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On the uniqueness of viscosity solutions for first order
partial differential-functional equations

by Krzysztof Topolski (Gdańsk)

Abstract. We consider viscosity solutions for first order differential-functional equa-
tions. Uniqueness theorems for initial, mixed, and boundary value problems are presented.
Our theorems include some results for generalized (“almost everywhere”) solutions.

1. Introduction. Let T > 0, τ0 ∈ R+ and τ ∈ Rn+ (R+ = [0,∞)) be
given constants, and Ω ⊂ Rn any open domain. Define Ωτ = {x ∈ Rn :
dist(x,Ω) < τ}, ∂0Ω = Ωτ \Ω, Θ = (0, T )×Ω, Θ0 = (−τ0, 0]×Ωτ , ∂0Θ =
(0, T ) × ∂0Ω and E = Θ ∪ Θ0 ∪ ∂0Θ. Let B = {x ∈ Rn : ‖x‖ ≤ τ} and
D = [−τ0, 0]× B. For every z : E → R and (t, x) ∈ Θ we define a function
z〈t,x〉 : D → R by z〈t,x〉(s, y) = z(t+ s, x+ y), (s, y) ∈ D. If z : Ωτ → R and
x ∈ Ω, we define z〈x〉 : B → R by z〈x〉(y) = z(x+ y), y ∈ B.

For every metric space X we denote by C(X) the class of all continuous
functions from X into R and by BUC(X) the class of all uniformly contin-
uous and bounded functions from X into R. Let W 1∞(X) and W 1∞

loc (X) be
the classes of all Lipschitz and locally Lipschitz functions from X into R.
Recall that u ∈W 1∞(X) (resp. W 1∞

loc (X))⇔ Du exists a.e. and is bounded
(resp. locally bounded). For fm, f ∈ C(X), m ∈ N, fm → f means uniform
convergence on compact subsets of X.

Let H : Θ × C(D) × Rn → R (resp. H : Ω × R × C(B) × Rn → R) be
a continuous function of the variables (t, x, w, p) (resp. (x, r, w, p)), and let
g ∈ C(Θ0 ∪ ∂0Θ) and f ∈ C(∂0Ω) be given functions.

We consider two classes of differential-functional equations: the initial-
boundary value problem

(C)
Dtz(t, x) +H(t, x, z〈t,x〉, Dxz(t, x)) = 0 in Θ ,

z(t, x) = g(t, x) in Θ0 ∪ ∂0Θ ,
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and the boundary value problem

(D)
H(x, z(x), z〈x〉, Dz(x)) = 0 in Ω ,

z(x) = g(x) in ∂0Ω .

Even though we called (C) “the initial-boundary value problem”, it is
an initial value problem for Θ = (0, T )× Rn.

Definition 1. A function u ∈ C(E) is a viscosity subsolution (resp.
supersolution) of (C) provided for all ϕ ∈ C1(Θ) if u − ϕ attains a local
maximum (resp. minimum) at (t0, x0) ∈ Θ then

(1) Dtϕ(t0, x0) +H(t0, x0, u〈t0,x0〉, Dxϕ(t0, x0)) ≤ 0
(resp. Dtϕ(t0, x0) +H(t0, x0, u〈t0,x0〉, Dxϕ(t0, x0)) ≥ 0)

and

u(t, x) ≤ g(t, x) in ∂0Θ(2)
(resp. u(t, x) ≥ g(t, x) in ∂0Θ) .

A function u ∈ C(E) is a viscosity solution of (1) if u is both a viscosity
subsolution and supersolution of (1).

Since for the problem (D) the definition is parallel, we will not write it
out.

We denote by SUB(X, g), SUP(X, g) (or SUB(X,H, g), SUP(X,H, g)
when H is not clear) the sets of all viscosity subsolutions and supersolutions
of the problem (C) and (D), with X = E or resp. X = Ωτ .

This notion of solution was first introduced by M. G. Crandall and
P. L. Lions in [3] and developed in [2], [9].

As it is well known that classical solutions exist only locally, new no-
tions of solutions (weak solutions, “almost everywhere” solutions, viscosity
solutions) are introduced in order to obtain global existence results. The
problem which naturally arises here is their uniqueness. The literature on
this subject is extensive. We only mention some review papers.

The uniqueness of classical solutions for first order partial differential
equations was considered by V. Lakshmikantham and S. Leela [7] and by
J. Szarski [10]. The same problem for functional-differential equations was
investigated by Z. Kamont [4] and by A. Augustynowicz and Z. Kamont
[1]. The uniqueness of “almost everywhere” solutions was studied by
S. N. Kruzhkov [5], [6]. The functional case was treated by H. Leszczyński [8].

For q = (q1, . . . , qn)∈Rn we write ‖q‖ for the Euclidean norm. Let ‖w‖X
denote the supremum norm of w ∈ C(X), ωw(ε) the modulus of continuity
and w+ = max(w, 0).

2. The initial-boundary value problem. In this section we consider
the problem (C).
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We will need the following

Assumption H1. (i) The function H : Θ ×K1 ×K2 → R is uniformly
continuous for any bounded sets K1 ⊂ C(D), K2 ⊂ Rn.

(ii) For every R ≥ 0,

lim
α→0

sup{|H(t, x, w, p)−H(s, y, w, p)| :

|x− y| < α, |t− s| < α, |x− y||p| < α, ‖w‖D ≤ R} = 0 .

(iii) There exists a constant C > 0 such that

H(t, x, w, p)−H(t, x, w, p) ≥ −C‖(w − w)+‖D .
The following is easy to check:

R e m a r k 1. The condition (iii) holds if and only if H is nondecreasing
and satisfies the Lipschitz condition with respect to w.

Theorem 1. Suppose that Assumption H1 is satisfied and u, v ∈
BUC(E), u ∈ SUB(E, f), v ∈ SUP(E, g), where f, g are continuous. Then

(3) ‖(u− v)+‖E ≤ exp(CT )‖(f − g)+‖Θ0∪∂0Θ .

(∗) Moreover , if u, v ∈ W 1∞(E) then the condition (ii) of H1 is not
necessary.

The proof of the theorem is based on the following

Proposition 1. Let a > 0 and h, F ∈ C([0, a]). Assume that h is a
viscosity solution of h′ ≤ F (i.e. h is a viscosity subsolution of h′ = F ) in
(0, a). Then

h(t) ≤ h(s) +
t∫
s

F (ν) dν for 0 ≤ s ≤ t ≤ a .

The proof can be found in [3], p. 12.

P r o o f o f T h e o r e m 1. Define

(4)

M(t) = sup{u(s, x)− v(s, x) : (s, x) ∈ Θ[t]} ,
M0(t) = sup{u(s, x)− v(s, x) : (s, x) ∈ (Θ0 ∪ ∂0Θ)[t]} ,
M(t) = sup{u(s, x)− v(s, x) : (s, x) ∈ E[t]} ,

where G[t] = {(s, x) ∈ G : −τ0 < s ≤ t} for G ⊂ Rn+1.
If M(T ) ≤M0(T ) the proof is complete. Suppose that M(T ) > M0(T ).

Since M(0) ≤M0(0) there exists 0 ≤ t∗ < T such that

(5) M(t) > M0(t) for t ∈ (t∗, T ] and M(t∗) = M0(t∗) = M(t∗) .

Let η ∈ C1((t∗, T )), and suppose M − η attains its local maximum at
some point t0 ∈ (t∗, T ). Since M is nondecreasing it is clear that η′(t0) ≥ 0.
We need to consider two cases: η′(t0) > 0 and η′(t0) = 0.



68 K. Topolski

Let η′(t0) > 0. It follows from Lemma 1.4 of [3] that we can find
a nondecreasing function η ∈ C1([t∗, T ]) such that η′(t0) = η′(t0) and
(M − η)(t0) > (M − η)(t) for t 6= t0. To simplify the notation write η = η.

Let (t, s, x, y) ∈ [t∗, T ] × [t∗, T ] × Ω × Ω, M = max(‖u‖E , ‖v‖E) and
N = sup η. Put

(6) Ψ(t, s, x, y) = u(t, x)− v(s, y)− η
(
t+ s

2

)
+Kφα(t− s)ψα(x− y)

where K = 5M+ 2N , φα(·) = φ(·/α), ψα(·) = ψ(·/α) and φ ∈ C1(R), ψ ∈
C1(Rn), 0 ≤ φ, ψ ≤ 1, φ(0) = ψ(0) = 1, suppφ ⊂ [−1, 1], suppψ ⊂ B(0, 1),
φ, ψ are radial decreasing and for r2 ≤ 1/2, ‖z‖2 ≤ 1/2, φ(r) = 1 − r2,
ψ(z) = 1− ‖z‖2.

Let δ > 0 and let (t′, s′, x′, y′) be such that Ψ(t′, s′, x′, y′) > supΨ − δ.
Put

(7) Φ(t, s, x, y) = Ψ(t, s, x, y) + 2δξ(x, y)

where ξ ∈ C1(Rn × Rn), 0 ≤ ξ ≤ 1, ξ(x′, y′) = 1, supp ξ ⊂ B((x′, y′), 1)
and ‖Dξ‖ < k for k > 0 independent of α, δ. Since Φ(t, s, x, y) ≤ supΨ for
|x − x′|2 + |y − y′|2 ≥ 1 and Φ(t′, s′, x′, y′) > supΨ + δ it follows that Φ
attains its global maximum at some point (tαδ, sαδ, xαδ, yαδ). This yields
Φ(tαδ, sαδ, xαδ, yαδ) ≥ Φ(t, s, x, y) and by (6), (7),

φα(tαδ − sαδ)ψα(xαδ − yαδ) ≥M/(5M+ 2N)− 2δ > 0

for δ small, which implies |tαδ − sαδ| < α and ‖xαδ − yαδ‖ < α. Moreover,
since

Φ(tαδ, sαδ, xαδ, yαδ) ≥ Φ(tαδ, tαδ, xαδ, xαδ)

we obtain by (6), (7),

φα(tαδ − sαδ)ψα(xαδ − yαδ) ≥ 1− (ωv(α) + ωη(α/2) + 2δ)/K .

Recalling the definitions of φα, ψα we get |tαδ − sαδ| < αr(α) and
|xαδ − yαδ| < αr(α) for δ < α small enough where r(α)→ 0 as α→ 0.

We can assume, taking a subsequence if necessary, that tαδ → t ∈ [t∗, T ]
as α → 0 uniformly with respect to δ < α. We claim that t = t0. Indeed,
since

(8) Φ(tαδ, sαδ, xαδ, yαδ) ≥ Φ(t, t, x, x) for t ∈ [t∗, t0], x ∈ Ω ,

and φαδ(tαδ − sαδ) → 1, ψα(xαδ − yαδ) → 1 as α → 0, letting α → 0 we
obtain, by (6), (7), (8) and uniform continuity of v,

(9) M(t)− η(t) ≥ u(t, x)− v(t, x)− η(t) ≥ u(t, x)− v(t, x)− η(t0)
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(the last inequality is a consequence of monotonicity of η). Because M(t0) >
M(t∗) this yields

M(t)− η(t) ≥M(t0)− η(t0) ,
which by the definition of η means that t = t0 ∈ (t∗, T ).

Observe now that we may assume that xαδ, yαδ ∈ Ω. Indeed, if xαδ, yαδ
→ x0 ∈ ∂Ω then letting α→ 0 in (8) we obtain

u(t0, x0)− v(t0, x0)− η(t0) ≥ u(t, x)− v(t, x)− η(t)

for t∗ ≤ t ≤ t0, x0 ∈ ∂0Ω, x ∈ Ω, and as a consequence

u(t0, x0)− v(t0, x0) ≥ u(t, x)− v(t, x) ,

which yields M0(t0) ≥M(t0) and contradicts (5) since t0 ∈ (t∗, T ].
Define

λ(t, x) = v(sαδ, yαδ) + η((t+ sαδ)/2)
−Kφα(t− sαδ)ψα(x− yαδ)− 2δξ(x, yαδ) ,

γ(s, y) = u(tαδ, xαδ)− η((tαδ + s)/2)
+Kφα(tαδ − s)ψα(xαδ − y) + 2δξ(xαδ, y) .

Notice that
u− λ has a local maximum at (tαδ, xαδ) ∈ (t∗, T )×Ω ,

v − γ has a local minimum at (sαδ, yαδ) ∈ (t∗, T )×Ω .

Since
Dtλ(tαδ, xαδ) = 1

2η
′((tαδ + sαδ)/2)−KDtφα(tαδ − sαδ)ψα(xαδ − yαδ) ,

Dtγ(sαδ, yαδ) = − 1
2η
′((tαδ + sαδ)/2)−KDtφα(tαδ − sαδ)ψα(xαδ − yαδ) ,

Dxλ(tαδ, xαδ) = −Kφα(tαδ − sαδ)Dxψα(xαδ − yαδ)− 2δDxξ(xαδ, yαδ) ,
Dxγ(sαδ, yαδ) = −Kφα(tαδ − sαδ)Dxψα(xαδ − yαδ) + 2δDyξ(xαδ, yαδ) ,

and u, v are resp. a subsolution and supersolution of (1) in Θ\Θ[t∗], we
obtain the inequalities

Dtλ(tαδ, xαδ) +H(tαδ, xαδ, u〈tαδ,xαδ〉, pαδ − 2δDxξ(xαδ, yαδ)) ≤ 0 ,

Dtγ(sαδ, yαδ) +H(sαδ, yαδ, v〈sαδ,yαδ〉, pαδ + 2δDyξ(xαδ, yαδ)) ≥ 0

(where pαδ = −Kφα(tαδ − sαδ)Dxψα(xαδ − yαδ)), which imply

η′((tαδ + sαδ)/2) +Aαδ +Bαδ + Cαδ ≤ 0

where

Aαδ = H(tαδ, xαδ, u〈tαδ,xαδ〉, pαδ − 2δDxξ(xαδ, yαδ))
−H(sαδ, yαδ, u〈tαδ,xαδ〉, pαδ − 2δDxξ(xαδ, yαδ)) ,

Bαδ = H(sαδ, yαδ, u〈tαδ,xαδ〉, pαδ − 2δDxξ(xαδ, yαδ))
−H(sαδ, yαδ, v〈sαδ,yαδ〉, pαδ − 2δDxξ(xαδ, yαδ)) ,
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Cαδ = H(sαδ, yαδ, v〈sαδ,yαδ〉, pαδ − 2δDxξ(xαδ, yαδ))
−H(sαδ, yαδ, v〈sαδ,yαδ〉, pαδ + 2δDyξ(xαδ, yαδ)) .

It follows from Assumption H1(ii) and from ‖αpαδ‖ ≤ Kr(α) → 0 that
Aαδ → 0 uniformly with respect to δ < α. From H1(i) we have Cαδ → 0 as
δ → 0 for each α.

Bαδ needs special consideration. It follows from H1(iii) that

Bαδ ≥ −C‖(u〈tαδ,xαδ〉 − v〈sαδ,yαδ〉)
+‖D

since for (r, z) ∈ D,

(u(tαδ + r, xαδ + z)− v(sαδ + r, yαδ + z))+ ≤M+(tαδ) + ωv(α) .

Thus Bαδ ≥ −CM+(tαδ)− Cωv(α).
Letting α, β → 0 we finally obtain

(10) η′(t0) ≤ CM+(t0) .

Since in case η′(t0) = 0 the inequality (10) is obvious, we can apply
Proposition 1 to obtain

M(t) ≤M(t∗) +
t∫

t∗

CM+(s) ds for t∗ ≤ t ≤ T

and in view of (4), (5),

M+(t) ≤M+
0 (t∗) +

t∫
t∗

CM+(s) ds .

Hence Gronwall’s inequality yields

M+(t) ≤M+
0 (t∗) exp(Ct)

and putting t = T , M+
0 (t∗) ≤ M+

0 (T ) shows M+(T ) ≤ M+
0 (T ) exp(CT ),

which completes the proof.

For the case (∗) we will use the following lemma.

Lemma 1. Let f ∈ BUC(G) where G ⊂ Rm is an open domain, µ ∈
C1(G) and suppose f − µ attains a local maximum at some point x0 ∈ G.
Then

(11) ‖Dµ(x0)‖ ≤ lim sup
λ→0

ωf (λ)/λ .

P r o o f. Suppose that Dµ(x0) 6= 0. Put h = −‖Dµ(x0)‖−1Dµ(x0). Let
λ0 ≥ λ > 0 be such that

f(x0 + λh)− µ(x0 + λh) ≤ f(x0)− µ(x0) .

Define
%(λ) = [µ(x0 + λh)− µ(x0)− λDµ(x0)h]λ−1 .
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Since µ(x0 + λh)− µ(x0) ≥ f(x0 + λh)− f(x0) we have

λ%(λ) ≥ f(x0 + λh)− f(x0)− λDµ(x0)h .

As Dµ(x0)h = −‖Dµ(x0)‖ and ‖h‖ = 1 we get

‖Dµ(x0)‖ ≤ %(λ) + [f(x0)− f(x0 + λh)]λ−1 ≤ %(λ) + ωv(λ)/λ .

Letting λ→ 0 we obtain (11).

P r o o f o f T h e o r e m 1(∗). According to Lemma 1, Dxλ(tαδ, xαδ) ≤ L
where L is a Lipschitz constant for u. Thus to deduce that Aαδ → 0 the
condition H1(i) is sufficient.

3. The boundary value problem. In this section we investigate the
problem (D). The following assumption will be needed.

Assumption H2. (i) The function H : Ω × K1 × K2 × K3 → R is
uniformly continuous for any bounded sets K1 ⊂ R, K2 ⊂ C(B), K3 ⊂ Rn.

(ii) For every R ≥ 0,

lim
α→0

sup{|H(x, r, w, p)−H(y, r, w, p)| :

|x− y| < α, |x− y||p| < α, ‖w‖B ≤ R} = 0 .

(iii) There exist constants L2 > L1 > 0 such that

H(x, r, w, p)−H(x, r, w, p) ≥ − L1‖(w − w)+‖B ,
H(x, r, w, p)−H(x, r, w, p) ≥ L2(r − r) for r ≥ r .

Theorem 2. Suppose that Assumption H2 holds. Let u, v ∈ BUC(Ωτ ),
u ∈ SUB(Ωτ , f), v ∈ SUP(Ωτ , g) and f, g ∈ C(∂0Ω). Then

(12) ‖(u− v)+‖Ωτ ≤ ‖(f − g)+‖∂0Ω .

(∗) If u, v ∈ W 1∞(Ωτ ) then the condition (ii) of Assumption H2 is not
necessary.

P r o o f. Since the proof is similar to that in Section 2 we will not repeat
the details. Moreover, we will only consider the case when Ω is bounded.

Let M > 0, and let ψα be defined as in the proof of Theorem 1. Put

(13) Ψ(x, y) = u(x)− v(y) + 5Mψα(x− y) for x, y ∈ Ω .

Let (xα, yα)∈Ω×Ω be such that supΨ=Ψ(xα, yα). Arguing as in Section 2
we obtain ‖xα − yα‖ ≤ α and ‖xα − yα‖ ≤ αr(α) where r(α)→ 0.

Suppose that (xα, yα) 6∈Ω×Ω for some subsequence of α. We can assume
that xα ∈ ∂Ω (or yα ∈ ∂Ω) and since Ψ(x, x) ≤ Ψ(xα, yα) for every x ∈ Ω,
in view of (13) we obtain

(14) u(x)− v(x) ≤ u(xα)− v(yα)
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and

u(x)− v(x) ≤ u(xα)− v(xα) + v(xα)− v(yα) ≤ ‖(f − g)+‖∂0Θ + ωv(α) ,

which, letting α→ 0, implies (12).
Suppose now that (xα, yα) ∈ Ω ×Ω. Let

γ(x) = v(yα)− 5Mψα(x− yα) and λ(y) = u(xα) + 5Mψα(xα − y) .

Then u−γ attains a local maximum at xα, and v−λ attains a local minimum
at yα.

As in the proof of Theorem 1 we obtain

(15) Aα +Bα + Cα ≤ 0

where
Aα = H(xα, u(xα), u〈xα〉, pα)−H(yα, u(xα), u〈xα〉, pα) ,

Bα = H(yα, u(xα), u〈xα〉, pα)−H(yα, v(yα), u〈xα〉, pα) ,

Cα = H(yα, v(yα), u〈xα〉, pα)−H(yα, v(yα), v〈yα〉, pα)

and pα = Dγ(xα) = Dλ(yα).
Arguing as in Section 2 we find Aα → 0.
We can assume that u(xα) − v(yα) > 0. (Otherwise (14) implies (12).)

Notice that in view of H2(iii) and (14),

Bα ≥ L2[u(xα)− v(yα)] ≥ L2‖(u− v)+‖Ω
and

Cα ≤ L1‖(u〈xα〉 − v〈yα〉)
+‖B ≤ L1‖(u〈xα〉 − v〈xα〉)

+‖B + L1ωv(α)−Aα ,

which gives

(16) L2‖(u− v)+‖Ω ≤ L1‖(u− v)+‖Ωτ + L1ωv(α)−Aα .

If ‖(u − v)+‖Ωτ ≤ ‖(u − v)+‖Ω , (16) gives a contradiction (α → 0) since
L1 > L2. Hence ‖(u−v)+‖Ωτ > ‖(u−v)+‖Ω , which implies (12). The proof
is complete.

The case (∗) is treated in the same way as in Theorem 1.

4. “Almost everywhere” solutions. To end our considerations, we
present an application of our results to the theory of a.e. solutions.

We will treat the problem (D) ((C) can be treated in the same way).
Moreover, without loss of generality we can assume that H does not depend
on r.

Let G ⊂ Rn be an open domain. Define

G(%) = {x ∈ G : dist(x, ∂G) > %} for % > 0 .
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Definition 2. A function u ∈ C(G) is said to be semiconcave if for
every % > 0 there exists a constant C% ∈ R such that u(x) − C%‖x‖2/2 is
concave on every convex subset of G(%) ∩B(0, 1/%).

Theorem 3. Let H(x,w, p) be continuous, u ∈ W 1∞
loc (Ωτ ), and g ∈

C(∂0Ω).

(i) If H(x,w, p) is convex in p, satisfies H(x, u〈x〉, Du(x)) ≤ 0 a.e. in
Ω, and u ≤ g in ∂0Ω then u ∈ SUB(Ωτ , g).

(ii) If u is semiconcave, satisfies H(x, u〈x〉, Du(x)) ≥ 0 a.e. in Ω, and
u ≥ g in ∂0Ω then u ∈ SUP(Ωτ , g).

The proof presented below is a generalization of the proof of Proposi-
tion III.3 in [3].

In the proof of (i) we will use the following lemma.

Lemma 2. Let Fk, F ∈ C(Ω×C(B)×Rn), gk, g ∈ C(∂0Ω), and Fk → F ,
gk → g. Suppose that uk ∈ SUB(Ωτ , Fk, gk) (resp. uk ∈ SUP(Ωτ , Fk, gk))
and uk → u in C(Ωτ ). Then u ∈ SUB(Ωτ , F, g) (resp. u ∈ SUP(Ωτ , F, g)).

P r o o f. Suppose that u−ϕ attains a local maximum at x0 ∈ Ω. We can
assume (see [3], Lemma 1.4) that (u−ϕ)(x) < (u−ϕ)(x0) for x ∈ Ω, x 6= x0.
Let δ > 0 be such that x0 ∈ Ω(δ). Put xk = sup{(uk − ϕ)(x) : x ∈ Ω(δ)}.
Without loss of generality we can assume that xk → x ∈ Ω(δ). We claim
that x0 = x. Indeed, since (uk − ϕ)(x0) ≤ (uk − ϕ)(xk), letting k → ∞
we obtain (u − ϕ)(x0) ≤ (u − ϕ)(x) and thus x0 = x ∈ Ω(δ). We can
assume (taking subsequences if necessary) that xk ∈ Ω(δ), which implies
that uk − ϕ attains a local maximum at xk ∈ Ω(δ). Then by assumption
Fk(xk, u〈xk〉, Dϕ(xk)) ≤ 0 and letting xk → x0, F (x0, u〈x0〉, Dϕ(x0)) ≤ 0,
which completes the proof, since the boundary inequality is obvious.

Now we will prove the theorem.

P r o o f o f (i). Let u ∈ W 1∞
loc (Ωτ ) and suppose H(x, u〈x〉, Du(x)) ≤ 0

a.e. in Ω. Put uε = u ∗ pε where pε = p(·/ε)εn, p ∈ C∞(Rn), p ≥ 0,
supp p ⊆ B(0, 1),

∫
Rn p dµ = 1, ε > 0. We have uε ∈ C1(Ωτ (δ)), Ωτ (δ) ⊆ Ωτ

and uε → u in Ωτ (δ) for ε < δ. Notice that, since

H(x, uε〈x〉, Du
ε(x)) ≤ H(x, uε〈x〉, Du

ε(x))−H(x, u〈x〉, Du(x)) in Ω(δ) ,

we have

(17) H(x, uε〈x〉, Du
ε(x)) ≤ Aε(x) +Bε(x) in Ω(δ)

where

Aε(x) = H(x, uε〈x〉, Du
ε(x))−H(x, u〈x〉, Duε(x)) ,
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Bε(x) = H(x, u〈x〉, Du(x)) ∗ pε(x)−H(x, u〈x〉, Du(x)) .

In the last inequality we based on the fact that for H convex in p, H(x, u〈x〉,
Duε(x)) ≤ H(x, u〈x〉, Du(x)) ∗ pε(x). Notice that Aε, Bε → 0 in Ω(δ).

Since uε is a viscosity subsolution of (16) with boundary function gε = uε

in Ωτ (δ)\Ω(δ), in view of Lemma 2 (taking Ω(δ) instead of Ω) letting δ → 0
we conclude that u ∈ SUB(Ωτ , g), which completes the proof of (i).

P r o o f o f (ii). Let ϕ ∈ C1(Ω). Assume that u − ϕ attains a local
minimum at some point x0 ∈ Ω. Let δ > 0 be such that x0 ∈ Ω(δ). Without
loss of generality we can assume that u is concave in Ω(δ) (otherwise we
consider H(x,w, p) = H(x,w + (Cδ/2)| · |2〈x〉, p+ Cδ|x|)).

Since u(x) ≥ u(x0)− ϕ(x0) + ϕ(x) in some ball B(x0, %),

(18) u(x)− u(x0)−Dϕ(x0)(x− x0) ≥ β(x)‖x− x0‖

where β(x)→ 0 as x→ x0.
Put x1 = 2x0 − x. Since u is concave, u(x) ≤ 2u(x0)− u(x1) and

u(x)− u(x0)−Dϕ(x0)(x− x0) ≤ u(x0)− u(x1)−Dϕ(x0)(x0 − x1)
≤ ϕ(x0)− ϕ(x1)−Dϕ(x0)(x0 − x1)

≤ β(x)‖x− x0‖

where β(x)→ 0 as x→x0. This inequality and (18) imply that u is differ-
entiable at x0 and Du(x0) = Dϕ(x0).

Since, by assumption, there exist {xm} ∈ Ω(δ), xm → x0, u is dif-
ferentiable at xm and H(xm, u〈xm〉, Du(xm)) ≥ 0. We claim that for
every sequence xm → x0, Du(xm) → Du(x0). Indeed, suppose that p =
limk→∞Du(xm〈k〉) and (p − Du(x0))i 6= 0 for some i ∈ {1, . . . , n}. Put
x = x0 + h sgn(p − Du(x0))iei, ei ∈ Rn, (ei)j = δij , j = 1, . . . , n, h > 0.
Since Du(xm) is uniformly bounded and u is concave we have

[u(x)− u(x0)− p(x− x0)]/‖x− x0‖ ≤ 0 ,

which implies

[u(x)− u(x0)−Du(x0)]/‖x− x0‖+ |(Du(x0)− p)i| ≤ 0 .

Letting h → 0 we obtain (Du(x0) − p)i = 0, which contradicts our as-
sumption. Since Du(xm) is uniformly bounded, this means that Du(xm)→
Du(x0).

As u〈xm〉 → u〈x0〉 in C(B) and Du(x0) = Dϕ(x0) we conclude letting
n→∞ that H(x0, u〈x0〉, Du(x0)) ≥ 0 and thus u ∈ SUP(Ωτ , g). The proof
is complete.
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