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Second order evolution equations with parameter

by Jan Bochenek and Teresa Winiarska (Kraków)

Abstract. We give some theorems on continuity and differentiability with respect to
(h, t) of the solution of a second order evolution problem with parameter h ∈ Ω ⊂ Rm.
Our main tool is the theory of strongly continuous cosine families of linear operators in
Banach spaces.

1. Introduction. We consider the second order evolution problem

(1)

d2u

dt2
= Ahu+ f(h, t), t ∈ (0, T ],

u(0) = u0
h,

u′(0) = u1
h ,

with parameter h ∈ Ω, where (Ah)h∈Ω is a family of linear (possibly un-
bounded) operators from a real Banach space X into itself, u is a mapping
R → X, f : Ω × R → X, Ω is an open subset of Rm, and u0

h, u
1
h ∈ X for

h ∈ Ω.
It is well known (see e.g. [1], [6]) that if Ah is the infinitesimal generator

of a strongly continuous cosine family {Ch(t) : t ∈ R} of bounded linear
operators from X into itself, for h ∈ Ω, and f satisfies some regularity
conditions, then the problem (1) has exactly one solution uh given by

(2) uh(t) = Ch(t)u0
h+Sh(t)u1

h+
t∫

0

Sh(t−s)f(h, s) ds, t ∈ [0, T ], h ∈ Ω .

In (2), Sh, for h ∈ Ω, is the operator sine function associated with Ch,
defined by

(3) Sh(t)x :=
t∫

0

Ch(s)x ds, x ∈ X, t ∈ R .
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The purpose of this paper is to present some theorems on continuity and
differentiability with respect to (h, t) of the solution of problem (1). Similar
questions for the first order evolution problem are considered in [7]–[9].

2. Preliminaries. Assuming that X, Y are Banach spaces we let
B(X,Y ) be the Banach space of all bounded linear operators from X to Y .
If X = Y , then B(X,X) is denoted by B(X). The space of closed linear
operators from X into itself will be denoted by C(X). For a given operator
A, D(A), R(A) and P (A) will denote its domain, range and resolvent set,
respectively.

Definition 1 (cf. [6]). Let Ah ∈ C(X) with domain D(Ah) = Dh for
h ∈ Ω. We call the family (Ah)h∈Ω R-continuous at h0 ∈ Ω if there exists
a Banach space Z and a family Th ∈ B(Z,X), h ∈ Ω, such that

(i) R(Th) = Dh and the mapping Z 3 z → Thz ∈ Dh is bijective for all
h ∈ Ω,

(ii) the mappings Ω 3 h → Th ∈ B(Z,X) and Ω 3 h → Vh = AhTh ∈
B(Z,X) are continuous at h0.

The continuity in Ω is defined to be the continuity at every point of Ω.
We shall use the following simple lemma (cf. [7], Corollary 1).

Lemma 1. Let Ah ∈ C(X) for h ∈ Ω and suppose λ ∈ P (Ah) for all
h ∈ Ω. Then the mapping

Ω 3 h→ Ah ∈ C(X)

is R-continuous at h0 ∈ Ω if and only if the mapping

Ω 3 h→ (λ−Ah)−1 ∈ B(X)

is continuous at h0.

Our main tool in this paper is the theory of strongly continuous cosine
families of linear operators in Banach space. The basic ideas and results of
this theory can be found for example in [6].

Recall that the infinitesimal generator of a strongly continuous cosine
family C(t) is the operator A : X ⊃ D(A)→ X defined by

(4) Ax := (d2/dt2)C(t)x
∣∣
t=0

, x ∈ D(A) ,

where

(5) D(A) := {x ∈ X : C(t)x is twice continuously differentiable in t} .
Let

E := {x ∈ X : C(t)x is once continuously differentiable in t} .
It is known (see [6], Proposition 2.2) that D(A) is dense in X and A is a
closed operator in X.
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If A is the generator of C(t), there exist constants M ≥ 1 and ω ≥ 0
such that

(6) ‖C(t)‖ ≤Meω|t| for t ∈ R .
Moreover, let us notice (see [6], (2.17)–(2.19)) that

S(t)X ⊂ E and S(t)E ⊂ D(A) for t ∈ R ,
(d/dt)C(t)x = AS(t)x for x ∈ E and t ∈ R ,

(d2/dt2)C(t)x = AC(t)x = C(t)Ax for x ∈ D(A) and t ∈ R .
The proof of the next propositions can be found in [2].

Proposition 1 (see [6]). Let C(t), t ∈ R, be a strongly continuous cosine
family in X satisfying (6), and let A be the infinitesimal generator of C(t),
t ∈ R. Then, for Reλ > ω, λ2 is in the resolvent set of A and

λR(λ2;A)x =
∞∫
0

e−λtC(t)x dt for x ∈ X ,(7)

and

R(λ2;A)x =
∞∫
0

e−λtS(t)x dt for x ∈ X .(8)

Proposition 2. Under the assumptions of Proposition 1, for Reλ > ω,
λ2 is in the resolvent set of A and

(9) ‖(d/dλ)kλ(λ2 −A)−1‖ ≤ Mk!
(Reλ− ω)k+1

for k = 0, 1, . . .

3. Assumptions and some helpful lemmas. Let {Ah}h∈Ω be the
family of linear operators defined in the Introduction. We make the following
assumptions on {Ah}h∈Ω :

(Z1) For each h∈Ω, Ah is the infinitesimal generator of a strongly con-
tinuous cosine family {Ch(t) : t ∈ R} of bounded linear operators
from X into itself.

(Z2) The domain D(Ah) = D, for h ∈ Ω, is independent of h and the
family {Ch(t)} satisfies the inequality (6) with constants M and ω
independent of h ∈ Ω.

Under assumptions (Z1) and (Z2), for each h ∈ Ω, Ah satisfies (9) with
constants M and ω independent of h ∈ Ω.

In the sequel we shall need the following assumption.

(Z3) There exist constants M ≥ 1 and ω ≥ 0 independent of h ∈ Ω such
that for Reλ > ω, λ2 is in the resolvent set of Ah and

(10) ‖λ(λ2 −Ah)−1‖ ≤M(|λ| − ω)−1 .
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The assumption (10) is stronger than the inequality resulting from (9)
for k = 0. Assumption (Z3) has a technical character.

Lemma 2. Suppose assumptions (Z1)–(Z3) are satisfied. If the mapping

(11) Ω 3 h→ Ah ∈ C(X)

is R-continuous, then the mapping

(12) U 3 (λ, h)→ (λ2 −Ah)−1 ∈ B(X) ,

where

(13) U := {(λ, h) ∈ C×Ω : Reλ > ω} ,
is continuous.

P r o o f. Fix (λ0, h0)∈U and let (λ, h)∈U . The assertion follows directly
from the equality

(λ2 −Ah)−1 − (λ2
0 −Ah0)−1

= (λ2
0 − λ2)(λ2 −Ah)−1(λ2

0 −Ah)−1 + (λ2
0 −Ah)−1 − (λ2

0 −Ah0)−1 .

Theorem 1. Under the assumptions of Lemma 2, the mapping

(14) Ω × R 3 (h, t)→ Sh(t)x ∈ X
is continuous for each x ∈ X.

P r o o f. By assumption (Z1), the formula (8) holds for each h ∈ Ω and
Reλ > ω, i.e.

R(λ2;Ah)x =
∞∫
0

e−λtSh(t)x dt , h ∈ Ω, Reλ > ω, x ∈ X.

A formal application of the inverse Laplace transform yields (cf. for example
[4], p. 31)

(15) Sh(t)x =
1

2πi

c+i∞∫
c−i∞

eλtR(λ2;Ah)x dλ , t ∈ R , h ∈ Ω, x ∈ X,

where c > ω is any constant, i.e. the line integral in (15) is taken along the
straight line Reλ = c. From (15) it follows that

(16) Sh(t)x =
1

2π

∞∫
−∞

e(c+iσ)t[(c+ iσ)2 −Ah]−1x dσ ,

where λ = c+ iσ, σ ∈ (−∞,∞), is the path of integration in (15). By (10)
we get

(17) ‖e(c+iσ)t[(c+ iσ)2 −Ah]−1x‖ ≤Mect
1√

c2 + σ2(
√
c2 + σ2 − ω)

‖x‖ .
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From (17) it follows that the improper integral in (16) is absolutely conver-
gent uniformly in (h, t) ∈ Ω × I, where I ⊂ R is any bounded set.

Fix (h0, t0)∈Ω×R, a compact neighborhood K⊂Ω × R of (h0, t0) and
an interval [a, b]⊂R. By Lemma 2 the integrand in (16) is uniformly contin-
uous in K × [a, b] as a function of (h, t, σ). Therefore, using the well known
theorem on the continuity of the improper integral with respect to param-
eters, we get the continuity of the mapping (14) at (h0, t0). This completes
the proof.

Lemma 3. If

(i) the mapping Ω 3 h→ Ah ∈ C(X) is R-continuous,
(ii) the mapping Ω × R 3 (h, t)→ Bh(t) ∈ B(X) is continuous,

then the mapping

(18) Ω × R 3 (h, t)→ Bh(t)Ah

is R-continuous.

P r o o f. Fix (h0, t0) ∈ Ω × R. By (i) there exist a Banach space Z and
operators Uh, Uh0 , Vh, Vh0 ∈ B(Z,X) such that Uh, Uh0 map Z bijectively
onto D(Ah), D(Ah0), respectively, AhUh = Vh, Ah0Uh0 = Vh0 and ‖Uh −
Uh0‖ → 0 and ‖Vh − Vh0‖ → 0 as h→ h0.

Define Ũh(t) := Uh and Ṽh(t) := Bh(t)Vh. We have

(19) ‖Ũh(t)− Ũh0(t0)‖ = ‖Uh − Uh0‖ → 0

and

‖Ṽh(t)− Ṽh0(t0)‖ = ‖Bh(t)Vh −Bh0(t0)Vh0‖(20)
≤ ‖Bh(t)−Bh0(t0)‖‖Vh‖

+ ‖Bh0(t0)‖‖Vh − Vh0‖ → 0

as (h, t)→ (h0, t0).
On the other hand,

Ṽh(t) = Bh(t)Vh = Bh(t)AhUh = (Bh(t)Ah)Ũh(t)

and

Ṽh0(t0) = Bh0(t0)Vh0 = Bh0(t0)Ah0Uh0 = (Bh0(t0)Ah0)Ũh0(t0) .

Now the R-continuity of (18) follows from (19) and (20). The proof of Lemma
3 is complete.

Theorem 2. Under the assumptions of Lemma 2 the mapping

(21) Ω × R 3 (h, t)→ Ch(t)x ∈ X

is continuous for each x ∈ X.
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P r o o f. From the known formula

C(t+ s)− C(t− s) = 2AS(t)C(s) , t, s ∈ R ,

(see [6], (2.23)), it follows that

(22) (Ch(t)− I)x = 2AhS2
h(t/2)x , t ∈ R , h ∈ Ω , x ∈ X.

If x ∈ D(Ah) = D we have

(23) (Ch(t)− I)x = 2S2
h(t/2)Ahx .

Lemma 3 with Bh(t) := 2S2
h(t/2), Theorem 1, and (23) show the R-continu-

ity of the mapping

(24) Ω × R 3 (h, t)→ Ch(t)|D .

On the other hand, by (6) and (Z2), Ch(t) : X → X is a uniformly bounded
operator for h ∈ Ω and t ∈ [a, b], where [a, b] ⊂ R is any bounded interval.
This gives the continuity of (24) in the norm of B(X) (see [3], p. 206). Using
the Banach–Steinhaus theorem we obtain the assertion of Theorem 2 (cf.
[4], p. 9).

4. Continuity with respect to a parameter. Let (Ah)h∈Ω be a
family of linear operators from X into X such that assumptions (Z1), (Z2)
are satisfied.

Lemma 4. Let h0 ∈ Ω. If for any x ∈ X,

(25) lim
h→h0

Ch(t)x = Ch0(t)x uniformly in t ∈ [0, T ]

and the family (Ah)h∈Ω is R-continuous at h0, then

(26) lim
h→h0

Ch(t)x = Ch0(t)x uniformly in (t, x) ∈ [0, T ]×K,

where K is any compact subset of X.

The proof is the same as that of Proposition 1 in [7] with Φ(t, h) =
Ch(t)− Ch0(t).

As a consequence of Lemma 4 we have

Corollary 1. limh→h0 Sh(t)x = Sh0(t)x uniformly in [0, T ]×K.

P r o o f. By (3) we have

‖Sh(t)x− Sh0(t)x‖ ≤
T∫

0

‖Ch(s)x− Ch0(s)x‖ ds .

By (26), for any ε > 0, there exists δ > 0 such that if |h− h0| < δ, then

‖Sh(t)x− Sh0(t)x‖ < εT for t ∈ [0, T ] , x ∈ K .
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Theorem 3. If the assumptions of Lemma 4 are satisfied , the mappings

(a) Ω 3 h→ u0
h ∈ X,

(b) Ω 3 h→ u1
h ∈ X,

(c) f : Ω × [0, T ]→ X

are continuous and

(d) fh = f(h, ·) : [0, T ]→ X

is C1 for h ∈ Ω, then for every h ∈ Ω there exists exactly one solution uh
of the problem (1) and

lim
h→h0

uh(t) = uh0(t) ,

uniformly in t ∈ [0, T ].

P r o o f. By the assumptions, the solution of (1) is given by (2). Thus,
by standard calculation we have

uh(t)− uh0(t) = (Ch(t)− Ch0(t))u0
h + Ch0(t)(u0

h − u0
h0

)(27)

+ (Sh(t)− Sh0(t))u1
h + Sh0(t)(u1

h − u1
h0

)

+
t∫

0

[Sh(t− s)− Sh0(t− s)]fh(s) ds

+
t∫

0

Sh0(t− s)[fh(s)− fh0(s)] ds .

Let K be a compact neighborhood of h0. Since the mappings (a), (b), (c)
are continuous, the sets K1 = {u0

h : h ∈ K}, K2 = {u1
h : h ∈ K} and

K3 = {fh(s) : h ∈ K, s ∈ [0, T ]} are compact subsets of X. By Lemma 4
and Corollary 1,

[Ch(t)− Ch0(t)]u0
h
h→h0−→ 0 , [Sh(t)− Sh0(t)]u1

h
h→h0−→ 0 ,

and
[Sh(t− s)− Sh0(t− s)]fh(s) h→h0−→ 0 ,

uniformly in t, s ∈ [0, T ]. By assumption (Z2) we have

‖Ch0(t)(u0
h − u0

h0
)‖ ≤MeωT ‖u0

h − u0
h0
‖ h→h0−→ 0 ,

uniformly in t ∈ [0, T ] and

‖S(t)x‖ ≤
t∫

0

Meωs‖x‖ ds ≤ M

ω
(eωt − 1)‖x‖ .

Therefore

‖Sh(t)‖ ≤ M

ω
(eωT − 1) for h ∈ Ω .
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Hence

‖Sh0(t)(u1
h − u1

h0
)‖ h→h0−→ 0 and Sh0(t− s)[fh(s)− fh0(s)] h→h0−→ 0 ,

uniformly in t, s ∈ [0, T ]. Thus the left hand side of (27) converges to zero,
uniformly in t ∈ [0, T ].

Corollary 2. If the assumptions of Theorem 3 are satisfied for any
h0 ∈ Ω, then the mapping

u : Ω × [0, T ] 3 (h, t)→ uh(t) ∈ X
is continuous.

5. Differentiability with respect to a parameter. Let us recall (see
[7], p. 223) the definition of differentiability of Ω 3 h→ Ah.

Let D be a normed vector space over R such that there exist a Banach
space Z and a bounded, linear, bijective mapping T : Z → D. Setting
sB(D,Y ) = {A : D → Y : A is linear and AT ∈ B(Z, Y )} we see that
sB(D,Y ) is independent of (Z, T ).

Definition 2. Let Ω be an open subset of R. A function Ω 3 h →
Ah ∈ sB(D,Y ) is said to be (continuously) differentiable at a point h0 ∈ Ω
if there exist a Banach space Z and a bounded, linear, bijective mapping T :
Z → D such that the mapping Ω 3 h → AhT ∈ B(Z,D) is (continuously)
differentiable in the Fréchet sense.

In this case we put

A′h0
=
(
d

dh
AhT

∣∣∣∣
h=h0

)
T−1 .

The higher differentiability classes are defined in the standard manner.

Lemma 5. If Au0+f(0) ∈ D(A), Au1+(df/dt)(0) ∈ E, A is the generator
of C(t) and f : [0, T ]→ X is of class C3 then the problem

(28)

d2u

dt2
= Au+ f ,

u(0) = u0 ,

du

dt
(0) = u1 ,

has exactly one solution which is of class C4 in [0, T ].

P r o o f. It is well known that, under our assumptions, the solution of the
problem (28) has the form

u(t) = C(t)u0 + S(t)u1 +
t∫

0

S(t− s)f(s) ds .
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Hence
d2u

dt2
= C(t)(Au0 + f(0)) + S(t)

(
Au1 +

df

dt
(0)
)

+
t∫

0

S(s)
d2f

dt2
(t− s) ds .

Thus w = d2u/dt2 is the solution of the problem

(29)

d2w

dt2
= Aw +

d2f

dt2
,

w(0) = Au0 + f(0) ,
dw

dt
(0) = Au1 +

df

dt
(0) .

By Proposition 2.4 of [6] we conclude that u is C4 in [0, T ].

Lemma 6. Suppose that the assumptions of Theorem 3 are satisfied at
every h0 ∈ Ω. If Ahu0 + fh(0) ∈ D, Ahu1

h + (dfh/dt)(0) ∈ E for h ∈ Ω,
fh = f(h, ·) : [0, T ] → X is of class C3, d2f/dt2 : Ω × [0, T ] → X is
continuous and the mappings

Ω 3 h→ Ahu
0
h + fh(0), Ω 3 h→ Ahu

1
h +

dfh
dt

are continuous, then the mapping

Ω × [0, T ] 3 (h, t)→ d2uh
dt2

(t) ∈ X

is continuous in [0, T ].

Lemma 6 is an immediate consequence of Lemma 5 and Theorem 3.
Now we prove

Theorem 4. Let Ω be an open subset of R and suppose that assumptions
(Z1)–(Z3) hold. If

(1) the mappings Ω 3 h → Ah, Ω 3 h → u0
h are continuous in Ω and

differentiable at h0 ∈ Ω,
(2) fh : [0, T ]→ fh(t) is of class C3 for h ∈ Ω,
(3) the mappings

Ω 3 h→ Ahu
0
h + fh(0) ,

Ω 3 h→ Ahu
1
h +

dfh
dt

(0) ,

Ω × [0, T ] 3 (h, t)→ ∂f

∂h
(h, t)

are continuous,
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(4) Ahu0
h + fh(0) ∈ D and Ahu1

h + (dfh/dt)(0) ∈ E for h ∈ Ω,

then there exists exactly one solution uh(t) = u(h, t) of the problem (28)
which is of class C2 with respect to t and differentiable with respect to h
at h0.

Moreover ,

lim
h→h0

uh(t)− uh0(t)
h− h0

= u′h0
(t) ,

uniformly in t ∈ [0, T ], and u′h0
is the solution of the problem

d2u′h0

dt2
= Ah0u

′
h0

+A′h0
uh0 + f ′h0

,

u′h0
(0) = (u0

h0
)′ ,

du′h0

dt
(0) = (u1

h0
)′ .

P r o o f. We proceed similarly to the proof of Theorem 2 in [6]. For h, h0

∈ Ω we have

d2

dt2

(
uh − uh0

h− h0

)
= Ah

(
uh − uh0

h− h0

)
+
Ah −Ah0

h− h0
uh0 +

fh − fh0

h− h0
,

and

uh(0)− uh0(0)
h− h0

=
u0
h − u0

h0

h− h0
,

duh
dt

(0)− duh0

dt
(0)

h− h0
=
u1
h − u1

h0

h− h0
.

If we take

Fh =


Ah −Ah0

h− h0
uh0 +

fh − fh0

h− h0
for h 6= h0,

A′h0
uh0 + f ′h0

for h = h0,

v0
h =


u0
h − u0

h0

h− h0
for h 6= h0,

(u0
h0

)′ for h = h0,

v1
h =


u1
h − u1

h0

h− h0
for h 6= h0,

(u1
h0

)′ for h = h0,
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and

vh =
uh − uh0

h− h0
for h 6= h0 ,

then vh, for h 6= h0, is the solution of the problem

d2vh
dt

= Ahvh + Fh ,

vh(0) = v0
h ,

dvh
dt

(0) = v1
h .

Therefore Theorem 4 will be proved if we can show that Theorem 3 can be
applied.

Since the family (Ah)h∈Ω and the mappings Ω 3 h→ v0
h ∈ X, Ω 3 h→

v1
h ∈ X satisfy all the assumptions of Theorem 3, we only have to prove that

the mapping Ω 3 h → Fh satisfies them as well. Taking λ ∈ P (Ah0) and
T = (Ah0 − λI)−1 we have

Ah −Ah0

h− h0
uh0(t) =

(
Ah −Ah0

h− h0
T

)
T−1uh0(t) .

Then, by Lemma 5, T−1uh0 is of class C2 in [0, T ]. This completes the proof.

Theorem 4 is the key to establishing theorems on higher regularity of
the solution of (28) with respect to the parameter h.
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