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Nonlinear orthogonal projection

by Ewa Dudek and Konstanty Holly (Kraków)

Abstract. We discuss some properties of an orthogonal projection onto a subset of a
Euclidean space. The special stress is laid on projection’s regularity and characterization
of the interior of its domain.

0. Introduction. Let M be a non-empty subset of a metric space Z.
We define a relation P ⊂ Z ×M , which we call the orthogonal projection

onto M . Its domain is

domP := {z ∈ Z : there exists a unique point z′ ∈M
such that d(z, z′) = ̺(z,M)} ,

where d denotes the metric of Z and ̺(z,M) := infx∈M d(z, x). Obviously,
M ⊂ domP. The orthogonal projection of z ∈ domP is defined to be the
unique point (z′ =) P(z) ∈M which realizes the distance of z to M . If M
is a closed linear subspace of a Hilbert space Z, then P is the well-known
linear orthogonal projection: Z = domP →M .

The need of considering orthogonal projections onto non-linear sets has
been noticed since a long time. For example, if Z = R

n and M is a smooth
(or analytic) submanifold, then the composition f ◦ P|int domP is the most
natural smooth (analytic) extension of a given smooth (analytic) function
f : M → R on an open neighbourhood of M (because in this case M ⊂
int domP (see the generalization (3.8) of the classical result of Federer [5]
and (4.1))). Of course, there are other methods of extending such functions,
e.g. in the non-analytic case by local straightening of M or by applying
Whitney’s theory. However, in numerous problems the extension f ◦ P is
most useful, since it is simple and effective. The set int domP is in some
sense a star-shaped neighbourhood of M (see (1.5), (3.13)), so the retrac-
tion P|int domP is helpful in studies on differentiable homotopy, e.g. for a
given solenoidal vector field v : G → R

n vanishing on the boundary of a
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domain G ⊂ R
n one can construct—with the aid of P—a sequence (Φν)∞ν=1

of solenoidal vector fields on G equal to zero in a neighbourhood of M = ∂G
such that Φν → v together with derivatives as ν →∞.

The notion of the nonlinear orthogonal projection enables us to formulate
a new, curvilinear version of the theorem on the existence of the Fréchet
differential (see (4′.13)).

Furthermore, the differential properties of the distance function z 7→
|z − P(z)| = ̺(z,M) are useful (see e.g. the lemma of Hopf in Lions [13]
(Part 1, Lemma 7.2) or Hopf [8] or applications of ̺ in Serrin [16] and
Gilbarg–Trudinger [6]).

Literature we know contains only studies on restrictions of orthogonal
projections onto submanifolds (of a Riemannian manifold Z) to small neigh-
bourhoods of M (e.g. the tubular neighbourhood theorem in Hirsch [7]). In
this paper we present various properties of the mapping P without assuming
that M is a submanifold. These are topological properties; for example, we
formulate a criterion for z (∈ domP) to be an interior point of domP (see
(2.8)). In so general a situation one cannot expect the orthogonal projection
to be differentiable; G. Jasiński [9] proved that the class M of values of a
C1-retraction of a domain U ∈ top R

n is a differentiable submanifold (of
R

n) whenever M ∈ cotopU (i.e. M is closed in U). In the present work we
wish to investigate the orthogonal projection globally; in particular, almost
all theorems we formulate refer also to arguments z (∈ domP) which may
lie at a large distance from M .

The theorems presented here can, for the most part, be modified for the
case of a Riemannian manifold Z. Nevertheless, we restrict our attention to
the basic situation Z = R

n.

1. Projection onto an arbitrary subset of a Euclidean space. Let
Z denote a Euclidean space, i.e. a real finite-dimensional Hilbert space (e.g.
Z = R

n) with a scalar product (· | ·), which defines the norm | · |. From now
on Ω stands for the interior of the domain of the projection P.

(1.1) Example. If M is the unit sphere of Z, then

domP = Z \ {0} and ∀z ∈ domP : P(z) = z/|z| .
Generally, if M is the unit sphere of a linear subspace Y , then

Ω = domP = Z \ kerPY = Z \ Y ⊥ and P(z) = PY (z)/|PY (z)|
for any z ∈ domP, where PY is the usual projection Z → Y .

In general, neither has domP to be open, nor P to be a continuous
mapping, even if M is an analytic submanifold:
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(1.2) Example. If Z = R
2 and M = {(x, y) : |y| = 1} \ {(0, 1)}, then

(0, 0) ∈ (domP) \Ω and P is not continuous at (0, 0).

(1.3) Theorem. The restriction P|Ω is continuous.

Theorems (lemmas, examples etc.) from Section k are proved or discussed
in Section k′, k = 1, . . . , 6.

(1.4) Corollary. M ∩Ω is closed in Ω.

(1.5) Theorem. If a ∈ Z, a′ ∈M and |a− a′| = ̺(a,M), then:

(i) ]a, a′] ⊂ domP and ∀z ∈ ]a, a′] : P(z) = a′,

(ii) [a,P(a)[ ⊂ Ω for a ∈ Ω.

In general, P(a) 6∈ Ω, for example when Z = R
2, M = {(x, y) : y = |x|}

and a = (0,−1).

(1.6) Corollary. Suppose that f : O →M is a continuous mapping of

an open set O ⊂ Z. Furthermore, assume that ∀z ∈ O : |z−f(z)| = ̺(z,M).
Then f ⊂ P; in particular , O ⊂ Ω.

Finally, let us mention that the projection is invariant with respect to
isometries:

(1.7) Remark. Let I : Z → Z be an isometry. Then I ◦ P ◦ I−1 is the

orthogonal projection onto I(M).

2. Closedness of a set near a point. We say that a set M is closed

near z ∈ Z iff

(2.1) ∃r > ̺(z,M) : M ∩B(z, r) ∈ cotopZ,

where B(z, r) := {x ∈ Z : |x− z| < r} and B(z, r) = B(z, r) (Fig. 1).

Fig. 1
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(2.2) Fact. If M is closed near z, then there exists at least one element

of M which realizes the distance ̺(z,M).

(2.3) Fact. The set D := {z ∈ Z : M is closed near z} is open in Z.

It is obvious that D = Z whenever M ∈ cotopZ. Then domP is dense
in Z. This results from the following general

(2.4) Remark. D ⊂ domP.

And here is a kind of completing of Theorem (1.3):

(2.5) Remark. The restriction P|D∩dom P is continuous. In particular ,
P is continuous whenever M is closed.

(2.6) Proposition. If M is locally compact , then Ω ⊂ D.

In general, D ∩ domP 6⊂ Ω, even if M is an analytic submanifold. For
Z = R

2 and M = {(x, y) : y = x2} the point (0, 1/2) is in (D ∩ domP) \Ω
(see (6.1)).

Now we formulate a counterpart of Theorem (1.5):

(2.7) Theorem. Suppose that M is locally compact , a ∈ Z, a′ ∈M and

|a− a′| = ̺(a,M). Then ]a, a′] ⊂ D.

The next theorem is a criterion for being an interior point of the projec-
tion’s domain.

(2.8) Theorem. Let M be closed near a ∈ domP. Fix t ∈ ]0, 1]. Then

the following conditions are equivalent :

(i) a ∈ Ω;
(ii) P(a) + t(a− P(a)) ∈ Ω and the mapping

w 7→ w − (1− t)P(w)

is an injection on a neighbourhood of P(a) + t(a− P(a)).

3. Projection onto a submanifold. We start with recalling a well-
known property of the tangent space to a submanifold:

(3.1) Remark. If M is a C1-submanifold of Z and a ∈ Z and a′ ∈ M
satisfy |a− a′| = ̺(a,M), then

a− a′ ⊥ Ta′M,

where Ta′M denotes the tangent space to M at a′. In particular , ∀a ∈
domP : a ∈ P(a) + (TP(a)M)⊥.

For z ∈ M and r > 0 we define the disc of radius r with center at z
orthogonal to M by

Kz(r) := z + {ζ ∈ (TzM)⊥ : |ζ| < r} .
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(3.2) Theorem. Let M be a C1-submanifold such that

(3.3) the mapping : M ∋ z 7→ TzM ∈ E satisfies locally the Lipschitz

condition in the Hausdorff metric (in the set E of all non-zero linear

subspaces of Z).

Then for any compact subset F ⊂M there is r > 0 such that :

(i) ∀y, z ∈ F : {y 6= z ⇒ Ky(r) ∩Kz(r) = ∅};
(ii) ∀z ∈ F : Kz(r) ⊂ domP, P|Kz(r) ≡ z.
The Hausdorff distance of two non-zero linear subspaces A, B is, by

definition, the number

(3.4) d(A,B) := d(A ∩ S,B ∩ S) ,

where S := {x ∈ Z : |x| = 1} and d(A ∩ S,B ∩ S) is the usual Hausdorff
distance of the compact sets A∩S, B∩S. Note that the metric (3.4) defines
the usual topology on the Grassmann manifold Gk(Z) of all k-dimensional
linear subspaces of Z; moreover,

(3.5) Gk(Z) ∋ A 7→ A⊥ ∈ GN−k(Z) (1 ≤ k ≤ N − 1, N = dimZ) is an

isometry in this metric.

One can also prove that

(3.6) all C2-submanifolds satisfy (3.3).

Submanifolds of class C1 generally do not:

(3.7) Example. The curve M := {(t, 2
3
|t|3/2) : t ∈ R} is a C1-sub-

manifold of Z = R
2. One can check that

∀r > 0 ∃z ∈M \ {0} : Kz(r) ∩K0(r) 6= ∅ .
In particular, (3.3) is not satisfied.

The following theorem is important in the local analysis of a nonlinear
orthogonal projection:

(3.8) Theorem. Let M be a C1-submanifold satisfying (3.3). Then for

a ∈M there exists an open O ⊂ Z such that a ∈ O ⊂ domP and

∀z ∈ O ∀x ∈ O ∩M : {z − x ⊥ TxM ⇒ P(z) = x} .
In particular , M ⊂ Ω.

This is a generalization of Federer’s theorem from [5] which states that
M ⊂ Ω whenever M is a hypersurface of class C2.

(3.9) Corollary. If M is a C1-submanifold satisfying (3.3), then

∀a ∈ Ω ∃H ∈ top(TP(a)M)⊥ : 0 ∈ H and P|a+H ≡ P(a) .
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(3.10) Corollary. Suppose that M is a C1-submanifold satisfying (3.3)
and closed near a ∈ domP. Let φ : O → M be a continuous map on a

neighbourhood O of a such that

φ(a) = P(a) and ∀z ∈ O : z − φ(z) ⊥ Tφ(z)M .

Then a ∈ Ω and φ = P in a neighbourhood of a.

This result is a differential counterpart of Corollary (1.6). And here is a
differential counterpart of the criterion (2.8):

(3.11) Theorem. Let M be a C2-submanifold. Fix z0 ∈ domP and an

inverse chart f ⊂ R
n ×M of M which takes on the value P(z0). Consider

the matrix

(3.12) Af (z0) :=

[(
∂f

∂xi
(x0)

∣∣∣∣
∂f

∂xj
(x0)

)
+

(
P(z0)− z0

∣∣∣∣
∂2f

∂xi∂xj
(x0)

)]
,

where x0 = f−1(P(z0)). Then the following conditions are equivalent :

(i) z0 ∈ Ω;

(ii) M is closed near z0 and detAf (z0) 6= 0.

The additional assumption “M ∈ C2” lets us strengthen the conclusion
of Theorem (1.5):

(3.13) Theorem. Let M be a C2-submanifold. Then

(a) ]a, a′] ⊂ Ω for all (a, a′) ∈ Z ×M such that |a− a′| = ̺(a,M);

(b) for every (a, a′) ∈ (domP)×M the following conditions are equiva-

lent :

(i) P(a) = a′;

(ii) ]a, a′] ⊂ Ω and a− a′ ⊥ Ta′M .

(3.14) Corollary. If M is a C2-submanifold , then Ω is dense in

domP. If M is also closed in Z, then Ω = Z (compare with (2.4)).

4. Differentiability of an orthogonal projection

(4.1) Theorem. Let M be a Ck-submanifold of a Euclidean space Z,
where k ∈ {2, 3, . . . ,∞, ω} and Cω denotes R-analyticity. Then P|Ω is of

class Ck−1 (as usual ∞− 1 :=∞, ω − 1 := ω) and

(i) for all z ∈ M , the Fréchet differential dzP is the linear orthogonal

projection onto TzM ;

(ii) ∀z ∈ Ω : dzP(Z) = TP(z)M , ker dzP = (TP(z)M)⊥.

Regularity of the projection P is higher along M itself; for example, for
a C2-submanifold the following improvement of regularity may be achieved:
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(4.2) Theorem. If M is a C2-submanifold , then

(i) for all z ∈M , the mapping P is twice differentiable at z;

(ii) the mapping M ∋ z 7→ d2
zP ∈ S2(Z,Z) is continuous. (The symbol

S2(Z,Z) stands for the Banach space of all symmetric bilinear operators

Z2 → Z.)

Despite the fact that P|M = idM , the restriction to M of the second
derivative of P may have a non-trivial structure. For example, if M is the
unit sphere in Z, then

(d2
zP)(η, ξ) = 3(η | z)(ξ | z)z − (η | ξ)z − (η | z)ξ − (ξ | z)η

for z ∈M and η, ξ ∈ Z.

Theorem (4.2) cannot be generalized to any neighbourhood of M :

(4.3) Example. The curve M := {(t, 0) : t < 0} ∪ {(t, 1
3
t3) : t ≥ 0} is a

C2-submanifold of Z = R
2. The projection P is not twice differentiable in

any neighbourhood of (0, 0).

(4.4) Proposition. Let

̺(x) := ̺(x,M) (= |x− P(x)| for x ∈ domP) .

If M is of class C2, then

∇x̺ =
x− P(x)

|x− P(x)| for any x ∈ Ω \M .

This fact and Theorem (4.1) immediately give the following

(4.5) Corollary. The function ̺ is of class Ck in Ω \M for M being

a submanifold of class Ck (k ∈ {2, 3, . . . ,∞, ω}).
One of the first formulations of differential properties of ̺ was presented

in Serrin [16] (Chapter I, Lemma 3.1) in the following form:

If a hypersurface M (i.e. a submanifold in Z of codimension 1) is of

class C3, then there is an open neighbourhood O of M such that ̺|O\M is

of class C2.

Later on Gilbarg and Trudinger proved the following local version of
Corollary (4.5) in the Appendix to [6]:

The restriction ̺|O\M is of class Ck for some neighbourhood O of a

Ck-hypersurface M for k = 2, 3, . . . ,∞, ω.

Obviously, the continuous function ̺ is not differentiable at any point
of M . However, in the case of M being a hypersurface one can smooth ̺ by
one-sided change of its sign:
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(4.6) Theorem (see Krantz–Parks [12]). Assume that the boundary M
of some set G ∈ topZ is a compact Ck-submanifold (k ∈ {1, 2, . . . ,∞, ω}).
Suppose also that M ⊂ Ω (this assumption is relevant only for k = 1).
Consider the signed distance function to M :

δ(x) :=

{
̺(x) if x ∈ G,
−̺(x) if x ∈ Z \G.

Then δ is of class Ck in some neighbourhood of M .

5. When is the whole space the domain of an orthogonal pro-

jection? If domP = Z then M is called a Chebyshev set .

(5.1) Theorem. Every non-empty closed and convex subset of Z is a

Chebyshev set.

The above theorem also holds for an infinite-dimensional Hilbert space
(see Rudin [15], Theorem 4.10). Moreover, in finite-dimensional spaces also
the converse theorem holds:

(5.2) Theorem (see Bunt [2], Motzkin [14]). If domP = Z, then M is

non-empty , closed and convex.

A bounded Chebyshev set cannot be a submanifold of Z:

(5.3) Theorem. Assume that M is a C2-submanifold of a Euclidean

space Z and domP = Z. Then M is an affine subspace of Z.

Under some additional assumptions the implication (5.2) is valid also
for infinite-dimensional Hilbert spaces or even Banach spaces (see Efimov–
Stechkin [4], Klee [10], Asplund [1]). Klee in [11] conjectures that in some
(possibly non-separable) Hilbert spaces there exist non-convex Chebyshev
sets. The question of existence of “Klee caverns” is also considered in As-
plund [1].

6. Domains of projections onto graphs of some elementary func-

tions. Now we illustrate the above theory with examples of orthogonal pro-
jections onto graphs of some numerical functions. In this section Z = R

2.

(6.1) Example. The set M := {(x, x2) : x ∈ R} is a closed analytic
submanifold of Z. The domain of the orthogonal projection onto M is
domP = R2 \ {(0, t) : t > 1/2} (see (3.14) and Fig. 2).

(6.2) Example. If we take M := {(x, x2) : x ≥ 0} (clearly, M is not
a submanifold but it is closed), then domP = R

2 \ {(x, y) : x < 0, y =
3
2 (−x)2/3 + 1

2} (see (2.4) and Fig. 3).
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_

Fig. 2

_

Fig. 3

(6.3) Example. Removing the point (0, 0) from the set M of the pre-
ceding example we obtain a non-closed submanifold M ′ with

domP = R
2

∖({(
0,

1

2

)}
∪

{
(x, y) : x ≤ 0, y <

3

2
(−x)2/3 +

1

2

})

(see (3.14) and Fig. 4).

(6.4) Example. Let M be the graph of R ∋ x 7→ cos x. Then domP =
R

2 \⋃
k∈Z
{(kπ, y) : (−1)k+1y > 0} (see (3.14) and Fig. 5).

(6.5) Example. We did not manage to find the exact shape of the
domain of the orthogonal projection onto M := {(x, ex) : x ∈ R} (naturally,



10 E. Dudek and K. Holly

_

Fig. 4

_ _ __

Fig. 5

M is a closed analytic submanifold). The relation

R
2 \ domP
⊂ {(x, y) : y > 2

√
2,− ln

√
2e− u2(y/2

√
2) < x < − ln

√
2e− u1(y/2

√
2)} ,

where

u1(z) := z(z −
√
z2 − 1) + ln(z +

√
z2 − 1) ,

u2(z) := z(z +
√
z2 − 1)− ln(z +

√
z2 − 1) for all z > 1 ,

is all we know about domP (see (3.14) and (5.3); Fig. 6).
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__

Fig. 6

1′. Proofs

(1′.1) Lemma. If a ∈ Ω and V is a neighbourhood of P(a) in M , then

̺(a,M \ V ) > ̺(a,M).

P r o o f. If the inequality were inverse, then ̺(a,M\V ) = ̺(a,M). There
is a sequence (xν)∞ν=1 ∈ (M \V )N for which |a−xν | → ̺(a,M \V ) = ̺(a,M)
as ν →∞. Since |xν | ≤ |xν−a|+|a| (∀ν), there are also an infinite set A ⊂ N

and b ∈ Z such that xν → b as A ∋ ν → ∞. Clearly, |a − b| = ̺(a,M),
b 6= P(a), b 6∈M and b 6= a. Choosing z ∈ ]a, b] ∩ domP (6= ∅) we obtain

b− z =
|b− z|
|z − a| (z − a)

and |a− b| ≤ |a− P(a)| ≤ |a− z| + |z − P(z)| ≤ |a− z| + |z − b| = |b− a|.
This means that for u := z− a and v := P(z)− z we have |u|+ |v| = |u+ v|
and |v| = |z − b|, i.e. v = |v|

|u|u. Therefore, b− z = |v|
|u|u = P(z)− z, contrary

to b 6∈M .

P r o o f o f T h e o r e m (1.3). Suppose that P is not continuous at a ∈ Ω.
There is a neighbourhood of P(a) on M and a sequence (aν) ∈ (domP)N

with aν → a as ν →∞ and P(aν) 6∈ V for all ν. Then

∀ν ∈ N : ̺(a,M \ V ) ≤ |a− P(aν)| ≤ |a− aν |+ |aν − P(aν)|
= |a− aν |+ ̺(aν ,M) .

As a consequence, ̺(a,M \V ) ≤ ̺(a,M), which contradicts Lemma (1′.1).
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(1′.2) Lemma. For t ∈ ]0, 1] define ft : domP → Z by ft(z) := P(z) +
t(z − P(z)). Then ft is an injection.

P r o o f. The case t = 1 is easy. For t∈ ]0, 1[ suppose a, b∈domP satisfy
ft(a) = ft(b). By Remark (1.7) we can assume ft(a) = ft(b) = 0 without
loss of generality. So, for s := −t/(1− t) we have

a′ := P(a) = sa , b′ := P(b) = sb .

Assume that |a| ≥ |b| and |a| > 0. If a, b were linearly dependent,
then we would get b ∈ [0, a] (if not, there is ξ ∈ ]−1, 0[ for which b = ξa;
this yields b′ = sξa ∈ ]0,∞[ · a and ̺(a,M) ≤ |a − b′| = |1 − sξ| · |a| <
(1+|s|·|ξ|)|a| < (1−s)|a| = |a−a′| = ̺(a,M)). Therefore b ∈ [0, a] ⊂ [a′, a].
By Theorem (1.5)(i), b′ = P(b) = a′. Thus a = b.

So it suffices to establish linear dependence of a and b. Suppose not, i.e.
(a | b) < |a| · |b| ≤ |a|2. It follows that

|a|2 − |b|2 ≥ 0 > 2

(
a+

(a | a− b)
t|a− b|2 (b− a)

∣∣∣∣ a− b
)

and for

x := s

(
a+

(a | a− b)
t|a− b|2 (b− a)

)

we get |x−a′|2 > |x−b′|2. We have ((1−t)(a−x) | a−b) = 0, so a−x ⊥ b−a.
Moreover, a−x ⊥ x−a′ and a−x ⊥ x−b′, because x−a′, x−b′ ∈ R ·(b−a).
By Pythagoras’ Theorem,

̺(a,M)2 ≤ |a− b′|2 = |a− x|2 + |x− b′|2 < |a− x|2 + |x− a′|2

= |a− a′|2 = ̺(a,M)2 .

This contradiction completes the proof.

P r o o f o f T h e o r em (1.5). The indirect proof of the fact that |z−a′| <
|z − x| for all x ∈M \ {a′} uses the method of proof of Lemma (1′.1).

To show (ii), fix a ∈ Ω and a point ([a,P(a)[ ∋) z0 := P(a)+ t(a−P(a))
(for some t ∈ ]0, 1]). The Brouwer theorem on the invariance of domain
applied to the continuous injection ft : Ω ∋ z 7→ P(z) + t(z − P(z)) ∈
[z,P(z)] ⊂ domP completes the proof.

P r o o f o f C o r o l l a r y (1.6). Fix a ∈ O and suppose that |b − a| =
̺(a,M) for some b ∈ M \ {f(a)}. It is clear that a 6= b. In view of The-
orem (1.5), ]a, b] ⊂ domP and P(z) = b for all z ∈ ]a, b]. So, there
is a sequence (zν) ∈ (]a, b] ∩ (domP) ∩ O)N convergent to a. Of course,
b = P(zν) = f(zν) for all ν. Since f is continuous, we obtain the equality
b = f(a) contradicting the choice of b.
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2′. Proofs

P r o o f o f F a c t (2.2) is easy.

P r o o f o f F a c t (2.3). Fix a ∈ D. Then there is r > ̺(a,M) = ϑr
(for some ϑ ∈ [0, 1[) such that M ∩ B(a, r) ∈ cotopZ. The inclusion
B(a, (1 − ϑ)r/2) ⊂ D holds, because for ã ∈ B(a, (1 − ϑ)r/2) we have
̺(ã,M) < (1+ϑ)r/2, B(ã, (1+ϑ)r/2) ⊂ B(a, r) and B(ã, (1+ϑ)r/2)∩M ∈
cotopZ.

P r o o f o f R e m a r k (2.4) rests on the simple

(2′.1) Remark. If ∅ 6= O ⊂ D is open, then O ∩ domP is dense in O.

P r o o f. Consider G ∈ (topO) \ {∅} and a ∈ G (⊂ D). There is a′ ∈M
for which |a− a′| = ̺(a,M). Thus ]a, a′] ⊂ domP. Clearly, G ∩ ]a, a′] 6= ∅,
and consequently G ∩ O ∩ domP 6= ∅.

(2′.2) Lemma. If a ∈ D ∩ domP and V is a neighbourhood of P(a)
in M , then ̺(a,M \ V ) > ̺(a,M).

P r o o f. For an indirect proof suppose that ̺(a,M \V ) = ̺(a,M). There
is a sequence (xν) ∈ (M \ V )N for which |a − xν | → ̺(a,M) as ν → ∞.
It is bounded, so there is an infinite set A ⊂ N and b ∈ Z \ {P(a)} such
that xν → b as A ∋ ν →∞. Obviously, |a− b| = ̺(a,M). There is a radius
r > ̺(a,M) such that M ∩B(a, r) ∈ cotopZ, so we have xν ∈ B(a, r) ∩M
(for almost all ν ∈ N). Hence, b ∈ B(a, r) ∩M ⊂ M and b 6= P(a), which
contradicts |a− b| = ̺(a,M).

P r o o f o f R e m a r k (2.5) is analogous to the one of Theorem (1.3).

P r o o f o f P r o p o s i t i o n (2.6). For a given point a ∈ Ω there is a
closed neighbourhood F of P(a) in M . By Lemma (1′.1) there exists r with
̺(a,M) < r < ̺(a,M \ F ). Clearly, M ∩B(a, r) = F ∩B(a, r).

P r o o f o f T h e o r e m (2.7). Suppose a 6= a′. Without loss of generality
we can assume a = 0. According to Theorem (1.5), ]0, a′] ⊂ domP and
P(z) = a′ for all z ∈ ]0, a′]. Fix z ∈ ]0, a′] and set d := ̺(z,M) = |z − a′| <
|a′| =: r. There is 0 < δ <

√
r(r + d) for which M ∩B(a′, δ) ∈ cotopZ. We

have

̺(z,M) <

√
d2 + δ2

r − d
r

=: r(z) (< r) .

To show that B(z, r(z)) ∩ M ∈ cotopZ (which will complete the proof)
it suffices to prove that B(z, r(z)) ⊂ B(0, r) ∪ B(a′, δ). Indeed, let x ∈
B(z, r(z)) with |x| ≥ r. Then (x | z) > 0 and consequently (x | a′) > 0. If

x′ :=
(x | a′)
|a′|2 a′
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denotes the orthogonal projection of x onto Ra′, then

|x′| = |x|
2 + r2 − |x− a′|2

2r
.

Further, |x′ − z| = ||x′| − (r − d)|, since x′, z ∈ R+a
′. Hence

r(z)2 ≥ |x− z|2 = |x− x′|2 + |x′ − z|2

= (|x|2 − |x′|2) + |x′ − z|2 ≥ r − d
r
|x− a′|2 + d2 ,

which means that indeed δ ≥ |x− a′|.

P r o o f o f T h e o r e m (2.8). Define

ft : domP ∋ z 7→ P(z) + t(z − P(z)) ∈ Z .
It is an injection with values in domP (by Lemma (1′.2) and Theorem (1.5)).
Moreover, P ◦ ft = P, ft(Ω) ⊂ Ω and f−1

t (w) = 1
t (w − (1− t)P(w)).

(i)⇒(ii). In view of the Brouwer theorem on invariance of domain, ft(Ω)
is a neighbourhood of ft(a) = P(a)+t(a−P(a)). Clearly, tf−1

t is an injection
on it.

(ii)⇒(i). According to the assumptions a ∈ D∩domP. There is an open
neighbourhood U ⊂ Ω of ã := ft(a) such that the mapping Q : U ∋ w 7→
1
t (w−(1−t)P(w)) ∈ Z is a continuous injection (see Theorem (1.3)). By the
Brouwer theorem, Q(U) ∈ topZ and Q : U → Q(U) is a homeomorphism.
Also, Q−1(z) = ft(z) and (P◦Q−1)(z) = P(z) for any z ∈ f−1

t (U) (⊂ Q(U)).
The map ft|D is continuous by Remark (2.5), hence there is O ∈ topZ for
which (ft|D)−1(U) = O ∩ D ∩ domP. By (2.3), D0 := O ∩ D ∩ Q(U)
is an open neighbourhood of a. It remains to show that D0 ⊂ domP. For
z ∈ D0, Remark (2′.1) enables us to choose a sequence (zν) ∈ (D0∩domP)N

convergent to z. Then

|z − (P ◦Q−1)(z)| ←−
ν→∞

|zν − (P ◦Q−1)(zν)| = |zν − P(zν)| −→
ν→∞

̺(z,M) .

Consequently, ∀z ∈ D0 : |z− (P ◦Q−1)(z)| = ̺(z,M). From Corollary (1.6)
it follows directly that D0 ⊂ domP, which completes the proof.

3′. Proofs

P r o o f o f R em a r k (3.1) is based on the necessary condition for a
local minimum of a differentiable function.

(3′.1) Lemma. If M ⊂ Z is a submanifold and F ⊂ M a compact set ,
then

sup

{
̺

(
z − y
|z − y| , TyM

)
: z ∈M,y ∈ F, 0 < |z − y| < δ

}
→ 0 as δ → 0 .
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P r o o f. It is sufficient to show that this condition holds locally on M ,
i.e. ∀a ∈M ∃O ∈ topM : O is a neighbourhood of a and

sup

{
̺

(
z − y
|z − y| , TyM

)
: y, z ∈ O, 0 < |z − y| < δ

}
→ 0 as δ → 0 .

Fix a ∈ M and an inverse chart f : H ◦→ M for which f(a0) = a
(where H is a linear subspace of a Euclidean space X, with dimX = dimZ;
◦→ denotes a partial mapping). We can assume, diminishing the domain if
necessary, that f−1 satisfies the Lipschitz condition on its domain. For a
fixed convex compact neighbourhood V ⊂ dom f of a0, the set O := f(V )
will prove to be the suitable neighbourhood of a. The mapping

α : ]0,∞[ ∋ δ 7→ sup{|f ′(u)− f ′(v)| : u, v ∈ V, |u− v| ≤ δ}
is increasing and limδ→0 α(δ)=0. Define ϑ := infh∈V min{|dhf(ξ)| : |ξ| = 1}
(= |dh1

f(ξ0)| > 0 for some h1 ∈ V and ξ0 ∈ {z : |z| = 1}). Let L be the
Lipschitz constant for f−1. Fix ε ∈ ]0, 1] and r > 0 for which α(r) ≤ εϑ/2.
For δ ∈ ]0, r/L[ and z, z0 ∈ f(V ) with 0 < |z − z0| ≤ δ, set h0 := f−1(z0),
h := f−1(z). We have |h− h0| ≤ r and, by the Lagrange theorem,

|f(h)− f(h0)− dh0
f(h− h0)| ≤ α(r)|h− h0| ≤ |h− h0|

εϑ

2
.

In particular, for ε = 1 we obtain

ϑ

2
≥

∣∣∣∣
f(h)− f(h0)

|h− h0|
− dh0

f

(
h− h0

|h− h0|

)∣∣∣∣ ≥ ϑ−
|f(h)− f(h0)|
|h− h0|

and consequently

|h− h0|
|f(h)− f(h0)|

≤ 2

ϑ
.

Going back to the general case of ε > 0 and noticing that

z − z0
|z − z0|

=
|h− h0|

|f(h)− f(h0)|
dh0

f

(
h− h0

|f(h)− f(h0)|

)

+
|h− h0|

|f(h)− f(h0)|

(
f(h)− f(h0)

|h− h0|
− dh0

f

(
h− h0

|f(h)− f(h0)|

))

(the first component is in Tz0
M) we come to the desired conclusion:

̺

(
z − z0
|z − z0|

, Tz0
M

)

≤ |h− h0|
|f(h)− f(h0)|

(
f(h)− f(h0)

|h− h0|
− dh0

f

(
h− h0

|f(h)− f(h0)|

))

≤ 2

ϑ
· ε · ϑ

2
= ε .
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Reasoning by reductio ad absurdum it is easy to derive from Lemma (3′.1)
the following

(3′.2) Lemma. If M ⊂ Z is a submanifold and F ⊂M is compact , then

∃r > 0 ∀z ∈ F : M ∩ (Kz(r) \ {z}) = ∅.
(3′.3) Lemma. Let S := {z ∈ Z : |z| = 1}. Fix subspaces X, Y in Z.

Denote by d(X,Y ) their distance in the Hausdorff metric (see (3.4)). For

∅ 6= A,B ⊂ Z put ̺(A,B) := inf{|a− b| : a ∈ A, b ∈ B}. Consider R, η > 0
for which Rd(X,Y ) < η and a point a ∈ BR ∩ X, where BR := {z ∈ Z :
|z| ≤ R}. Assume that ̺([−Ry,Ry], a+[−Rx,Rx]) ≥ η whenever y ∈ S∩Y ,
x ∈ S ∩X and |x− y| ≤ d(X,Y ). Then (BR ∩ Y ) ∩ (a+ (BR ∩X)) = ∅.

P r o o f. Let Π : Z → Y stand for the linear orthogonal projection.
There is y ∈ S ∩ Y such that Π(a) ∈ [−Ry,Ry], and x ∈ S ∩X for which
|x − y|= ̺(y, S ∩X) (≤ d(X,Y )). Hence |a −Π(a)| ≥ η. Therefore (BR ∩
Y ) ∩ (a+ (BR ∩X)) = ∅, because if a+ tx ∈ Y ∩ (a+ (BR ∩X)) (for some
|t| ≤ R and x ∈ S ∩X) then Π(a+ tx) = a+ tx implies

η ≤ |Π(a) − a| ≤ R|x−Π(x)| ≤ Rd(X,Y ) ,

which contradicts our assumptions.

P r o o f o f T h e o r e m (3.2). To prove (i) we only need to consider the
case dimM < dimZ. Let L > 0 be the Lipschitz constant for T on F . Fix
ϑ, c > 0 so that ϑ < c and ϑ + c < 1. From Lemma (3′.1) it follows that
there is δ ∈ ]0, ϑ/L] for which

sup

{
̺

(
z − y
|z − y| , TyM

)
: y, z ∈ F, 0 < |z − y| < δ

}
≤ 1 + (c+ ϑ)2

2(1 + c+ ϑ)
.

If we show that Kz1
(ϑ/L) ∩ Kz2

(ϑ/L) = ∅ whenever z1, z2 ∈ F and 0 <
|z1 − z2| ≤ δ, then r := δ/2 will suit the assertion.

First, we put S := {z ∈ Z : |z| = 1} and prove the auxiliary fact:

(3′.4) ̺

(
z1 +

ϑ

L
[−ζ1, ζ1], z2 +

ϑ

L
[−ζ2, ζ2]

)
≥ c|z1 − z2| whenever z1, z2 ∈

F , 0 < |z1−z2| < δ, ζi ∈ S∩T⊥
zi

(i = 1, 2) and |ζ1−ζ2| ≤ d(T⊥
z1
, T⊥

z2
)

(of course, T⊥
z := (TzM)⊥).

If (3′.4) were false we could find t1, t2 ∈ [−ϑ/L, ϑ/L] for which |z1+t1ζ1−
z2−t2ζ2| < c|z1−z2| and hence c|z1−z2| > |(z1−z2)+(t1−t2)ζ2|−t1|ζ1−ζ2|.
The following inequalities hold:

|ti(ζ1 − ζ2)| ≤
ϑ

L
d(T⊥

z1
, T⊥

z2
) =

ϑ

L
d(Tz1

, Tz2
) ≤ ϑ|z1 − z2|

(see (3.5)). Putting s := (t2 − t1)/|z2 − z1| we obtain
∣∣∣∣
z2 − z1
|z1 − z2|

+ sζ2

∣∣∣∣ < c+ ϑ and |s| ≤ c+ ϑ+ 1 .
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Combining these two inequalities we get

(c+ ϑ)2 > 1 + s2 + 2s

(
z2 − z1
|z1 − z2|

∣∣∣∣ ζ2
)
≥ 1− 2|s| ·

∣∣∣∣
(
z2 − z1
|z1 − z2|

∣∣∣∣ ζ2
)∣∣∣∣

≥ 1− 2(c+ ϑ+ 1)̺

(
z2 − z1
|z1 − z2|

, Tz2

)

≥ 1− 2(c+ ϑ+ 1)
1 − (c+ ϑ)2

2(c+ ϑ+ 1)
= (c+ ϑ)2 .

This contradiction proves (3′.4).
Now, to show (i) fix z1, z2 ∈ F such that 0 < |z1 − z2| ≤ δ. We can

apply Lemma (3′.3) to X := T⊥
z1

, Y := T⊥
z2

, R := ϑ/L, η := c|z1 − z2| and
a := z2 − z1, for we have

d(Tz1
, Tz2

) ≤ L|z1 − z2| =
c|z1 − z2|
ϑ/L

· ϑ
c
<
η

R
,

and in view of (3′.4) all the assumptions of Lemma (3′.3) hold. Thus indeed
Kz1

(ϑ/L) ∩Kz2
(ϑ/L) = ∅.

To prove (ii) consider a compact set F̃ ⊂M for which F ⊂ intM F̃ . Fix

z0 ∈ F and a number 0 < r < ̺(z0,M\intM F̃ ) satisfying (i). For z ∈ Kz0
(r)

and δ := |z − z0| (< r) we have z0 ∈ E := B(z, δ) ∩M = B(z, δ) ∩ F . Since
E is compact, there is z1 ∈ E (⊂M) for which |z1−z| = ̺(z,E) = ̺(z,M).
But |z − z1| ≤ δ < r, thus, by Remark (3.1), z ∈ Kz1

(r) (∩Kz0
(r)) and

consequently z1 = z0.

Example 3.7 is easy to analyze.

(3′.5) Lemma. Consider a submanifold M ⊂ Z and a continuous function

r : M → ]0,∞[ such that for all z ∈ M , Kz(r(z)) ⊂ domP and P|Kz(r(z))

≡ z. Then M ⊂ ⋃
z∈M Kz(r(z)) ∈ topZ.

P r o o f. Fix z0∈M , x0∈Kz0
(r(z0)) and ϑ∈R such that |z0 − x0| < ϑ <

r(z0). For a fixed compact neighbourhood F ⊂M of z0 we put V := F∩{z ∈
M : r(z) ≥ ϑ}. Compactness of ∂V enables us to choose y0 ∈ ∂V such that
̺(x0, ∂V ) = |x0−y0| (> |x0−z0|). We claim thatB(x0, s) ⊂

⋃
z∈M Kz(r(z)),

where s := min{δ/2, ϑ−|z0−x0|} and δ := ̺(x0, ∂V )−|z0−x0|. Indeed, fix
x ∈ B(x0, s) and z ∈ V for which |x−z| = ̺(x, V ). Then z ∈M ′ := intM V ,
for otherwise, i.e. if z ∈ ∂V , we would have |x − z0| < −δ/2 + ̺(x0, ∂V ) ≤
|x0−z|−δ/2 < |x−z|, contrary to the choice of z. Hence, by Remark (3.1),
x− z ⊥ TzM

′ = TzM. Moreover, |x− z| ≤ |x− x0|+ |x0 − z0| < ϑ− |z0 −
x0|+ |z0 − x0| ≤ r(z), so x ∈ Kz(r(z)).

(3′.6) Theorem. Consider a Ck-submanifold M ⊂ Z (k ∈ {1, 2, . . . ,∞})
satisfying condition (3.3). Then there exists a Ck-function r : M → ]0,∞[
such that for all z ∈ M , Kz(r(z)) ⊂ domP and P|Kz(r(z)) ≡ z. Moreover ,
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⋃
z∈M Kz(r(z)) ∈ topZ and

∀z, y ∈M : (z 6= y ⇒ Kz(r(z)) ∩Ky(r(y)) = ∅) .

P r o o f. There exists a family {Fi}∞i=1 of compact subsets of M such that
M =

⋃∞
i=1 Fi and Fi ⊂ intM Fi+1 (i = 1, 2, . . .). Also there are Ck-functions

λi : M → [0, 1] (i = 1, 2, . . .) with λi|Fi
≡ 1 and suppλi ⊂ intM Fi+1 (i =

1, 2, . . .). Put λ0 ≡ 0. By Theorem (3.2), for any i ∈ {1, 2, . . .} there is
ri > 0 such that for all z ∈ Fi+1, Kz(ri) ⊂ domP and P|Kz(ri) ≡ z.
Clearly, we can assume that r1 ≥ r2 ≥ . . . For a fixed i ∈ {1, 2, . . .} define
hi : (intM Fi+1) \ suppλi−1 → R by hi(z) := riλi(z) + ri+1(1 − λi(z)).
Obviously, this is a Ck-function. If i 6= j and z ∈ (domhi)∩ (domhj), then
hi(z) = hj(z), so r :=

⋃∞
i=1 hi ⊂ M × R is a Ck-function on M . Moreover,

for any z ∈ domhi we have 0 < r(z) ≤ ri, so r : M → R satisfies the desired
condition.

P r o o f o f T h e o r em (3.8). Theorem (3′.6) ensures the existence of a
continuous function r : M → ]0,∞[ such that for all x ∈ M , Kx(r(x)) ⊂
domP and P|Kx(r(x)) ≡ x. Fix ϑ ∈ ]0, r(a)[. There is s > 0 for which
B(a, s) ∩M ⊂ {x ∈M : r(x) > ϑ}. If r0 := min{s, ϑ/2}, then

O :=
⋃

x∈M∩B(a,r0)

Kx(r0) =
⋃

x∈M∩O

Kx(r0)

is an open neighbourhood of a in Z (see (3′.5)). For any z ∈ O there ex-
ists x ∈ O ∩M such that z ∈ Kx(r0), thus O ⊂ domP. The remaining
assertion results from the fact that any two distinct elements of the family
{Kx(r0)}x∈O∩M are disjoint.

P r o o f o f C o r o l l a r y (3.9). Theorem (3.8) implies the existence of
V ∈ topZ for which P(a) ∈ V ⊂ domP and ∀z ∈ V ∀x ∈ V ∩M : (z − x ⊥
TxM ⇒ P(z) = x). For some λ ∈ ]0, 1[ we have ã := P(a)+λ(a−P(a)) ∈ V .
The injection fλ : domP ∋ z 7→ P(z) + λ(z − P(z)) is continuous (see
(1.3) and (1′.2)); moreover, fλ(a) ∈ V ∩ fλ(Ω) ∈ topZ. Hence, there exists
O ∈ topT⊥

P(a)M such that 0 ∈ O and ã + λO ⊂ V ∩ fλ(Ω). Applying

Theorem (3.8) to a fixed u ∈ O we obtain P(ã+ λu) = P(a). Since a+ u =
f−1

λ (ã+ λu) ∈ Ω, it follows that P(a+ u) = P(a), completing the proof.

P r o o f o f C o r o l l a r y (3.10). Theorem (3.8) lets us choose a set
V ∈ topZ for which P(a) ∈ V ⊂ domP and ∀z ∈ V ∀x ∈ V ∩M : (z − x ⊥
TxM ⇒ P(z) = x). Assume that P(a) 6= a and fix t ∈ ]0, 1] such that
ã := P(a) + t(a − P(a)) ∈ V . Define φt : O ∋ z 7→ φ(z) + t(z − φ(z)) ∈ Z
and G := φ−1

t (V ) ∩ φ−1(V ); obviously, a ∈ G. By the choice of V we have
P ◦φt(z) = φ(z) for any z ∈ G. In order to show injectivity of φt|G consider
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the map

Q : domP ∋ v 7→ 1

t
(v − (1− t)P(v)) .

For any z ∈ G we have Q(φt(z)) = z, so φt|G (and surely Q|φt(G)) is an
injection. Hence, by the Brouwer theorem, φt(G) is open. Therefore, ã ∈
φt(G) ⊂ Ω, which together with injectivity of Q|φt(G) and Theorem (2.8)
means that a ∈ Ω.

To show that φ = P in some neighbourhood of a—and end the proof
in this way—it suffices to prove that ft = φt in this neighbourhood, where
ft : domP ∋ z 7→ P(z) + t(z − P(z)). Indeed, for every z from the open
set G0 := G ∩ (ft|Ω)−1(φt(G)) we have Q ◦ φt(z) = Q ◦ ft(z), which, by
injectivity of Q on the set φt(G) (⊃ φt(G0), ft(G0)), leads to the conclusion
that ft|G0

= φt|G0
, and consequently P|G0

= φ|G0
.

(3′.7) Theorem. Let M ⊂ Z be a Ck-submanifold , k ∈ {2, . . . ,∞, ω}.
Fix z0 ∈ domP and consider an inverse chart f : R

n ◦→ M for which

f(x0) = P(z0). Then the following conditions are equivalent :

(i) z0 ∈ Ω;
(ii) M is closed near z0 (see (2.1)) and the matrix (3.12) is nonsingular.

Moreover , if one of these conditions is satisfied , then P is of class Ck−1 in

a neighbourhood of z0 and im dz0
P = TP(z0)M , ker dz0

P = T⊥
P(z0)M .

P r o o f. (i)⇒(ii). According to Proposition (2.6), M is closed near z0.
Suppose, contrary to our claim, that detAf (z0) = 0. This enables us to
choose ξ ∈ R

n such that |ξ| = 1 and

∀i :
∑

j

(
∂f

∂xi
(x0)

∣∣∣∣
∂f

∂xj
(x0)

)
ξj =

∑

j

(
P(z0)− z0

∣∣∣∣
∂2f

∂xi∂xj
(x0)

)
ξj .

By the Taylor formula,

f(x0 + tξ)− f(x0)− dx0
f(tξ)

t2
− 1

2t2
d2

x0
f(tξ) −→

t→0
0 ,

where d2
x0
f(tξ) := d2

x0
f(tξ, tξ). Computations using Remark (3.1) lead to

the conclusion that

(z0 − P(z0) | f(x0 + tξ)− f(x0))

t2
− 1

2
|dx0

f(ξ)|2 −→
t→0

0 .

Corollary (3.9) gives ε > 0 such that P(z̃0) = P(z0) for z̃0 := z0 + ε(z0 −
P(z0)). So for all x ∈ dom f we obtain

|z̃0 − P(z0)|2 ≤ |z̃0 − f(x)|2

= |z̃0 − P(z0)|2 + 2(1 + ε)(z0 − P(z0) | f(x0)− f(x))

+ |f(x0)− f(x)|2 ,
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which for x = x0 + tξ implies

2(1 + ε)
(z0 − P(z0) | f(x0 + tξ)− f(x0))

t2
≤

∣∣∣∣
f(x0 + tξ)− f(x0)

t

∣∣∣∣
2

and further, as t tends to zero,

ε|∂ξf(x0)| ≤ 0

(∂ξf(x0) is the Gateaux derivative of f). This means that dx0
f is not a

monomorphism, which is impossible.
(ii)⇒(i). Consider the Ck-mapping B : Z × dom f → R

n,

B(z, x) :=

((
f(x)− z

∣∣∣∣
∂f

∂x1
(x)

)
, . . . ,

(
f(x)− z

∣∣∣∣
∂f

∂xn
(x)

))
.

Notice that for (z0, x0) (∈ domB) the differential dx0
B(z0, ·) is an automor-

phism of R
n (for Af (z0) is its matrix in the canonical basis of R

n). Since
B(z0, x0) = 0, there exists a Ck−1-map ψ : Z ◦→ R

n such that ψ(z0) = x0

and ψ ⊂ {(z, x) : B(z, x) = 0}. Its differential dz0
ψ is an epimorphism.

Therefore, the mapping φ := f ◦ψ, of class Ck−1, satisfies im dz0
φ = Tz0

M .
Obviously, for all i∈{1, . . . , n}, φ(z)− z ⊥ ∂f

∂xi
(φ(z)) (see (3.1)), so φ satis-

fies the assumptions of Corollary (3.10) (see (3.6)). Thus z0 ∈ Ω (and φ = P
in a neighbourhood of z0), which is our claim.

Now assume that either (i) or (ii) is satisfied. Repeating the construction
from the proof of (ii)⇒(i) we conclude that P (= φ) is of class Ck−1 in a
neighbourhood of z0. We also know that im dz0

P = Tz0
M . In order to find

ker dz0
P we choose O ∈ topT⊥

P(z0) such that 0 ∈ O and P ≡ P(z0) on z0+O
(see (3.9)). For u ∈ T⊥

P(z0) such that tu ∈ O, we have

0 =
P(z0 + tu)− P(z0)

t
−→
t→0

∂uP(z0) .

Thus T⊥
P(z0) ⊂ ker dz0

P. Also dimT⊥
P(z0) = dimker dz0

P, so these spaces
are indeed equal.

P r o o f o f T h e o r e m (3.11). This follows directly from Theorem
(3′.7).

P r o o f o f T h e o r e m (3.13). (a) Fix (a, a′) ∈ Z×M such that |a−a′| =
̺(a,M) and an inverse chart f : R

n ◦→ M of class C2 for which a′ ∈ im f .
For any z ∈ ]a, a′] consider the matrix (3.12) and the polynomial

w : [0, 1[ ∋ t 7→ detAf (a′ + t(a− a′)) .
Clearly, w(0) 6= 0; thus #{w = 0} <∞. There is δ>0 such that w(t) 6= 0 for
all t∈ ]1−δ, 1[. Fix t∈ ]1−δ, 1[. Since M is closed near zt := a′+t(a−a′) (see
(2.7)), zt ∈ Ω (see (3.11)). We conclude from Theorem (1.5) that [zt, a

′[ ⊂ Ω
for all t ∈ ]1− δ, 1[. Consequently, ]a, a′] ⊂ Ω.
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(b) Let a ∈ domP and a′ ∈M .

(i)⇒(ii). This results from (a) and Remark (3.1).

(ii)⇒(i). Assume that ]a, a′] ⊂ Ω and a− a′ ⊥ Ta′M . The set

I := {t ∈ [0, 1[ : P(a′ + t(a− a′)) = a′}
is non-empty (0 ∈ I) and closed in [0, 1[. It is also open in [0, 1[, because for
fixed t ∈ I and x := a′ + t(a′ − a) (∈ Ω) one can choose δ > 0 such that
P(a′ + (t+ δ)(a− a′)) = P(δ(a− a′)+x) = a′ (see (3.9)), which means that
[0,min{1, t + δ}[ ⊂ I. Hence I = [0, 1[, i.e. P(z) = a′ for any z ∈ ]a, a′].
From this we deduce that ̺(a,M) = |a− a′| and P(a) = a′.

P r o o f o f C o r o l l a r y (3.14). Fix z ∈ domP and a sequence (zν) ∈
(domP)N convergent to z. By Theorem (3.13), ]zν ,P(zν)] ⊂ Ω for any
ν ∈ N. Define

xν := zν +
1

ν
(P(zν)− zν) ∈ Ω , ν = 1, 2, . . .

This sequence is convergent to z, since (|zν −P(zν)|)∞ν=1 is bounded. Hence
domP ⊂ Ω (⊂ domP).

4′. Proofs

P r o o f o f T h e o r e m (4.1). We only need to show (i) (see (3′.7)). It
follows from the equalities P ◦ P = P and dzP ◦ dzP = dzP (∀z ∈M).

(4′.1) Lemma. Let M ⊂ Z be a C2-submanifold. Fix z ∈ Ω and an in-

verse chart f : R
n ◦→M of class C2 such that f(x) = P(z). Let Ãf (z) stand

for the endomorphism of R
n given by the matrix (3.12) in the canonical

basis. Then

∀ζ ∈ Z : dzP(ζ) = (dxf ◦ Ãf (z)−1)

((
ζ

∣∣∣∣
∂f

∂x1
(x)

)
, . . . ,

(
ζ

∣∣∣∣
∂f

∂xn
(x)

))
.

P r o o f. This follows from the proof of Theorem (3′.7) ((ii)⇒(i)).

The following two definitions are useful in formulating and proving the
next theorems:

Let X, Y be finite-dimensional real linear spaces. Fix z ∈ X, a subspace
H in X and a mapping g : X ◦→ Y of a neighbourhood of z.

We say that g is differentiable at z with respect to H iff g ◦ τz ◦ ιH
is differentiable at zero (where ιH : H ∋ h 7→ h ∈ X, while τz denotes
translation by z). We write

(4′.2) Hdzg := d0(g ◦ τz ◦ ιH) .

Next, we say that a sequence of linear operators αν : X ◦→ Y with
non-zero domains (ν = 1, 2, . . .) is convergent to a non-zero linear operator
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α : X ◦→ Y iff αν → α as ν → ∞ in X × Y with respect to the Hausdorff
metric.

We will use the following properties of this kind of convergence:

(4′.3) Let l ∈ L(X,Y ) and (lν) ∈ L(X,Y )N. Then lν → l in the Banach

space L(X,Y ) iff lν → l in the Hausdorff metric in X × Y .

(4′.4) The map
{

(A,B) :
A,B are non-zero linear subspaces

of X with A ∩B = 0

}
∋ (A,B)

7→ A+B ∈ {E 6= 0 : E is a linear subspace of X}
is continuous.

(4′.5) Let L : Y → W be a linear operator with W a finite-dimensional

space, and let α : X ◦→ Y be a partial linear operator. Also, let αν : X ◦→ Y
and Lν : Y → W be linear operators (∀ν ∈ N). If αν → α and Lν → L as

ν →∞, then Lν ◦ αν → L ◦ α.

(4′.6) For a linear subspace A of X let ιA : A→ X denote the canonical

inclusion. Then the map

{non-zero linear subspaces of X} ∋ B
7→ ιB ∈ {non-zero linear subspaces of X2}

is continuous.

The proofs of the above facts are based on the following criterion:

(4′.7) A function f : X → {α : Y ◦→ W | {(0, 0)} 6= α is linear} is

continuous at x0 ∈ X iff

∀ε > 0 ∃δ > 0 ∀x ∈ X : {|x−x0| ≤ δ, vx ∈ S ∩dom f(x), v ∈ S ∩dom f(x0),

|v − vx| ≤ δ} ⇒ |f(x)(vx)− f(x0)(v)| ≤ ε ,
where S stands for the unit sphere in Y . (Clearly, the last condition is inde-
pendent of the choice of norms in X, Y , W .)

The criterion (4′.7) is a consequence of the following facts:

(4′.8) Let C ⊂ X be a cone in X, i.e. by definition, ]0,∞[ · C ⊂ C. If

C is open, then the class

C̃ := {E ∈ Gp(X) : E \ {0} ⊂ C}
is open in the Grassmann manifold Gp(X) of p-dimensional subspaces of X.

(4′.9) Let a family {Cν}∞ν=1 of closed cones be a base of cone neighbour-

hoods of a subspace E ∈ Gp(X), i.e. by definition:

• ∀ν : Cν+1 ⊂ Cν ;
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• ∀ν : E \ {0} ⊂ intCν ;
• ⋂∞

ν=1 Cν = E.

Then { ˜intCν}∞ν=1 is a neighbourhood base of E in the topological space

Gp(X).

Let α0 := f(x0) : Y ◦→W be a partial linear operator from the criterion
(4′.7), while Q : Y → domα0 the linear orthogonal projection in the sense
of a fixed inner product in Y . Then the family

Cν := {(y,w) ∈ Y ×W :

||Q(y)|y − |y|Q(y)| + ||Q(y)|w − α0(|y|Q(y))| ≤ 1
ν |y| |Q(y)|}

∩ {(y,w) : |w − α0(Q(y))| ≤ 1
2
|y| ≤ |Q(y)|}

(ν = 1, 2, . . .) of closed cones is a base of cone neighbourhoods of the sub-
space α0 ⊂ Y ×W . The proof of (4′.7) rests on this fact.

(4′.10) Lemma. Let M ⊂ Z be a C2-submanifold. Let z ∈ Ω and let

f : R
n ◦→M be an inverse chart for which f(x) = P(z). Fix ζ ∈ Z and put

ψ := f−1 ◦ PΩ. Then ∂ζψ is differentiable at z with respect to T⊥
P(z) and

for v ∈ T⊥
P(z),

T⊥

P(z)dz(∂
ζψ)(v) = ∂v(∂ζψ)(z) =

∑

i,j

(
v

∣∣∣∣
∂2f

∂xi∂xj
(x)

)
∂ζψj(z)·Ãf (z)−1(ei) ,

where ψj denotes the j-th coordinate function of ψ, {e1, . . . , en} is the canon-

ical basis in R
n and Ãf (z) is the endomorphism of R

n with matrix Af (z)

(see (3.12)), i.e. (Ãf (z))(ξ) =
∑

i,j Af (z)ij · ξjei for ξ ∈ R
n.

P r o o f. By (3.6) we can apply Corollary (3.9) to find O∈topT⊥
P(z) such

that 0∈O and P ≡ P(z) on z+O. In view of Lemma (4′.1) for every v∈O
we have z + v ∈ domψ and

(4′.11) ∂ζψ(z + v) = Ãf (z + v)−1

((
ζ

∣∣∣∣
∂f

∂x1
(x)

)
, . . . ,

(
ζ

∣∣∣∣
∂f

∂xn
(x)

))
.

Also

Ãf (z + v) = Ãf (z)−
∑

i,j

(
v

∣∣∣∣
∂2f

∂xi∂xj
(x)

)
e∗j · ei ,

where {e∗1, . . . , e∗n} is the dual basis to {e1, . . . , en}. The mapping µ : Aut R
n

∋ E 7→ E−1 ∈ Aut R
n is analytic (as the solution of the implicit equation

R(E,µ(E)) = 0, where R : (Aut R
n)2 ∋ (E,F ) 7→ E ◦ F − idRn). For

L ∈ EndR
n we have dEµ(L) = −E−1 ◦ L ◦ E−1. Also each ξ ∈ R

n defines
the analytic mapping ξ∗∗ : EndR

n ∈ L 7→ L(ξ) ∈ R
n. In this notation, for

ξ :=

((
ζ

∣∣∣∣
∂f

∂x1
(x)

)
, . . . ,

(
ζ

∣∣∣∣
∂f

∂xn
(x)

))
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the relation (4′.11) takes the form

∂ζψ(z + v) = (ξ∗∗ ◦ µ)(Ãf (z + v))

= (ξ∗∗ ◦ µ)

(
Ãf (z)−

∑

i,j

(
v

∣∣∣∣
∂2f

∂xi∂xj
(x)

)
e∗j · ei

)
.

So ∂ζψ is differentiable at z with respect to T⊥
P(z).

In order to find the explicit form of ∂v(∂ζψ)(z) for v ∈ T⊥
P(z), put

γ(t) := Ãf (z)− t
∑

i,j

(
v

∣∣∣∣
∂2f

∂xi∂xj
(x)

)
e∗j · ei for t ∈ R .

Then

∂v(∂ζψ)(z) =
d

dt
∂ζψ(z + tv)

∣∣∣∣
t=0

= (dγ(0)(ξ
∗∗ ◦ µ))(γ′(0))

= − ξ∗∗(γ(0)−1 ◦ γ′(0) ◦ γ(0)−1)

= Ãf (z)−1

(∑

i,j

(
v

∣∣∣∣
∂2f

∂xi∂xj
(x)

)
∂ζψj(z) · ei

)
,

which is the desired conclusion.

(4′.12) Lemma (the curvilinear version of the theorem on the existence
of the Fréchet differential). Let M ⊂ Z be a C2-submanifold and a∈M . Let

Y denote a finite-dimensional linear space, and g : Z ◦→ Y a mapping of a

neighbourhood of a such that gM := g|M is differentiable at a. Assume that

in a neighbourhood of a the differentials

Lz := T⊥

P(z)dzg

exist , and

Lz −→
z→a

La .

Then g is differentiable at a.

P r o o f. We will reduce this problem to the classical theorem. Consider a
Euclidean space X of dimension dimZ, its subspace H of dimension dimM
and an inverse chart f : H ◦→M of class C2 for which f(0) = a. There exists
a C2-diffeomorphism Φ : X ◦→ Z such that Φ(0) = a, f |H∩domΦ ⊂ Φ and for
all x ∈ domΦ, the map H⊥ ∋ v ◦7→Φ(x+ v)−Φ(x) is contained in the linear
isometry of H⊥ and T⊥

f(x′) (where x′ stands for the orthogonal projection

of x onto H). In view of Theorem (3.8) we can assume that imΦ ⊂ domP
and P(z) = w whenever z ∈ imΦ, w ∈ M ∩ imΦ and z − w ⊥ TwM . We
will show that g ◦Φ satisfies the assumptions of the classical theorem on the
existence of the Fréchet differential, which will complete the proof.



Nonlinear orthogonal projection 25

Obviously, the differential Hd0(g ◦ Φ) exists. Write O := (domΦ) ∩
Π−1(dom f ∩ domΦ) (∈ topX), where Π : X → H is the linear orthogo-
nal projection. Also, fix x ∈ O and put x′ := Π(x). Then Φ(x) − f(x′) =
Φ(x′ + (x − x′)) − Φ(x′) ∈ T⊥

f(x′), therefore P(Φ(x)) = f(x′) and LΦ(x) =

d0(g ◦ τΦ(x) ◦ ιT⊥

f(x′)
). Consider u ∈ H⊥ such that x+ u ∈ domΦ. Then

(g ◦ Φ)(u+ x) = (g ◦ τΦ(x) ◦ ιT⊥

f(x′)
)(Φ(x+ u)− Φ(x)) .

The differential of H⊥ ∋ u ◦7→Φ(x+ u)− Φ(x) at zero is an isometry of H⊥

and T⊥
f(x′), contains the function itself and is the differential of Φ at x with

respect to H⊥. Thus in a neighbourhood of zero we have

(g ◦ Φ) ◦ τx ◦ ιH⊥ = (g ◦ τΦ(x) ◦ ιT⊥

f(x′)
) ◦ dxΦ ◦ ιH⊥ ,

from which it follows that H⊥

dx(g ◦ Φ) exists for all x ∈ O and is equal to
ιΦ(x) ◦ dxΦ ◦ ιH⊥ .

Knowing that Hd0(g ◦ Φ) exists we are reduced to proving that

H⊥

dx(g ◦ Φ) −→
x→0

H⊥

d0(g ◦ Φ)

in the Banach space L(H⊥, Y ) or, which is equivalent, in the Hausdorff
metric (see (4′.3)). We will use the criterion (4′.7). Fix ε>0. Since Lz→La

as z → a, there is δ > 0 such that

∀|z−a| ≤ δ, vz ∈ S∩T⊥
f(z′), v ∈ S∩T⊥

a , |v−vz| ≤ δ : |Lz(vz)−La(a)| ≤ ε.
Since 0 ∈ O and Φ and Φ′ (the derivative of Φ) are continuous, there is ϑ > 0
such that if |x| < ϑ, then x ∈ O, |Φ(x)−a| ≤ δ and |dxΦ−d0Φ| ≤ δ. Now fix

x ∈ X such that |x| ≤ δ and define vΦ(x) := H⊥

dxΦ(u), v := H⊥

d0Φ(u). The
functions dxΦ◦ ιH⊥ and d0Φ◦ ιH⊥ are isometries, therefore |vΦ(x)| = |v| = 1.

Hence |H⊥

dx(g ◦ Φ)(u)− H⊥

d0(g ◦ Φ)(u)| ≤ ε.
(4′.13) Theorem (global version of (4′.12)). Consider a C2-submani-

fold M ⊂ Z and a mapping g : Z ◦→ Y of a subset dom g ∈ topZ of the

domain of P with values in a finite-dimensional linear space Y . Suppose that

gM := g|M is of class C1 and
T⊥

P(z)dzg exists for any z ∈ dom g. Moreover ,
assume that the function

dom g ∋ z 7→ T⊥

P(z)dzg

is continuous in the Hausdorff metric at any point of M ∩ dom g. Then

(i) g is differentiable at a for all a ∈M ∩ dom g;

(ii) the function M ∩ dom g ∋ a 7→ dag is continuous.

P r o o f. By Lemma (4′.12) it remains to prove (ii). The map G :=gM ◦
PΩ (PΩ := P|Ω) is of class C1 (see (4.1)) and M ∩ domG = M ∩ dom g.
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For z ∈M ∩ dom g we denote by αz : Tz →֒ Z the inclusion. Theorem (4.1)
states that dzP is the orthogonal projection onto Tz, so

∀z ∈M ∩ dom g : dzG ◦ αz = dzg ◦ αz (= Tzdzg) .

The map M ∋ z 7→ TzM is of class C1. On the other hand, Gdim M (Z) ∋
U 7→ ιU ∈ L(U,Z) is continuous (see (4′.6)). This yields the continuity of

M ∩ domG ∋ z 7→ dzG ◦ αz = Tzdzg ∈ Gdim Z(Z × Y )

(see (4′.5)). From this we conclude that

dzg = Tzdzg ⊕ T⊥

z dzg −→
M∋z 7→a

Tadag ⊕ T⊥

a dag = dag

(see (4′.4)).

P r o o f o f T h e o r e m (4.2). It is sufficient to show that the assertion
holds locally. Let f : R

n ◦→M be an inverse chart of class C2 and, according
to the notation of Lemma (4′.10), set ψ := f−1 ◦ P. This is a C1-mapping.
The proof will be completed when we prove that for any ζ ∈ Z, ∂ζψ is
differentiable and the function im f ∋ x 7→ dx(∂ζψ) is continuous.

Fix ζ ∈ Z. Intending to make use of Theorem (4′.13) we have to
show that (∂ζψ)M is of class C1 and that for z ∈ domψ, the differentials
T⊥

P(z)dz(∂
ζψ) exist and converge to T⊥

z0dz0
(∂ζψ) as z → z0 (∈ M). In the

notation of (4′.11),

∂ζψ(z)

=

(∑

i,j

(
∂f

∂xi
(x)

∣∣∣∣
∂f

∂xj
(x)

)
e∗j · ei

)((
ζ

∣∣∣∣
∂f

∂x1
(x)

)
, . . . ,

(
ζ

∣∣∣∣
∂f

∂xn
(x)

))

for z = f(x) (x ∈ dom f). The right-hand side is a C1-function of x, thus
(∂ζψ)M is of class C1. Now we only have to show that

T⊥

P(z)dz(∂
ζψ) −→

z→z0

T⊥

z0dz0
(∂ζψ) ,

where z0 ∈ im f . This follows from the criterion (4′.7) and from TP(z) → Tz0

and T⊥
P(z) → T⊥

z0
as z → z0 (see (3.5)).

D i s c u s s i o n o f E x a m p l e (4.3). Consider the C2-embedding f :
R→ R

2 given by

f(t) :=

{
(t, 1

3
t3) , t ≥ 0,

(t, 0) , t < 0,

and the submanifold M := f(R). Suppose, contrary to our claim, that

(4′.14) P is twice differentiable in a neighbourhood of (0, 0).

Then there is r > 0 such that P is twice differentiable in U := ]−r, r[2 and

∀z ∈ U ∀w ∈ U ∩M : z − w ⊥ TwM ⇒ P(z) = w
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(see (3.8)). Thus, for z = (z1, z2) ∈ U ∩ {(x, y) : x ≤ 0} we have

(4′.15) z1 = (f−1 ◦ P)(z) .

Fix λ ∈ ]0, r[ and define the C2-curve

gλ : R ∋ t 7→ f(t) + (−λt2, λ) .

There is δ > 0 such that for all t ∈ [0, δ], t4−2λt+1 > 0 and gλ(t), f(t) ∈ U
and P(gλ(t)) = f(t). In view of (4′.14) the map

κ(t) := ∂e1(f−1 ◦ PΩ)(gλ(t))

is differentiable in a neighbourhood of zero. We have detAf (gλ(t)) = t4 −
2λt+1 6= 0 for t ∈ [0, δ] (see (3.12)), so by (4′.11), κ(t) = 1/(t4−2λt+1) for
any t ∈ [0, δ]. Therefore κ′(0+) = 2λ 6= 0. On the other hand, (4′.15) yields
∂e1(f−1◦PΩ) ≡ 1 in U∩{(x, y) : x ≤ 0}, thus κ′(0−) = 0, a contradiction.

P r o o f o f P r o p o s i t i o n (4.4). The mapping

̺ : Ω \M ∋ x 7→ |x− P(x)| ∈ R

is of class C1. For all b ∈ Z \ {0} one obtains

∂b̺2(x) = 2(x− P(x) | b− ∂bP(x))

= 2(x− P(x) | b)− 2(x− P(x) | dxP(b))

= 2(x− P(x) | b) ,
since x − P(x) ∈ T⊥

P(x) and dxP(b) ∈ TP(x). On the other hand, ∂b(λ2) =

2̺ · ∂b̺, so 2̺(x) · ∂b̺(x) = 2(x−P(x) | b), and finally,

∂b̺(x) =

(
x− P(x)

|x− P(x)|

∣∣∣∣ b
)
.

5′. Proofs

(5′.1) Remark. For every submanifold M ⊂ Z the following conditions

are equivalent :

(i) M is non-empty , convex and closed ;
(ii) M is an affine subspace of Z.

P r o o f. (ii)⇒(i) is obvious.
(i)⇒(ii). One can assume that 0 ∈ M . Let H := LinM , n := dimH

(≥ dimM), {e1, . . . , en} ⊂ M be a basis of H and {e∗1, . . . , e∗n} the dual
basis. The set

{h ∈ H : (e∗1 + . . . + e∗n)(h) < 1} ∩
n⋂

i=1

{h ∈ H : e∗i (h) > 0}

⊂ conv{0, e1, . . . , en}
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is non-empty, open in H and contained in M . Therefore dimM = n, and
consequently M ∈ topH. Finally, H = M .

P r o o f o f T h e o r em (5.3). This follows (even for M being a C1-
submanifold) immediately from (5.2) and (5′.1). We will present a more
elementary proof without the use of Theorem (5.2). The set M is closed,
because if (xn) ∈MN converges to z ∈ Z, then 0 = |xn−P(xn)| → |z−P(z)|
as n → ∞. Hence z = P(z) ∈ M . In view of Remark (5′.1) it suffices to
prove the convexity of M . Fix a ∈ Z and set

J := {t ∈ R+ : P(P(a) + t(a−P(a))) = P(a)} ,
where R+ := [0,∞[. Notice that J ∈ (cotop R+) \ {∅}. Simultaneously J ∈
top R+. In order to prove this, fix t0 ∈ J and put b := P(a) + t0(a−P(a)).
By Corollary (3.9) there exists O ∈ topT⊥

P(a) such that 0 ∈ O and P ≡
P(a) on b+O. Moreover, there is δ > 0 for which δ(a − P(a)) ∈ O. Thus
P(a) = P(b+ δ(a−P(a))), which means that [0, t0 + δ] ⊂ J . Consequently,
J = R+.

Now we show that M is contained in the half-space Π(a) := {z ∈ Z :
(z − P(a) | a− P(a)) ≤ 0}. Fix x ∈M and t ∈ J (= R+). We have

|P(a) + t(a− P(a)) − x| ≥ |P(a) + t(a− P(a)) − P(a)| ,
which is equivalent to the inequality

(x−P(a) | a− P(a)) ≤ 1

2t
|P(a) − x|2

for all t > 0, so indeed x ∈ Π(a) (∀a ∈ Z). Therefore M ⊂ ⋂
a∈Z Π(a). The

inverse inclusion also holds, since for z∈⋂
a∈Z Π(a) we have, in particular,

z ∈ Π(z). This implies z = P(z) ∈M . As a consequence, M (=
⋂

a∈Z Π(a))
is convex.

6′. Proofs

(6′.1) Remark. Consider a concave function f : R
k → R (i.e. such that

the set {(x, y) ∈ R
k×R : f(x) ≥ y} is convex ) and the orthogonal projection

P : R
k × R ◦→ f . Then {(x, y) ∈ R

k ×R : f(x) ≤ y} ⊂ domP.

(6′.2) Remark. Consider a Euclidean space Z, a set M ⊂ Z, the orthog-

onal projection P : Z ◦→M and a subset U ⊂ Z. Assume that I : Z → Z is

an isometry such that I(M) = M . Then I(U \ domP) = I(U) \ domP.

Let us introduce the symbols and notions constantly used throughout
this section. We view Z = R

2 as the complex plane C. For all a ∈ R for
which the following definition makes sense, we denote by L(a) the affine line
(a+f(a)i)+T⊥

a+f(a)iM , where f : R ◦→ R is the function under consideration

and M (= f) is its graph.
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D i s c u s s i o n o f E x a m p l e (6.1). For a ∈ R \ {0} the normal line
L(a) = {x+ iy : y− a2 = −1

2a (x− a)} intersects Ri at (a2 + 1/2)i. Therefore
[0, i/2] ⊂ domP and P|[0,i/2] ≡ 0. Also, for z ∈ ]1/2,∞[ · i there exists a
unique a > 0 such that z ∈ L(a). Moreover, {b ∈ R : z ∈ L(b)} = {−a, 0, a}.
But since |a+ a2i− z| = | − a+ a2i− z| < |z|, we have z 6∈ domP. Hence

R+i ∩ domP = [0, i/2] .

By Remark (6′.1), {x+ iy : y ≤ x2} ⊂ domP. We are left with considering
points z0 = x0 + iy0 for which x0 6= 0 and y0 > x2

0. For such z0 there exists
a+a2i 6= 0 realizing the distance of z0 from f . Thus z0 ∈ ]a+a2i, (a2+1)i[ ⊂
domP and P(z0) = a+a2i (see (1.5)). Finally, domP = C \ (]1/2,∞[ · i).

D i s c u s s i o n o f E x a m p l e (6.2). The results obtained in the discus-
sion of Example (6.1) imply

{z ∈ C : Re z ≥ 0} ⊂ domP .
Next, for z = x+ iy such that x < 0 define

h = hz : [0,∞[ ∋ a 7→ |x+ iy− (a+a2i)|2 = a4 +(1−2y)a2−2ax+x2 +y2 ,

which is either increasing or reaches one minimum. Therefore

x+ iy 6∈ domP ⇔ ∃a0 > 0 : h′(a0) = 0 and h(0) = h(a0) .

The system of equations on the right-hand side of the above equivalence has
a solution a0 > 0 iff y = 1

2 (3(−x)2/3 +1). Then a0 = (−x)1/3. So the graph
of the function

(6′.3) G : ]−∞, 0[ ∋ x 7→ 1

2
(3(−x)2/3 + 1) ∈ R

coincides with R
2 \ domP.

D i s c u s s i o n o f E x a m p l e (6.3). When we delete zero from the M
of Example (6.2), all the points that were previously projected onto zero
disappear from domP. These are exactly the points z ∈ {w : Rew ≤ 0}
for which, in the notation of Discussion of (6.2), either z ∈ ]−∞, 1/2[ · i, or
h′(a0) = 0 and h(0) = h(a0) for some a0 > 0. Finally,

domP = C \ ({i/2} ∪ {x+ iy : x ≤ 0, y < G(x)}) (see (6′.3)) .

D i s c u s s i o n o f E x a m p l e (6.4). First consider points of Ri. If a+
i(cos a) realizes such a point’s distance from f = cos, then |a| < π. The
normal at a+ i(cos a),

L(a) =

{
x+ iy : y − cos a =

x− a
sin a

}
(for 0 < |a| < π) ,

intersects Ri at y(a) := (cos a− a/sin a)i. Since the function

y : ]0, π[ ∋ a 7→ y(a) ∈ ]−∞, 0[ · i
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is continuous and bijective, for any z ∈ [0,∞[ ·i the point a = 0 is the unique
point a in ]−π, π[ for which z lies on L(a). Therefore [0,∞[ · i ⊂ domP.

Next, for fixed y0 < 0 there exists a unique a ∈ ]0, π[ such that y0i ∈
L(a). Simultaneously, {b ∈ ]−π, π[ : y0i ∈ L(b)} = {−a, 0, a}. If we had
|y0i − (a + i cos a)| > |y0i − i|, then y0i ∈ domP and P(y0i) = i, hence
0 ∈ ]y0i, i] ⊂ Ω (see (3.13)) and, by Theorem (3.11), 0 6= detAF (0), where
F : R ∋ a 7→ (a, cos a) ∈ R

2. But the matrix AF (0) is singular. Therefore,
the distance of y0i from f is realized by two points: a+ i cos a, −a+ i cos a.
This means that Ri ∩ domP = [0,∞[ · i.

Now, consider z0 = x0 + iy0 such that x0 ∈ ]0, π[ and y0 < cos x0. As
mentioned at the beginning, there exists a ∈ ]0, π[ such that a + i cos a
realizes the distance of z0 from f . But z0 ∈ ]y(a), a + i cos a[ ⊂ domP.
Therefore, for

U := Ri ∪ {x+ iy : x ∈ ]0, π[, y ≤ cos x}
we have U \ domP = ]−∞, 0[ · i. Put M := f . Consider the family J :=
{τ2kπ ◦ I}k∈Z of isometries of the plane C, where τ2kπ is translation by 2kπ,
while I is either idC, Sπ+Ri, Rπ/2, or Sπ+Ri◦Rπ/2 (where Sb is the symmetry
about a straight line b and RB the symmetry about a point B). Then

⋃

J∈J

J(U) = C and ∀J ∈ J : J(M) = M .

Applying Remark (6′.2) to our U we obtain

C \ domP =
( ⋃

J∈J

J(U)
)
\ domP =

⋃

k∈Z

(kπ + ]0,∞[ · (−1)k+1i) .

D i s c u s s i o n o f E x a m p l e (6.5). Remark (6′.1) yields {x+ iy : y ≤
ex} ⊂ domP. Fix z = x+ iy ∈ C and consider the function

h = hz : R ∋ a 7→ |z − (a+ iea)|2 = (x− a)2 + (y − ea)2 .

For |y| ≤ 2
√

2, h reaches one minimum, so {w ∈ C : Imw ≤ 2
√

2} ⊂ domP.
If y = Im z > 2

√
2, then h′′(a) = 0 has two solutions a1 < a2. A sufficient

condition for z 6∈ domP is:

(6′.4) h′(a1) > 0 and h′(a2) < 0 .

This is equivalent to

− ln
√

2e− u2(t) < x < − ln
√

2e− u1(t) ,

where t := y/2
√

2 (> 1) and

u1(t) := t(t−
√
t2 − 1) + ln(t+

√
t2 − 1) ,

u2(t) := t(t+
√
t2 − 1)− ln(t+

√
t2 − 1) .

Moreover, limt→∞ u1(t) = limt→∞ u2(t) = ∞ and the graphs of u1 and u2
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are tangent at the point corresponding to t = 1, i.e. at −1− ln
√

2e+ 2
√

2i.
The condition (6′.4) is satisfied by points of the set

{x+ iy : y > 2
√

2 and −u2(y/2
√

2) < x < −u1(y/2
√

2)}
which contains C \ domP.
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[13] J. L. L ions, Quelques méthodes de résolution des problèmes aux limites non
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