatorname{dom} h_j)$, then $h_i(z) = h_j(z)$, so $r := \bigcup_{i=1}^{\infty} h_i \subset M \times \mathbb{R}$ is a C^k -function on M. Moreover, for any $z \in \operatorname{dom} h_i$ we have $0 < r(z) \leq r_i$, so $r : M \to \mathbb{R}$ satisfies the desired condition. ■

Proof of Theorem (3.8). Theorem (3'.6) ensures the existence of a continuous function $r: M \to]0, \infty[$ such that for all $x \in M$, $K_x(r(x)) \subset$ dom \mathcal{P} and $\mathcal{P}|_{K_x(r(x))} \equiv x$. Fix $\vartheta \in]0, r(a)[$. There is s > 0 for which $B(a, s) \cap M \subset \{x \in M : r(x) > \vartheta\}$. If $r_0 := \min\{s, \vartheta/2\}$, then

$$\mathcal{O} := \bigcup_{x \in M \cap B(a, r_0)} K_x(r_0) = \bigcup_{x \in M \cap \mathcal{O}} K_x(r_0)$$

is an open neighbourhood of a in Z (see (3'.5)). For any $z \in \mathcal{O}$ there exists $x \in \mathcal{O} \cap M$ such that $z \in K_x(r_0)$, thus $\mathcal{O} \subset \operatorname{dom} \mathcal{P}$. The remaining assertion results from the fact that any two distinct elements of the family $\{K_x(r_0)\}_{x\in\mathcal{O}\cap M}$ are disjoint.

Proof of Corollary (3.9). Theorem (3.8) implies the existence of $V \in \text{top } Z$ for which $\mathcal{P}(a) \in V \subset \text{dom } \mathcal{P}$ and $\forall z \in V \forall x \in V \cap M : (z - x \perp T_x M \Rightarrow \mathcal{P}(z) = x)$. For some $\lambda \in]0, 1[$ we have $\tilde{a} := \mathcal{P}(a) + \lambda(a - \mathcal{P}(a)) \in V$. The injection $f_{\lambda} : \text{dom } \mathcal{P} \ni z \mapsto \mathcal{P}(z) + \lambda(z - \mathcal{P}(z))$ is continuous (see (1.3) and (1'.2)); moreover, $f_{\lambda}(a) \in V \cap f_{\lambda}(\Omega) \in \text{top } Z$. Hence, there exists $\mathcal{O} \in \text{top } T_{\mathcal{P}(a)}^{\perp} M$ such that $0 \in \mathcal{O}$ and $\tilde{a} + \lambda \mathcal{O} \subset V \cap f_{\lambda}(\Omega)$. Applying Theorem (3.8) to a fixed $u \in \mathcal{O}$ we obtain $\mathcal{P}(\tilde{a} + \lambda u) = \mathcal{P}(a)$. Since $a + u = f_{\lambda}^{-1}(\tilde{a} + \lambda u) \in \Omega$, it follows that $\mathcal{P}(a + u) = \mathcal{P}(a)$, completing the proof.

Proof of Corollary (3.10). Theorem (3.8) lets us choose a set $V \in \text{top } Z$ for which $\mathcal{P}(a) \in V \subset \text{dom } \mathcal{P}$ and $\forall z \in V \ \forall x \in V \cap M : (z - x \perp T_x M \Rightarrow \mathcal{P}(z) = x)$. Assume that $\mathcal{P}(a) \neq a$ and fix $t \in [0, 1]$ such that $\tilde{a} := \mathcal{P}(a) + t(a - \mathcal{P}(a)) \in V$. Define $\phi_t : \mathcal{O} \ni z \mapsto \phi(z) + t(z - \phi(z)) \in Z$ and $G := \phi_t^{-1}(V) \cap \phi^{-1}(V)$; obviously, $a \in G$. By the choice of V we have $\mathcal{P} \circ \phi_t(z) = \phi(z)$ for any $z \in G$. In order to show injectivity of $\phi_t|_G$ consider

the map

$$Q: \operatorname{dom} \mathcal{P} \ni v \mapsto \frac{1}{t} (v - (1 - t)\mathcal{P}(v)).$$

For any $z \in G$ we have $Q(\phi_t(z)) = z$, so $\phi_t|_G$ (and surely $Q|_{\phi_t(G)}$) is an injection. Hence, by the Brouwer theorem, $\phi_t(G)$ is open. Therefore, $\tilde{a} \in \phi_t(G) \subset \Omega$, which together with injectivity of $Q|_{\phi_t(G)}$ and Theorem (2.8) means that $a \in \Omega$.

To show that $\phi = \mathcal{P}$ in some neighbourhood of *a*—and end the proof in this way—it suffices to prove that $f_t = \phi_t$ in this neighbourhood, where $f_t : \operatorname{dom} \mathcal{P} \ni z \mapsto \mathcal{P}(z) + t(z - \mathcal{P}(z))$. Indeed, for every *z* from the open set $G_0 := G \cap (f_t|_{\Omega})^{-1}(\phi_t(G))$ we have $Q \circ \phi_t(z) = Q \circ f_t(z)$, which, by injectivity of *Q* on the set $\phi_t(G) (\supset \phi_t(G_0), f_t(G_0))$, leads to the conclusion that $f_t|_{G_0} = \phi_t|_{G_0}$, and consequently $\mathcal{P}|_{G_0} = \phi|_{G_0}$.

(3'.7) THEOREM. Let $M \subset Z$ be a C^k -submanifold, $k \in \{2, \ldots, \infty, \omega\}$. Fix $z_0 \in \operatorname{dom} \mathcal{P}$ and consider an inverse chart $f : \mathbb{R}^n \twoheadrightarrow M$ for which $f(x_0) = \mathcal{P}(z_0)$. Then the following conditions are equivalent:

- (i) $z_0 \in \Omega$;
- (ii) M is closed near z_0 (see (2.1)) and the matrix (3.12) is nonsingular.

Moreover, if one of these conditions is satisfied, then \mathcal{P} is of class C^{k-1} in a neighbourhood of z_0 and $\operatorname{im} d_{z_0}\mathcal{P} = T_{\mathcal{P}(z_0)}M$, $\operatorname{ker} d_{z_0}\mathcal{P} = T_{\mathcal{P}(z_0)}^{\perp}M$.

Proof. (i) \Rightarrow (ii). According to Proposition (2.6), M is closed near z_0 . Suppose, contrary to our claim, that det $A_f(z_0) = 0$. This enables us to choose $\xi \in \mathbb{R}^n$ such that $|\xi| = 1$ and

$$\forall i: \quad \sum_{j} \left(\frac{\partial f}{\partial x_i}(x_0) \mid \frac{\partial f}{\partial x_j}(x_0) \right) \xi_j = \sum_{j} \left(\mathcal{P}(z_0) - z_0 \mid \frac{\partial^2 f}{\partial x_i \partial x_j}(x_0) \right) \xi_j.$$

By the Taylor formula,

$$\frac{f(x_0+t\xi) - f(x_0) - d_{x_0}f(t\xi)}{t^2} - \frac{1}{2t^2} \underline{d}_{x_0}^2 f(t\xi) \xrightarrow[t \to 0]{} 0,$$

where $\underline{d}_{x_0}^2 f(t\xi) := d_{x_0}^2 f(t\xi, t\xi)$. Computations using Remark (3.1) lead to the conclusion that

$$\frac{(z_0 - \mathcal{P}(z_0) \mid f(x_0 + t\xi) - f(x_0))}{t^2} - \frac{1}{2} |d_{x_0} f(\xi)|^2 \xrightarrow[t \to 0]{} 0.$$

Corollary (3.9) gives $\varepsilon > 0$ such that $\mathcal{P}(\tilde{z}_0) = \mathcal{P}(z_0)$ for $\tilde{z}_0 := z_0 + \varepsilon(z_0 - \mathcal{P}(z_0))$. So for all $x \in \text{dom } f$ we obtain

$$\begin{aligned} |\widetilde{z}_0 - \mathcal{P}(z_0)|^2 &\leq |\widetilde{z}_0 - f(x)|^2 \\ &= |\widetilde{z}_0 - \mathcal{P}(z_0)|^2 + 2(1+\varepsilon)(z_0 - \mathcal{P}(z_0) \mid f(x_0) - f(x)) \\ &+ |f(x_0) - f(x)|^2 \,, \end{aligned}$$

which for $x = x_0 + t\xi$ implies

$$2(1+\varepsilon)\frac{(z_0 - \mathcal{P}(z_0) \mid f(x_0 + t\xi) - f(x_0))}{t^2} \le \left|\frac{f(x_0 + t\xi) - f(x_0)}{t}\right|^2$$

and further, as t tends to zero,

$$|\partial^{\xi} f(x_0)| \le 0$$

 $(\partial^{\xi} f(x_0))$ is the Gateaux derivative of f). This means that $d_{x_0}f$ is not a monomorphism, which is impossible.

(ii) \Rightarrow (i). Consider the C^k -mapping $B: Z \times \text{dom } f \to \mathbb{R}^n$,

$$B(z,x) := \left(\left(f(x) - z \mid \frac{\partial f}{\partial x_1}(x) \right), \dots, \left(f(x) - z \mid \frac{\partial f}{\partial x_n}(x) \right) \right).$$

Notice that for (z_0, x_0) (\in dom B) the differential $d_{x_0}B(z_0, \cdot)$ is an automorphism of \mathbb{R}^n (for $A_f(z_0)$ is its matrix in the canonical basis of \mathbb{R}^n). Since $B(z_0, x_0) = 0$, there exists a C^{k-1} -map $\psi : Z \Rightarrow \mathbb{R}^n$ such that $\psi(z_0) = x_0$ and $\psi \subset \{(z, x) : B(z, x) = 0\}$. Its differential $d_{z_0}\psi$ is an epimorphism. Therefore, the mapping $\phi := f \circ \psi$, of class C^{k-1} , satisfies im $d_{z_0}\phi = T_{z_0}M$. Obviously, for all $i \in \{1, \ldots, n\}$, $\phi(z) - z \perp \frac{\partial f}{\partial x_i}(\phi(z))$ (see (3.1)), so ϕ satisfies the assumptions of Corollary (3.10) (see (3.6)). Thus $z_0 \in \Omega$ (and $\phi = \mathcal{P}$ in a neighbourhood of z_0), which is our claim.

Now assume that either (i) or (ii) is satisfied. Repeating the construction from the proof of (ii) \Rightarrow (i) we conclude that $\mathcal{P} (= \phi)$ is of class C^{k-1} in a neighbourhood of z_0 . We also know that $\operatorname{im} d_{z_0} \mathcal{P} = T_{z_0} M$. In order to find ker $d_{z_0} \mathcal{P}$ we choose $\mathcal{O} \in \operatorname{top} T^{\perp}_{\mathcal{P}(z_0)}$ such that $0 \in \mathcal{O}$ and $\mathcal{P} \equiv \mathcal{P}(z_0)$ on $z_0 + \mathcal{O}$ (see (3.9)). For $u \in T^{\perp}_{\mathcal{P}(z_0)}$ such that $tu \in \mathcal{O}$, we have

$$0 = \frac{\mathcal{P}(z_0 + tu) - \mathcal{P}(z_0)}{t} \xrightarrow[t \to 0]{} \partial^u \mathcal{P}(z_0)$$

Thus $T_{\mathcal{P}(z_0)}^{\perp} \subset \ker d_{z_0}\mathcal{P}$. Also dim $T_{\mathcal{P}(z_0)}^{\perp} = \dim \ker d_{z_0}\mathcal{P}$, so these spaces are indeed equal.

Proof of Theorem (3.11). This follows directly from Theorem (3'.7).

Proof of Theorem (3.13). (a) Fix $(a, a') \in Z \times M$ such that $|a-a'| = \varrho(a, M)$ and an inverse chart $f : \mathbb{R}^n \twoheadrightarrow M$ of class C^2 for which $a' \in \text{im } f$. For any $z \in]a, a']$ consider the matrix (3.12) and the polynomial

$$w: [0,1[\ni t \mapsto \det A_f(a'+t(a-a'))).$$

Clearly, $w(0) \neq 0$; thus $\#\{w = 0\} < \infty$. There is $\delta > 0$ such that $w(t) \neq 0$ for all $t \in [1-\delta, 1[$. Fix $t \in [1-\delta, 1[$. Since M is closed near $z_t := a' + t(a-a')$ (see (2.7)), $z_t \in \Omega$ (see (3.11)). We conclude from Theorem (1.5) that $[z_t, a'] \subset \Omega$ for all $t \in [1-\delta, 1[$. Consequently, $[a, a'] \subset \Omega$.

- (b) Let $a \in \operatorname{dom} \mathcal{P}$ and $a' \in M$.
- $(i) \Rightarrow (ii)$. This results from (a) and Remark (3.1).
- (ii) \Rightarrow (i). Assume that $]a, a'] \subset \Omega$ and $a a' \perp T_{a'}M$. The set

$$I := \{t \in [0,1] : \mathcal{P}(a' + t(a - a')) = a'\}$$

is non-empty $(0 \in I)$ and closed in [0,1[. It is also open in [0,1[, because for fixed $t \in I$ and $x := a' + t(a' - a) (\in \Omega)$ one can choose $\delta > 0$ such that $\mathcal{P}(a' + (t + \delta)(a - a')) = \mathcal{P}(\delta(a - a') + x) = a'$ (see (3.9)), which means that $[0, \min\{1, t + \delta\}[\subset I$. Hence I = [0, 1[, i.e. $\mathcal{P}(z) = a'$ for any $z \in]a, a']$. From this we deduce that $\varrho(a, M) = |a - a'|$ and $\mathcal{P}(a) = a'$.

Proof of Corollary (3.14). Fix $z \in \overline{\operatorname{dom} \mathcal{P}}$ and a sequence $(z_{\nu}) \in (\operatorname{dom} \mathcal{P})^{\mathbb{N}}$ convergent to z. By Theorem (3.13), $]z_{\nu}, \mathcal{P}(z_{\nu})] \subset \Omega$ for any $\nu \in \mathbb{N}$. Define

$$x_{\nu} := z_{\nu} + \frac{1}{\nu} (\mathcal{P}(z_{\nu}) - z_{\nu}) \in \Omega, \quad \nu = 1, 2, \dots$$

This sequence is convergent to z, since $(|z_{\nu} - \mathcal{P}(z_{\nu})|)_{\nu=1}^{\infty}$ is bounded. Hence $\overline{\operatorname{dom} \mathcal{P}} \subset \overline{\Omega} \ (\subset \overline{\operatorname{dom} \mathcal{P}}).$

4'. Proofs

Proof of Theorem (4.1). We only need to show (i) (see (3'.7)). It follows from the equalities $\mathcal{P} \circ \mathcal{P} = \mathcal{P}$ and $d_z \mathcal{P} \circ d_z \mathcal{P} = d_z \mathcal{P} \; (\forall z \in M)$.

(4'.1) LEMMA. Let $M \subset Z$ be a C^2 -submanifold. Fix $z \in \Omega$ and an inverse chart $f : \mathbb{R}^n \twoheadrightarrow M$ of class C^2 such that $f(x) = \mathcal{P}(z)$. Let $\widetilde{A}_f(z)$ stand for the endomorphism of \mathbb{R}^n given by the matrix (3.12) in the canonical basis. Then

$$\forall \zeta \in Z: \quad d_z \mathcal{P}(\zeta) = (d_x f \circ \widetilde{A}_f(z)^{-1}) \left(\left(\zeta \left| \frac{\partial f}{\partial x_1}(x) \right), \dots, \left(\zeta \left| \frac{\partial f}{\partial x_n}(x) \right) \right) \right).$$

Proof. This follows from the proof of Theorem (3'.7) ((ii)⇒(i)). ■

The following two definitions are useful in formulating and proving the next theorems:

Let X, Y be finite-dimensional real linear spaces. Fix $z \in X$, a subspace H in X and a mapping $g: X \Leftrightarrow Y$ of a neighbourhood of z.

We say that g is differentiable at z with respect to H iff $g \circ \tau_z \circ \iota_H$ is differentiable at zero (where $\iota_H : H \ni h \mapsto h \in X$, while τ_z denotes translation by z). We write

$${}^{H}d_{z}g := d_{0}(g \circ \tau_{z} \circ \iota_{H}).$$

Next, we say that a sequence of linear operators $\alpha_{\nu} : X \Leftrightarrow Y$ with non-zero domains ($\nu = 1, 2, ...$) is convergent to a non-zero linear operator $\alpha: X \twoheadrightarrow Y$ iff $\alpha_{\nu} \to \alpha$ as $\nu \to \infty$ in $X \times Y$ with respect to the Hausdorff metric.

We will use the following properties of this kind of convergence:

(4'.3) Let $l \in L(X,Y)$ and $(l_{\nu}) \in L(X,Y)^{\mathbb{N}}$. Then $l_{\nu} \to l$ in the Banach space L(X,Y) iff $l_{\nu} \to l$ in the Hausdorff metric in $X \times Y$.

$$\begin{cases} (4'.4) \ The \ map \\ \left\{ (A,B) : \begin{array}{l} A,B \ are \ non-zero \ linear \ subspaces \\ of \ X \ with \ A \cap B = 0 \\ \mapsto A + B \in \{E \neq 0 : E \ is \ a \ linear \ subspace \ of \ X \} \end{cases}$$

is continuous.

(4'.5) Let $L: Y \to W$ be a linear operator with W a finite-dimensional space, and let $\alpha: X \Leftrightarrow Y$ be a partial linear operator. Also, let $\alpha_{\nu}: X \Leftrightarrow Y$ and $L_{\nu}: Y \to W$ be linear operators ($\forall \nu \in \mathbb{N}$). If $\alpha_{\nu} \to \alpha$ and $L_{\nu} \to L$ as $\nu \to \infty$, then $L_{\nu} \circ \alpha_{\nu} \to L \circ \alpha$.

(4'.6) For a linear subspace A of X let $\iota_A : A \to X$ denote the canonical inclusion. Then the map

{non-zero linear subspaces of X} $\ni B$

 $\mapsto \iota_B \in \{non\text{-}zero \ linear \ subspaces \ of \ X^2\}$

is continuous.

The proofs of the above facts are based on the following criterion:

(4'.7) A function $f : X \to \{\alpha : Y \twoheadrightarrow W \mid \{(0,0)\} \neq \alpha \text{ is linear}\}$ is continuous at $x_0 \in X$ iff

 $\begin{aligned} \forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x \in X : \{ |x - x_0| \leq \delta, v_x \in S \cap \operatorname{dom} f(x), v \in S \cap \operatorname{dom} f(x_0), \\ |v - v_x| \leq \delta \} \Rightarrow |f(x)(v_x) - f(x_0)(v)| \leq \varepsilon \,, \end{aligned}$

where S stands for the unit sphere in Y. (Clearly, the last condition is independent of the choice of norms in X, Y, W.)

The criterion (4'.7) is a consequence of the following facts:

(4'.8) Let $C \subset X$ be a cone in X, i.e. by definition, $]0, \infty[\cdot C \subset C$. If C is open, then the class

$$\tilde{C} := \{ E \in \mathcal{G}_p(X) : E \setminus \{0\} \subset C \}$$

is open in the Grassmann manifold $\mathcal{G}_p(X)$ of p-dimensional subspaces of X.

(4'.9) Let a family $\{C_{\nu}\}_{\nu=1}^{\infty}$ of closed cones be a base of cone neighbourhoods of a subspace $E \in \mathcal{G}_p(X)$, i.e. by definition:

• $\forall \nu : C_{\nu+1} \subset C_{\nu};$

• $\forall \nu : E \setminus \{0\} \subset \operatorname{int} C_{\nu};$

•
$$\bigcap_{\nu=1}^{\infty} C_{\nu} = E.$$

Then $\{\operatorname{int} C_{\nu}\}_{\nu=1}^{\infty}$ is a neighbourhood base of E in the topological space $\mathcal{G}_p(X)$.

Let $\alpha_0 := f(x_0) : Y \Leftrightarrow W$ be a partial linear operator from the criterion (4'.7), while $Q : Y \to \operatorname{dom} \alpha_0$ the linear orthogonal projection in the sense of a fixed inner product in Y. Then the family

$$C_{\nu} := \{ (y, w) \in Y \times W : \\ ||Q(y)|y - |y|Q(y)| + ||Q(y)|w - \alpha_0(|y|Q(y))| \le \frac{1}{\nu}|y| |Q(y)| \} \\ \cap \{ (y, w) : |w - \alpha_0(Q(y))| \le \frac{1}{2}|y| \le |Q(y)| \}$$

 $(\nu = 1, 2, ...)$ of closed cones is a base of cone neighbourhoods of the subspace $\alpha_0 \subset Y \times W$. The proof of (4'.7) rests on this fact.

(4'.10) LEMMA. Let $M \subset Z$ be a C^2 -submanifold. Let $z \in \Omega$ and let $f : \mathbb{R}^n \Leftrightarrow M$ be an inverse chart for which $f(x) = \mathcal{P}(z)$. Fix $\zeta \in Z$ and put $\psi := f^{-1} \circ \mathcal{P}_{\Omega}$. Then $\partial^{\zeta} \psi$ is differentiable at z with respect to $T_{\mathcal{P}(z)}^{\perp}$ and for $v \in T_{\mathcal{P}(z)}^{\perp}$,

$$T^{\perp}_{\mathcal{P}(z)}d_{z}(\partial^{\zeta}\psi)(v) = \partial^{v}(\partial^{\zeta}\psi)(z) = \sum_{i,j} \left(v \left| \frac{\partial^{2}f}{\partial x_{i}\partial x_{j}}(x) \right) \partial^{\zeta}\psi_{j}(z) \cdot \widetilde{A}_{f}(z)^{-1}(e_{i}) \right.$$

where ψ_j denotes the *j*-th coordinate function of ψ , $\{e_1, \ldots, e_n\}$ is the canonical basis in \mathbb{R}^n and $\widetilde{A}_f(z)$ is the endomorphism of \mathbb{R}^n with matrix $A_f(z)$ (see (3.12)), i.e. $(\widetilde{A}_f(z))(\xi) = \sum_{i,j} A_f(z)_{ij} \cdot \xi_j e_i$ for $\xi \in \mathbb{R}^n$.

Proof. By (3.6) we can apply Corollary (3.9) to find $\mathcal{O} \in \text{top } T_{\mathcal{P}(z)}^{\perp}$ such that $0 \in \mathcal{O}$ and $\mathcal{P} \equiv \mathcal{P}(z)$ on $z + \mathcal{O}$. In view of Lemma (4'.1) for every $v \in \mathcal{O}$ we have $z + v \in \text{dom } \psi$ and

$$(4'.11) \quad \partial^{\zeta}\psi(z+v) = \widetilde{A}_f(z+v)^{-1}\left(\left(\zeta \mid \frac{\partial f}{\partial x_1}(x)\right), \dots, \left(\zeta \mid \frac{\partial f}{\partial x_n}(x)\right)\right).$$

Also

$$\widetilde{A}_f(z+v) = \widetilde{A}_f(z) - \sum_{i,j} \left(v \left| \frac{\partial^2 f}{\partial x_i \partial x_j}(x) \right) e_j^* \cdot e_i \right.$$

where $\{e_1^*, \ldots, e_n^*\}$ is the dual basis to $\{e_1, \ldots, e_n\}$. The mapping μ : Aut $\mathbb{R}^n \\ \ni E \mapsto E^{-1} \in \operatorname{Aut} \mathbb{R}^n$ is analytic (as the solution of the implicit equation $R(E, \mu(E)) = 0$, where $R : (\operatorname{Aut} \mathbb{R}^n)^2 \ni (E, F) \mapsto E \circ F - \operatorname{id}_{\mathbb{R}^n}$). For $L \in \operatorname{End} \mathbb{R}^n$ we have $d_E \mu(L) = -E^{-1} \circ L \circ E^{-1}$. Also each $\xi \in \mathbb{R}^n$ defines the analytic mapping $\xi^{**} : \operatorname{End} \mathbb{R}^n \in L \mapsto L(\xi) \in \mathbb{R}^n$. In this notation, for

$$\xi := \left(\left(\zeta \mid \frac{\partial f}{\partial x_1}(x) \right), \dots, \left(\zeta \mid \frac{\partial f}{\partial x_n}(x) \right) \right)$$

the relation (4'.11) takes the form

$$\partial^{\zeta}\psi(z+v) = (\xi^{**} \circ \mu)(\widetilde{A}_{f}(z+v))$$
$$= (\xi^{**} \circ \mu)\left(\widetilde{A}_{f}(z) - \sum_{i,j} \left(v \mid \frac{\partial^{2}f}{\partial x_{i}\partial x_{j}}(x)\right)e_{j}^{*} \cdot e_{i}\right).$$

So $\partial^{\zeta} \psi$ is differentiable at z with respect to $T_{\mathcal{P}(z)}^{\perp}$.

In order to find the explicit form of $\partial^v (\partial^\zeta \psi)(z)$ for $v \in T_{\mathcal{P}(z)}^{\perp}$, put

$$\gamma(t) := \widetilde{A}_f(z) - t \sum_{i,j} \left(v \left| \frac{\partial^2 f}{\partial x_i \partial x_j}(x) \right) e_j^* \cdot e_i \quad \text{for } t \in \mathbb{R} \right.$$

Then

$$\begin{aligned} \partial^{v}(\partial^{\zeta}\psi)(z) &= \frac{d}{dt}\partial^{\zeta}\psi(z+tv)\Big|_{t=0} = (d_{\gamma(0)}(\xi^{**}\circ\mu))(\gamma'(0)) \\ &= -\xi^{**}(\gamma(0)^{-1}\circ\gamma'(0)\circ\gamma(0)^{-1}) \\ &= \widetilde{A}_{f}(z)^{-1}\bigg(\sum_{i,j}\bigg(v\bigg|\frac{\partial^{2}f}{\partial x_{i}\partial x_{j}}(x)\bigg)\partial^{\zeta}\psi_{j}(z)\cdot e_{i}\bigg)\,,\end{aligned}$$

which is the desired conclusion. \blacksquare

(4'.12) LEMMA (the curvilinear version of the theorem on the existence of the Fréchet differential). Let $M \subset Z$ be a C^2 -submanifold and $a \in M$. Let Y denote a finite-dimensional linear space, and $g: Z \Leftrightarrow Y$ a mapping of a neighbourhood of a such that $g_M := g|_M$ is differentiable at a. Assume that in a neighbourhood of a the differentials

$$L_z := {}^{T_{\mathcal{P}(z)}^{\perp}} d_z g$$

exist, and

$$L_z \xrightarrow[z \to a]{} L_a$$

Then g is differentiable at a.

Proof. We will reduce this problem to the classical theorem. Consider a Euclidean space X of dimension dim Z, its subspace H of dimension dim M and an inverse chart $f: H \Leftrightarrow M$ of class C^2 for which f(0) = a. There exists a C^2 -diffeomorphism $\Phi: X \Leftrightarrow Z$ such that $\Phi(0) = a, f|_{H \cap \text{dom } \Phi} \subset \Phi$ and for all $x \in \text{dom } \Phi$, the map $H^{\perp} \ni v \mapsto \Phi(x+v) - \Phi(x)$ is contained in the linear isometry of H^{\perp} and $T^{\perp}_{f(x')}$ (where x' stands for the orthogonal projection of x onto H). In view of Theorem (3.8) we can assume that $\text{im } \Phi \subset \text{dom } \mathcal{P}$ and $\mathcal{P}(z) = w$ whenever $z \in \text{im } \Phi, w \in M \cap \text{im } \Phi$ and $z - w \perp T_w M$. We will show that $g \circ \Phi$ satisfies the assumptions of the classical theorem on the existence of the Fréchet differential, which will complete the proof.

Obviously, the differential ${}^{H}d_{0}(g \circ \Phi)$ exists. Write $\mathcal{O} := (\operatorname{dom} \Phi) \cap \Pi^{-1}(\operatorname{dom} f \cap \operatorname{dom} \Phi)$ ($\in \operatorname{top} X$), where $\Pi : X \to H$ is the linear orthogonal projection. Also, fix $x \in \mathcal{O}$ and put $x' := \Pi(x)$. Then $\Phi(x) - f(x') = \Phi(x' + (x - x')) - \Phi(x') \in T^{\perp}_{f(x')}$, therefore $\mathcal{P}(\Phi(x)) = f(x')$ and $L_{\Phi(x)} = d_{0}(g \circ \tau_{\Phi(x)} \circ \iota_{T^{\perp}_{f(x')}})$. Consider $u \in H^{\perp}$ such that $x + u \in \operatorname{dom} \Phi$. Then

$$(g \circ \Phi)(u+x) = (g \circ \tau_{\Phi(x)} \circ \iota_{T^{\perp}_{f(x')}})(\Phi(x+u) - \Phi(x)).$$

The differential of $H^{\perp} \ni u \mapsto \Phi(x+u) - \Phi(x)$ at zero is an isometry of H^{\perp} and $T^{\perp}_{f(x')}$, contains the function itself and is the differential of Φ at x with respect to H^{\perp} . Thus in a neighbourhood of zero we have

$$(g \circ \Phi) \circ \tau_x \circ \iota_{H^{\perp}} = (g \circ \tau_{\Phi(x)} \circ \iota_{T^{\perp}_{f(x')}}) \circ d_x \Phi \circ \iota_{H^{\perp}},$$

from which it follows that ${}^{H^{\perp}}d_x(g \circ \Phi)$ exists for all $x \in \mathcal{O}$ and is equal to $\iota_{\Phi(x)} \circ d_x \Phi \circ \iota_{H^{\perp}}$.

Knowing that ${}^{H}d_{0}(g \circ \Phi)$ exists we are reduced to proving that

$${}^{H^{\perp}}d_x(g \circ \Phi) \xrightarrow[x \to 0]{}^{H^{\perp}}d_0(g \circ \Phi)$$

in the Banach space $L(H^{\perp}, Y)$ or, which is equivalent, in the Hausdorff metric (see (4'.3)). We will use the criterion (4'.7). Fix $\varepsilon > 0$. Since $L_z \to L_a$ as $z \to a$, there is $\delta > 0$ such that

$$\forall |z-a| \le \delta, \ v_z \in S \cap T_{f(z')}^{\perp}, \ v \in S \cap T_a^{\perp}, \ |v-v_z| \le \delta: \quad |L_z(v_z) - L_a(a)| \le \varepsilon.$$

Since $0 \in \mathcal{O}$ and Φ and Φ' (the derivative of Φ) are continuous, there is $\vartheta > 0$ such that if $|x| < \vartheta$, then $x \in \mathcal{O}$, $|\Phi(x) - a| \le \delta$ and $|d_x \Phi - d_0 \Phi| \le \delta$. Now fix $x \in X$ such that $|x| \le \delta$ and define $v_{\Phi(x)} := {}^{H^\perp} d_x \Phi(u), v := {}^{H^\perp} d_0 \Phi(u)$. The functions $d_x \Phi \circ \iota_{H^\perp}$ and $d_0 \Phi \circ \iota_{H^\perp}$ are isometries, therefore $|v_{\Phi(x)}| = |v| = 1$. Hence $|{}^{H^\perp} d_x (g \circ \Phi)(u) - {}^{H^\perp} d_0 (g \circ \Phi)(u)| \le \varepsilon$.

(4'.13) THEOREM (global version of (4'.12)). Consider a C^2 -submanifold $M \subset Z$ and a mapping $g: Z \twoheadrightarrow Y$ of a subset dom $g \in \text{top } Z$ of the domain of \mathcal{P} with values in a finite-dimensional linear space Y. Suppose that $g_M := g|_M$ is of class C^1 and $T^{\perp}_{\mathcal{P}(z)}d_z g$ exists for any $z \in \text{dom } g$. Moreover, assume that the function

$$\operatorname{dom} g \ni z \mapsto {}^{T^{\perp}_{\mathcal{P}(z)}} d_z g$$

is continuous in the Hausdorff metric at any point of $M \cap \text{dom } g$. Then

- (i) g is differentiable at a for all $a \in M \cap \text{dom } g$;
- (ii) the function $M \cap \operatorname{dom} g \ni a \mapsto d_a g$ is continuous.

Proof. By Lemma (4'.12) it remains to prove (ii). The map $G := g_M \circ \mathcal{P}_{\Omega}$ ($\mathcal{P}_{\Omega} := \mathcal{P}|_{\Omega}$) is of class C^1 (see (4.1)) and $M \cap \text{dom } G = M \cap \text{dom } g$.

For $z \in M \cap \text{dom } g$ we denote by $\alpha_z : T_z \hookrightarrow Z$ the inclusion. Theorem (4.1) states that $d_z \mathcal{P}$ is the orthogonal projection onto T_z , so

$$\forall z \in M \cap \operatorname{dom} g: \quad d_z G \circ \alpha_z = d_z g \circ \alpha_z \ (={}^{T_z} d_z g) \,.$$

The map $M \ni z \mapsto T_z M$ is of class C^1 . On the other hand, $\mathcal{G}_{\dim M}(Z) \ni U \mapsto \iota_U \in L(U,Z)$ is continuous (see (4'.6)). This yields the continuity of

$$M \cap \operatorname{dom} G \ni z \mapsto d_z G \circ \alpha_z = {}^{T_z} d_z g \in \mathcal{G}_{\operatorname{dim} Z}(Z \times Y)$$

(see (4'.5)). From this we conclude that

$$d_z g = {}^{T_z} d_z g \oplus {}^{T_z^{\perp}} d_z g \xrightarrow[M \ni z \mapsto a]{}^{T_a} d_a g \oplus {}^{T_a^{\perp}} d_a g = d_a g$$

(see (4'.4)).

Proof of Theorem (4.2). It is sufficient to show that the assertion holds locally. Let $f : \mathbb{R}^n \Leftrightarrow M$ be an inverse chart of class C^2 and, according to the notation of Lemma (4'.10), set $\psi := f^{-1} \circ \mathcal{P}$. This is a C^1 -mapping. The proof will be completed when we prove that for any $\zeta \in Z$, $\partial^{\zeta} \psi$ is differentiable and the function im $f \ni x \mapsto d_x(\partial^{\zeta} \psi)$ is continuous.

Fix $\zeta \in Z$. Intending to make use of Theorem (4'.13) we have to show that $(\partial^{\zeta}\psi)_M$ is of class C^1 and that for $z \in \operatorname{dom} \psi$, the differentials $T^{\perp}_{\mathcal{P}(z)}d_z(\partial^{\zeta}\psi)$ exist and converge to $T^{\perp}_{z_0}d_{z_0}(\partial^{\zeta}\psi)$ as $z \to z_0 \ (\in M)$. In the notation of (4'.11),

$$\partial^{\zeta}\psi(z)$$

$$= \left(\sum_{i,j} \left(\frac{\partial f}{\partial x_i}(x) \mid \frac{\partial f}{\partial x_j}(x)\right) e_j^* \cdot e_i\right) \left(\left(\zeta \mid \frac{\partial f}{\partial x_1}(x)\right), \dots, \left(\zeta \mid \frac{\partial f}{\partial x_n}(x)\right)\right)$$

for z = f(x) ($x \in \text{dom } f$). The right-hand side is a C^1 -function of x, thus $(\partial^{\zeta} \psi)_M$ is of class C^1 . Now we only have to show that

$${}^{T^{\perp}_{\mathcal{P}(z)}}d_{z}(\partial^{\zeta}\psi) \xrightarrow[z \to z_{0}]{}^{T^{\perp}_{z_{0}}}d_{z_{0}}(\partial^{\zeta}\psi)$$

where $z_0 \in \text{im } f$. This follows from the criterion (4'.7) and from $T_{\mathcal{P}(z)} \to T_{z_0}$ and $T_{\mathcal{P}(z)}^{\perp} \to T_{z_0}^{\perp}$ as $z \to z_0$ (see (3.5)).

Discussion of Example (4.3). Consider the C^2 -embedding $f: \mathbb{R} \to \mathbb{R}^2$ given by

$$f(t) := \begin{cases} \left(t, \frac{1}{3}t^3\right), & t \ge 0, \\ \left(t, 0\right), & t < 0. \end{cases}$$

and the submanifold $M := f(\mathbb{R})$. Suppose, contrary to our claim, that

(4'.14) \mathcal{P} is twice differentiable in a neighbourhood of (0,0).

Then there is r > 0 such that \mathcal{P} is twice differentiable in $U := \left] -r, r\right[^2$ and

$$\forall z \in U \ \forall w \in U \cap M : \quad z - w \perp T_w M \ \Rightarrow \ \mathcal{P}(z) = w$$

(see (3.8)). Thus, for $z = (z_1, z_2) \in U \cap \{(x, y) : x \le 0\}$ we have (4'.15) $z_1 = (f^{-1} \circ \mathcal{P})(z)$.

Fix $\lambda \in [0, r]$ and define the C^2 -curve

$$g_{\lambda} : \mathbb{R} \ni t \mapsto f(t) + (-\lambda t^2, \lambda).$$

There is $\delta > 0$ such that for all $t \in [0, \delta]$, $t^4 - 2\lambda t + 1 > 0$ and $g_{\lambda}(t), f(t) \in U$ and $\mathcal{P}(g_{\lambda}(t)) = f(t)$. In view of (4'.14) the map

$$\kappa(t) := \partial^{e_1} (f^{-1} \circ \mathcal{P}_{\Omega})(g_{\lambda}(t))$$

is differentiable in a neighbourhood of zero. We have det $A_f(g_{\lambda}(t)) = t^4 - 2\lambda t + 1 \neq 0$ for $t \in [0, \delta]$ (see (3.12)), so by (4'.11), $\kappa(t) = 1/(t^4 - 2\lambda t + 1)$ for any $t \in [0, \delta]$. Therefore $\kappa'(0^+) = 2\lambda \neq 0$. On the other hand, (4'.15) yields $\partial^{e_1}(f^{-1} \circ \mathcal{P}_{\Omega}) \equiv 1$ in $U \cap \{(x, y) : x \leq 0\}$, thus $\kappa'(0^-) = 0$, a contradiction.

Proof of Proposition (4.4). The mapping

$$\varrho: \Omega \setminus M \ni x \mapsto |x - \mathcal{P}(x)| \in \mathbb{R}$$

is of class C^1 . For all $b \in Z \setminus \{0\}$ one obtains

$$\partial^b \varrho^2(x) = 2(x - \mathcal{P}(x) \mid b - \partial^b \mathcal{P}(x))$$

= 2(x - \mathcal{P}(x) \end b) - 2(x - \mathcal{P}(x) \end d_x \mathcal{P}(b))
= 2(x - \mathcal{P}(x) \end b),

since $x - \mathcal{P}(x) \in T_{\mathcal{P}(x)}^{\perp}$ and $d_x \mathcal{P}(b) \in T_{\mathcal{P}(x)}$. On the other hand, $\partial^b(\lambda^2) = 2\varrho \cdot \partial^b \varrho$, so $2\varrho(x) \cdot \partial^b \varrho(x) = 2(x - \mathcal{P}(x) \mid b)$, and finally,

$$\partial^b \varrho(x) = \left(\frac{x - \mathcal{P}(x)}{|x - \mathcal{P}(x)|} \mid b \right). \blacksquare$$

5'. Proofs

(5'.1) REMARK. For every submanifold $M \subset Z$ the following conditions are equivalent:

(i) M is non-empty, convex and closed;

(ii) M is an affine subspace of Z.

Proof. (ii) \Rightarrow (i) is obvious.

(i) \Rightarrow (ii). One can assume that $0 \in M$. Let $H := \operatorname{Lin} M$, $n := \dim H$ ($\geq \dim M$), $\{e_1, \ldots, e_n\} \subset M$ be a basis of H and $\{e_1^*, \ldots, e_n^*\}$ the dual basis. The set

$$\{h \in H : (e_1^* + \ldots + e_n^*)(h) < 1\} \cap \bigcap_{i=1}^n \{h \in H : e_i^*(h) > 0\} \subset \operatorname{conv}\{0, e_1, \ldots, e_n\}$$

is non-empty, open in H and contained in M. Therefore dim M = n, and consequently $M \in \text{top } H$. Finally, H = M.

Proof of Theorem (5.3). This follows (even for M being a C^1 -submanifold) immediately from (5.2) and (5'.1). We will present a more elementary proof without the use of Theorem (5.2). The set M is closed, because if $(x_n) \in M^{\mathbb{N}}$ converges to $z \in Z$, then $0 = |x_n - \mathcal{P}(x_n)| \to |z - \mathcal{P}(z)|$ as $n \to \infty$. Hence $z = \mathcal{P}(z) \in M$. In view of Remark (5'.1) it suffices to prove the convexity of M. Fix $a \in Z$ and set

$$J := \left\{ t \in \mathbb{R}_+ : \mathcal{P}(\mathcal{P}(a) + t(a - \mathcal{P}(a))) = \mathcal{P}(a) \right\},\$$

where $\mathbb{R}_+ := [0, \infty[$. Notice that $J \in (\operatorname{cotop} \mathbb{R}_+) \setminus \{\emptyset\}$. Simultaneously $J \in \operatorname{top} \mathbb{R}_+$. In order to prove this, fix $t_0 \in J$ and put $b := \mathcal{P}(a) + t_0(a - \mathcal{P}(a))$. By Corollary (3.9) there exists $\mathcal{O} \in \operatorname{top} T_{\mathcal{P}(a)}^{\perp}$ such that $0 \in \mathcal{O}$ and $\mathcal{P} \equiv \mathcal{P}(a)$ on $b + \mathcal{O}$. Moreover, there is $\delta > 0$ for which $\delta(a - \mathcal{P}(a)) \in \mathcal{O}$. Thus $\mathcal{P}(a) = \mathcal{P}(b + \delta(a - \mathcal{P}(a)))$, which means that $[0, t_0 + \delta] \subset J$. Consequently, $J = \mathbb{R}_+$.

Now we show that M is contained in the half-space $\Pi(a) := \{z \in Z : (z - \mathcal{P}(a) \mid a - \mathcal{P}(a)) \le 0\}$. Fix $x \in M$ and $t \in J$ $(= \mathbb{R}_+)$. We have

$$\left|\mathcal{P}(a) + t(a - \mathcal{P}(a)) - x\right| \ge \left|\mathcal{P}(a) + t(a - \mathcal{P}(a)) - \mathcal{P}(a)\right|,$$

which is equivalent to the inequality

$$(x - \mathcal{P}(a) \mid a - \mathcal{P}(a)) \le \frac{1}{2t} |\mathcal{P}(a) - x|^2$$

for all t > 0, so indeed $x \in \Pi(a)$ ($\forall a \in Z$). Therefore $M \subset \bigcap_{a \in Z} \Pi(a)$. The inverse inclusion also holds, since for $z \in \bigcap_{a \in Z} \Pi(a)$ we have, in particular, $z \in \Pi(z)$. This implies $z = \mathcal{P}(z) \in M$. As a consequence, $M (= \bigcap_{a \in Z} \Pi(a))$ is convex.

6'. Proofs

(6'.1) REMARK. Consider a concave function $f : \mathbb{R}^k \to \mathbb{R}$ (i.e. such that the set $\{(x, y) \in \mathbb{R}^k \times \mathbb{R} : f(x) \ge y\}$ is convex) and the orthogonal projection $\mathcal{P} : \mathbb{R}^k \times \mathbb{R} \twoheadrightarrow f$. Then $\{(x, y) \in \mathbb{R}^k \times \mathbb{R} : f(x) \le y\} \subset \operatorname{dom} \mathcal{P}$.

(6'.2) REMARK. Consider a Euclidean space Z, a set $M \subset Z$, the orthogonal projection $\mathcal{P}: Z \Leftrightarrow M$ and a subset $U \subset Z$. Assume that $I: Z \to Z$ is an isometry such that I(M) = M. Then $I(U \setminus \operatorname{dom} \mathcal{P}) = I(U) \setminus \operatorname{dom} \mathcal{P}$.

Let us introduce the symbols and notions constantly used throughout this section. We view $Z = \mathbb{R}^2$ as the complex plane \mathbb{C} . For all $a \in \mathbb{R}$ for which the following definition makes sense, we denote by L(a) the affine line $(a+f(a)i)+T_{a+f(a)i}^{\perp}M$, where $f:\mathbb{R} \to \mathbb{R}$ is the function under consideration and M (= f) is its graph. Discussion of Example (6.1). For $a \in \mathbb{R} \setminus \{0\}$ the normal line $L(a) = \{x + iy : y - a^2 = \frac{-1}{2a}(x - a)\}$ intersects $\mathbb{R}i$ at $(a^2 + 1/2)i$. Therefore $[0, i/2] \subset \operatorname{dom} \mathcal{P}$ and $\mathcal{P}|_{[0,i/2]} \equiv 0$. Also, for $z \in [1/2, \infty[\cdot i \text{ there exists a unique } a > 0$ such that $z \in L(a)$. Moreover, $\{b \in \mathbb{R} : z \in L(b)\} = \{-a, 0, a\}$. But since $|a + a^2i - z| = |-a + a^2i - z| < |z|$, we have $z \notin \operatorname{dom} \mathcal{P}$. Hence

 $\mathbb{R}_+ i \cap \operatorname{dom} \mathcal{P} = [0, i/2].$

By Remark (6'.1), $\{x + iy : y \le x^2\} \subset \operatorname{dom} \mathcal{P}$. We are left with considering points $z_0 = x_0 + iy_0$ for which $x_0 \ne 0$ and $y_0 > x_0^2$. For such z_0 there exists $a + a^2i \ne 0$ realizing the distance of z_0 from f. Thus $z_0 \in]a + a^2i, (a^2 + 1)i[\subset \operatorname{dom} \mathcal{P} \text{ and } \mathcal{P}(z_0) = a + a^2i$ (see (1.5)). Finally, $\operatorname{dom} \mathcal{P} = \mathbb{C} \setminus (]1/2, \infty[\cdot i)$.

Discussion of Example (6.2). The results obtained in the discussion of Example (6.1) imply

$$\{z \in \mathbb{C} : \operatorname{Re} z \ge 0\} \subset \operatorname{dom} \mathcal{P}$$

Next, for z = x + iy such that x < 0 define

 $h = h_z : [0, \infty[\ni a \mapsto |x + iy - (a + a^2i)|^2 = a^4 + (1 - 2y)a^2 - 2ax + x^2 + y^2,$

which is either increasing or reaches one minimum. Therefore

 $x + iy \notin \operatorname{dom} \mathcal{P} \iff \exists a_0 > 0 : h'(a_0) = 0 \text{ and } h(0) = h(a_0).$

The system of equations on the right-hand side of the above equivalence has a solution $a_0 > 0$ iff $y = \frac{1}{2}(3(-x)^{2/3}+1)$. Then $a_0 = (-x)^{1/3}$. So the graph of the function

(6'.3)
$$G:]-\infty, 0[\ni x \mapsto \frac{1}{2}(3(-x)^{2/3}+1) \in \mathbb{R}$$

coincides with $\mathbb{R}^2 \setminus \operatorname{dom} \mathcal{P}$.

Discussion of Example (6.3). When we delete zero from the M of Example (6.2), all the points that were previously projected onto zero disappear from dom \mathcal{P} . These are exactly the points $z \in \{w : \operatorname{Re} w \leq 0\}$ for which, in the notation of Discussion of (6.2), either $z \in]-\infty, 1/2[\cdot i, \operatorname{or} h'(a_0) = 0$ and $h(0) = h(a_0)$ for some $a_0 > 0$. Finally,

$$\operatorname{dom} \mathcal{P} = \mathbb{C} \setminus (\{i/2\} \cup \{x + iy : x \le 0, y < G(x)\}) \quad (\operatorname{see} \ (6'.3)). \blacksquare$$

Discussion of Example (6.4). First consider points of $\mathbb{R}i$. If $a + i(\cos a)$ realizes such a point's distance from $f = \cos$, then $|a| < \pi$. The normal at $a + i(\cos a)$,

$$L(a) = \left\{ x + iy : y - \cos a = \frac{x - a}{\sin a} \right\} \quad \text{(for } 0 < |a| < \pi),$$

intersects $\mathbb{R}i$ at $y(a) := (\cos a - a/\sin a)i$. Since the function

$$y:]0,\pi[\ni a \mapsto y(a) \in]{-\infty,0[\cdot i]}$$

is continuous and bijective, for any $z \in [0, \infty[\cdot i \text{ the point } a = 0 \text{ is the unique point } a \text{ in }]-\pi, \pi[$ for which z lies on L(a). Therefore $[0, \infty[\cdot i \subset \text{dom } \mathcal{P}.$

Next, for fixed $y_0 < 0$ there exists a unique $a \in [0, \pi[$ such that $y_0 i \in L(a)$. Simultaneously, $\{b \in]-\pi, \pi[: y_0 i \in L(b)\} = \{-a, 0, a\}$. If we had $|y_0 i - (a + i \cos a)| > |y_0 i - i|$, then $y_0 i \in \text{dom } \mathcal{P}$ and $\mathcal{P}(y_0 i) = i$, hence $0 \in [y_0 i, i] \subset \Omega$ (see (3.13)) and, by Theorem (3.11), $0 \neq \det A_F(0)$, where $F: \mathbb{R} \ni a \mapsto (a, \cos a) \in \mathbb{R}^2$. But the matrix $A_F(0)$ is singular. Therefore, the distance of $y_0 i$ from f is realized by two points: $a + i \cos a, -a + i \cos a$. This means that $\mathbb{R}i \cap \text{dom } \mathcal{P} = [0, \infty[\cdot i]$.

Now, consider $z_0 = x_0 + iy_0$ such that $x_0 \in]0, \pi[$ and $y_0 < \cos x_0$. As mentioned at the beginning, there exists $a \in]0, \pi[$ such that $a + i \cos a$ realizes the distance of z_0 from f. But $z_0 \in]y(a), a + i \cos a[\subset \operatorname{dom} \mathcal{P}$. Therefore, for

$$U := \mathbb{R}i \cup \{x + iy : x \in]0, \pi[, y \le \cos x\}$$

we have $U \setminus \text{dom } \mathcal{P} =]-\infty, 0[\cdot i$. Put M := f. Consider the family $\mathcal{J} := \{\tau_{2k\pi} \circ I\}_{k \in \mathbb{Z}}$ of isometries of the plane \mathbb{C} , where $\tau_{2k\pi}$ is translation by $2k\pi$, while I is either $\mathrm{id}_{\mathbb{C}}, S_{\pi+\mathbb{R}i}, R_{\pi/2}$, or $S_{\pi+\mathbb{R}i} \circ R_{\pi/2}$ (where S_b is the symmetry about a straight line b and R_B the symmetry about a point B). Then

$$\bigcup_{J \in \mathcal{J}} J(U) = \mathbb{C} \quad \text{and} \quad \forall J \in \mathcal{J} : \ J(M) = M$$

Applying Remark (6'.2) to our U we obtain

$$\mathbb{C} \setminus \operatorname{dom} \mathcal{P} = \left(\bigcup_{J \in \mathcal{J}} J(U)\right) \setminus \operatorname{dom} \mathcal{P} = \bigcup_{k \in \mathbb{Z}} (k\pi +]0, \infty[\cdot (-1)^{k+1}i). \blacksquare$$

Discussion of Example (6.5). Remark (6'.1) yields $\{x + iy : y \le e^x\} \subset \operatorname{dom} \mathcal{P}$. Fix $z = x + iy \in \mathbb{C}$ and consider the function

$$h = h_z : \mathbb{R} \ni a \mapsto |z - (a + ie^a)|^2 = (x - a)^2 + (y - e^a)^2$$

For $|y| \leq 2\sqrt{2}$, *h* reaches one minimum, so $\{w \in \mathbb{C} : \operatorname{Im} w \leq 2\sqrt{2}\} \subset \operatorname{dom} \mathcal{P}$. If $y = \operatorname{Im} z > 2\sqrt{2}$, then h''(a) = 0 has two solutions $a_1 < a_2$. A sufficient condition for $z \notin \operatorname{dom} \mathcal{P}$ is:

(6'.4)
$$h'(a_1) > 0$$
 and $h'(a_2) < 0$.

This is equivalent to

$$\ln \sqrt{2e} - u_2(t) < x < -\ln \sqrt{2e} - u_1(t)$$

where $t := y/2\sqrt{2} \ (> 1)$ and

-1

$$u_1(t) := t(t - \sqrt{t^2 - 1}) + \ln(t + \sqrt{t^2 - 1}),$$

$$u_2(t) := t(t + \sqrt{t^2 - 1}) - \ln(t + \sqrt{t^2 - 1}).$$

Moreover, $\lim_{t\to\infty} u_1(t) = \lim_{t\to\infty} u_2(t) = \infty$ and the graphs of u_1 and u_2

are tangent at the point corresponding to t = 1, i.e. at $-1 - \ln \sqrt{2e} + 2\sqrt{2}i$. The condition (6'.4) is satisfied by points of the set

$$\{x + iy : y > 2\sqrt{2} \text{ and } -u_2(y/2\sqrt{2}) < x < -u_1(y/2\sqrt{2})\}$$

which contains $\mathbb{C} \setminus \operatorname{dom} \mathcal{P}$.

References

- E. Asplund, Čebyšev sets in Hilbert space, Trans. Amer. Math. Soc. 144 (1969), 235-240.
- [2] L. N. H. Bunt, Contributions to the theory of convex point sets, Ph.D. Thesis, Groningen, 1934 (in Dutch).
- [3] E. Dudek, Orthogonal projection onto a subset of a Euclidean space, Master's thesis, Kraków, 1989 (in Polish).
- [4] N. V. Efimov and S. B. Stechkin, Support properties of sets in Banach spaces and Chebyshev sets, Dokl. Akad. Nauk SSSR 127 (1959), 254–257 (in Russian).
- [5] H. Federer, Curvature measures, Trans. Amer. Math. Soc. 93 (1959), 418-491.
- [6] D. Gilbarg and N. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer, Berlin, 1977.
- [7] M. W. Hirsch, Differential Topology, Springer, New York, 1976.
- [8] E. Hopf, On non-linear partial differential equations, in: Lecture Series of the Symposium on Partial Diff. Equations, Berkeley, 1955, The Univ. of Kansas, 1957, 1–29.
- G. Jasiński, A characterization of the differentiable retractions, Univ. Iagell. Acta Math. 26 (1987), 99–103.
- [10] V. L. Klee, Convexity of Chebyshev sets, Math. Ann. 142 (1961), 292–304.
- [11] —, Remarks on nearest points in normed linear spaces, in: Proc. Colloquium on Convexity (Copenhagen, 1965), Kobenhavns Univ. Mat. Inst., Copenhagen, 1967, 168–176.
- [12] S. G. Krantz and H. R. Parks, Distance to C^k hypersurfaces, J. Differential Equations 40 (1981), 116-120.
- [13] J. L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod and Gauthier-Villars, Paris, 1969.
- T. Motzkin, Sur quelques propriétés caractéristiques des ensembles convexes, Atti R. Accad. Lincei Rend. (6) 21 (1935), 562–567.
- [15] W. Rudin, Real and Complex Analysis, McGraw-Hill, New York, 1974.
- [16] J. Serrin, The problem of Dirichlet for quasilinear elliptic differential equations with many independent variables, Philos. Trans. Roy. Soc. London Ser. A 264 (1969), 413–496.

Ewa Dudek INSTITUTE OF MATHEMATICS PEDAGOGICAL UNIVERSITY PODCHORĄŻYCH 2 30-084 KRAKÓW, POLAND

INSTITUTE OF MATHEMATICS JAGIELLONIAN UNIVERSITY REYMONTA 4 30-059 KRAKÓW, POLAND

Konstanty Holly

Reçu par la Rédaction le 28.6.1991 Révisé le 4.1.1993