
ANNALES
POLONICI MATHEMATICI

LIX.1 (1994)

A descriptive, additive modification
of Mawhin’s integral and

the Divergence Theorem with singularities

by Dirk Jens F. Nonnenmacher (Ulm)

Abstract. Modifying Mawhin’s definition of theGP -integral we define a well-behaved
integral over n-dimensional compact intervals. While its starting definition is of Riemann
type, we also establish an equivalent descriptive definition involving characteristic null
conditions. This characterization is then used to obtain a quite general form of the diver-
gence theorem.

0. Introduction. It is well known that, in contrast to the one-dimensio-
nal situation, the Denjoy–Perron integral in higher dimensions does not
integrate the divergence of any differentiable vector field. To remove this
deficiency Mawhin [Maw] introduced the GP -integral (over intervals) which
indeed yields the divergence theorem without any integrability assumptions.
Although the integral has further satisfactory properties its main lack is
the complete failure of additivity, i.e. if an interval is subdivided into two
intervals on each of which a function is integrable, the function need not
be integrable on the original interval. In the meanwhile different additive
integration processes, preserving the good properties of Mawhin’s integral,
have been presented in [JKS], [Pf], [Ju-No].

All integrals mentioned so far are of Riemann type and their defini-
tions involve δ-fine partitions which are further restricted by different means.
While Mawhin only uses partitions in which all intervals satisfy a (Vitali)
regularity condition, Pfeffer [Pf] employs a relative regularity with respect
to a finite family of k-planes parallel to the coordinate axes. In contrast to
these local restrictions a global one, not dealing with regularity of single in-
tervals, is used in [JKS]. Here a certain expression which is associated with
the partition is required to be bounded.
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In this paper we define a well-behaved integral over n-dimensional com-
pact intervals employing a new and simple type of restriction: we consider
only those δ-fine partitions for which the sum of the (n − 1)-dimensional
measures of the boundaries of the non-regular intervals occurring in the
partition is bounded. Thus our restriction has a global character but main-
tains the original concept of Vitali regularity. It will be shown that our
integral extends the one of [JKS] but is more restrictive than the integrals
discussed in [Pf] and [Ju-No].

After having established the basic properties of our integral (as linearity
and additivity) we will introduce two types of null conditions for an interval
function. As a consequence we will be able to characterize our integral as an
additive, almost everywhere differentiable interval function satisfying these
null conditions. In particular, we see that an interval function is an indefinite
integral in our sense iff it is an indefinite GP -integral and satisfies a further
null condition. The latter thus guarantees the additivity.

This descriptive definition of our integral is then used to show that
our process of integration extends the one of Lebesgue, and to establish
a quite general divergence theorem. In particular, the vector field may
not be differentiable on countably many hyperplanes and its continuity
may fail at countably many singularities where we only assume the vec-
tor field to be of Lipschitz type with a non-positive exponent α > 1 − n.
This result generalizes the ones in [Maw], [JKS] but is contained in the
ones of [Pf] and [Ju-No]. For an “optimal” version of the divergence theo-
rem (generalizing in particular the result in [Pf]) the reader is referred to
[Ju-No].

1. Preliminaries. We denote by R and R+ the set of all real and all pos-
itive real numbers, respectively. Throughout the paper n is a fixed positive
integer and we work in Rn with the usual inner product x · y =

∑n
i=1 xiyi

(x = (xi), y = (yi) ∈ Rn) and the associated norm ‖ · ‖. For x ∈ Rn and
r > 0 we let B(x, r) = {y ∈ Rn : ‖y − x‖ ≤ r}.

If E ⊆ Rn we denote by E◦, ∂E, d(E) and |E|n the interior, bound-
ary, diameter and the outer Lebesgue measure of E, respectively. Terms like
measurable and almost everywhere (a.e.) always refer to the Lebesgue mea-
sure | · |n, and E ⊆ Rn is called an n-null set if |E|n = 0. The distance of a
point x ∈ Rn to a set E ⊆ Rn is denoted by dist(x,E).

By | · |n−1 we denote the (n−1)-dimensional normalized outer Hausdorff
measure in Rn which coincides on Rn−1 (⊆ Rn) with the (n−1)-dimensional
outer Lebesgue measure (| · |0 being the counting measure). Instead of | · |n−1

we also write H(·).
An interval I in Rn is always assumed to be compact and non-degenerate

and its regularity r(I) is defined as the ratio of the smallest and the largest
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edges of I. Finitely many intervals are said to be non-overlapping if they
have pairwise disjoint interiors.

By a plane (in Rn) we always mean an (n − 1)-dimensional linear sub-
manifold of Rn which is parallel to n− 1 distinct coordinate axes.

2. The integral and its basic properties. In this section we give the
definition of our integral, we establish its relation to other integrals and we
prove its basic properties such as additivity.

Given an interval I, an interval function F on I associates with any
subinterval J of I a real number F (J). We call F additive if F (J)=

∑
F (Jk)

for any subinterval J of I and any finite sequence of non-overlapping inter-
vals Jk whose union is J .

If x ∈ I◦ we call an interval function F on I differentiable at x if it is
derivable in the ordinary sense at x according to [Saks], and in that case
F ′(x) denotes the ordinary derivative of F at x.

Let E ⊆ Rn and δ : E → R+ be given. Then a finite sequence of
pairs {(xi, Ii)} is called (E, δ)-fine if the Ii are non-overlapping intervals,
xi ∈ E ∩ Ii and d(Ii) < δ(xi) for all i. If furthermore E =

⋃
Ii we call

{(xi, Ii)} a δ-fine partition of E.
Given an interval I, r > 0, K ≥ 0 and δ : I → R+ we denote by

P(I, r,K, δ) the collection of all δ-fine partitions Π = {(xi, Ii)} of I satisfy-
ing

∑
r(Ii)<r

|∂Ii|n−1 ≤ K.

If f denotes a real-valued function defined on I we write S(f,Π, I) =∑
f(xi)|Ii|n for any δ-fine partition Π = {(xi, Ii)} of I.

Definition 2.1. Let I be an interval and f : I → R be a function. Then
we call f integrable on I if there exists a real number γ with the property
that for any ε > 0, r > 0, K > 0 there exists a δ : I → R+ such that

|γ − S(f,Π, I)| ≤ ε ∀Π ∈ P(I, r,K, δ) .

R e m a r k 2.1. (i) Assume 0 < r < 1. Then it is well known that any
interval I can be decomposed into finitely many non-overlapping intervals
each of which has a regularity ≥ r. Thus, given in addition a function δ : I→
R+, a usual compactness argument yields the existence of a δ-fine partition
Π = {(xi, Ii)} of I with r(Ii) ≥ r for all i. Consequently, our definition
above is meaningful and γ is, if it exists, uniquely determined; we write
γ =

∫
I
f .

(ii) Let f : I → R be M1-integrable on I (cf. [JKS]). Then f is integrable
on I and both integrals coincide. To see this let r > 0, K > 0 and δ : I → R+

with δ(·) ≤ 1 be given, take Π = {(xi, Ii)} ∈ P(I, r,K, δ) and observe that
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d(Ii)|∂Ii|n−1 ≤

∑
r(Ii)<r

|∂Ii|n−1 + 2n
∑

r(Ii)≥r

d(Ii)n

≤ K + 2n
(√

n

r

)n∑
|Ii|n ≤ K + 2n

(√
n

r

)n
|I|n .

(iii) Assume f : I → R to be integrable on I. Then f is integrable
in the sense of [Pf] and both integrals coincide: let a regulator (ε,H) and
δ : I → R+ with δ(·) ≤ 1 be given. Then (cf. [No]) it is easy to see that
any δ-fine partition Π = {(xi, Ii)} of I with r(Ii,H) ≥ ε for all i satisfies∑
r(Ii)<ε

|∂Ii|n−1 ≤ K = K(ε,H).
(iv) If f : I → R is integrable on I, then f is ν1-integrable on I (cf.

[Ju-No]) and both integrals coincide. To see this take I◦, (∂I, Cn−1
1 ) as a

division of I and apply [Ju-No, Thm. 3.1].

Proposition 2.1. If I is an interval , then the family of all integrable
functions on I is a linear space, and the map f 7→

∫
I
f is a non-negative

linear functional on this space.

P r o o f. Direct consequence of Definition 2.1.

Proposition 2.2. Let I be an interval , and f : I → R.

(i) f is integrable on I iff for every ε > 0, r > 0, K > 0 there is a
δ : I → R+ such that |S(f,Π1, I)−S(f,Π2, I)|≤ε for all Π1,2∈P(I, r,K, δ).

(ii) If f is integrable on I then f is integrable on any subinterval of I.

P r o o f. (i) Choose sequences εn > 0, 1/2≥ rn > 0, Kn > 0 such that
εn ↘ 0, rn ↘ 0, Kn ↗ ∞ and determine δn : I → R+ according to the
Cauchy condition. We may assume δn+1(·) ≤ δn(·) for all n, and we choose
a Πn ∈ P(I, 1/2, 0, δn) (⊆ P(I, rn,Kn, δn)) (cf. Remark 2.1(i)). Obviously
Sn = S(f,Πn, I) is a Cauchy sequence and thus there is a γ ∈ R with
Sn → γ.

Now let ε > 0, r > 0, K > 0 be given and determine n0 ∈ N such that
εn0 ≤ ε/2, rn0 ≤ r, Kn0 ≥ K and |γ − Sn0 | ≤ ε/2. Set δ = δn0 and let
Π ∈ P(I, r,K, δ) ⊆ P(I, rn0 ,Kn0 , δn0). Hence,

|γ − S(f,Π, I)| ≤ |γ − Sn0 |+ |Sn0 − S(f,Π, I)| ≤ ε/2 + εn0 ≤ ε .
The other direction is obvious.

(ii) Let J be a subinterval of I and choose finitely many intervals Ii such
that I is the non-overlapping union of all the intervals Ii and J . Assume
ε > 0, r > 0, K > 0 to be given and determine δ : I → R+ accord-
ing to (i) for ε, r∗ = min(r, 1/2),K. Take Π1,2 ∈ P(J, r,K, δ) and choose
Π(i) ∈ P(Ii, r∗, 0, δ) (cf. Remark 2.1(i)). ObviouslyΠ1,2 = Π1,2∪

⋃
iΠ(i) ∈

P(I, r∗,K, δ) and consequently

|S(f,Π1, J)− S(f,Π2, J)| = |S(f,Π1, I)− S(f,Π2, I)| ≤ ε .
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Our next aim is to prove the complete additivity of our integral. We first
establish the following simple but useful lemma.

Lemma 2.1. Let r > 0 and a plane H be given. Then

|∂J |n−1 ≤ 2n|H ∩ J |n−1/r

for any interval J with H ∩ J 6= ∅ and r(J) ≥ r.

P r o o f. Without loss of generality assume H to be perpendicular to
the x1-axis. Then, denoting by lj the lengths of the sides of J , we have
|H ∩ J |n−1 =

∏
j 6=1 lj , and by regularity l1 ≤ li/r for all i. Hence,

|∂J |n−1 = 2
n∑
i=1

n∏
j=1
j 6=i

lj = 2
(
|H ∩ J |n−1 +

n∑
i=2

l1

n∏
j=2
j 6=i

lj

)
≤ 2n|H ∩ J |n−1/r since r ≤ 1 .

Proposition 2.3. Let the interval I be the non-overlapping union of
intervals I1 and I2, and assume the function f : I → R to be integrable on
I1 and I2. Then f is integrable on I and

∫
I
f =

∫
I1
f +

∫
I2
f .

P r o o f. We denote by H the plane determined by H∩I=I1∩I2. Assume
ε > 0, r > 0, K > 0 to be given, and for ε/2, r,K∗ = K+2n+1n|H∩I|n−1/r
determine δ1,2 : I1,2 → R+ such that |S(f,Π1,2, I1,2)−

∫
I1,2

f | ≤ ε/2 for all
Π1,2 ∈ P(I1,2, r,K∗, δ1,2). We define δ : I → R+ by

δ(x) =

min(δ1(x),dist(x, I2)), x ∈ I1 − I2 ,
min(δ2(x),dist(x, I1)), x ∈ I2 − I1 ,
min(δ1(x), δ2(x)), x ∈ I1 ∩ I2 .

Let Π = {(xi, Ii)} ∈ P(I, r,K, δ) and set Π1,2 = {(xi, Ii ∩ I1,2) : (xi, Ii) ∈
Π} (avoiding degenerations). We will show that Π1,2 ∈ P(I1,2, r,K∗, δ1,2)
and then∣∣∣S(f,Π, I)−

( ∫
I1

f +
∫
I2

f
)∣∣∣

≤
∣∣∣S(f,Π1, I1)−

∫
I1

f
∣∣∣+
∣∣∣S(f,Π2, I2)−

∫
I2

f
∣∣∣ ≤ ε

as desired.
Obviously Π1 is a δ1-fine partition of I1. Furthermore,∑
r(Ii∩I1)<r

|∂(Ii ∩ I1)|n−1 ≤
∑

r(Ii)<r,xi∈I1−I2

|∂Ii|n−1 +
∑
xi∈H

|∂Ii|n−1

≤
∑

r(Ii)<r

|∂Ii|n−1 +
∑

r(Ii)≥r,xi∈H

|∂Ii|n−1
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≤ K +
2n
r

∑
xi∈H

|H ∩ Ii|n−1

≤ K∗ by the above lemma.

R e m a r k 2.2. Let I be an interval and f : I → R be integrable. Then
we can define an additive interval function F on I by F (J) =

∫
J
f for each

subinterval J of I. We call F the indefinite integral of f .

3. A descriptive definition of the integral. Our next aim is to give
a characterization of the integral in terms of an additive, a.e. differentiable
interval function satisfying two further null conditions.

We first prove our version of the Saks–Henstock Lemma.

Lemma 3.1. Suppose I is an interval and let f : I → R be a function.
Then f is integrable on I iff there exists an additive interval function F on
I having the following property :

∀ε > 0, r > 0,K > 0 ∃δ : I → R+ such that∑
|F (Ii)− f(xi)|Ii|n| ≤ ε

for any (I, δ)-fine sequence {(xi, Ii)} satisfying Ii ⊆ I for all i and∑
r(Ii)<r

|∂Ii|n−1 ≤ K. In any case we have
∫
I
f = F (I).

P r o o f. Since one part of the assertion is obvious, we assume f to be in-
tegrable. Denote by F the indefinite integral of f , suppose positive numbers
ε, r,K to be given and let r∗ = min(r, 1/2). By the integrability of f we can
find a δ : I → R+ such that

|F (I)− S(f,Π, I)| ≤ ε/4 ∀Π ∈ P(I, r∗,K, δ) ,

and we denote by {(xi, Ii) : 1 ≤ i ≤ m} a (non-empty) (I, δ)-fine sequence
with Ii ⊆ I and

∑
r(Ii)<r

|∂Ii|n−1 ≤ K. By rearranging (if necessary) we
determine µ with 0 ≤ µ ≤ m such that F (Ii) ≥ f(xi)|Ii|n for 1 ≤ i ≤ µ and
F (Ii) < f(xi)|Ii|n if µ + 1 ≤ i ≤ m. Furthermore, we choose (if possible)
intervals J1, . . . , Jp (p ∈ N0) such that I is the non-overlapping union of all
the Ii, Jk, and we set α = m+ p.

For any subinterval J of I we may choose a δJ : J → R+ with δJ(·) ≤ δ(·)
on J such that

|F (J)− S(f,Π(J), J)| ≤ ε/(4α) ∀Π(J) ∈ P(J, r∗,K, δJ) ,

and we fix a Π(J) ∈ P(J, r∗, 0, δJ) (cf. Remark 2.1(i)). Now it is immediate
that

Π = {(xi, Ii) : 1 ≤ i ≤ µ} ∪
m⋃

i=µ+1

Π(Ii) ∪
p⋃
k=1

Π(Jk) ∈ P(I, r∗,K, δ) ,
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which yields

ε/4 ≥ F (I)− S(f,Π, I)

=
µ∑
i=1

|F (Ii)− f(xi)|Ii|n|+
m∑

i=µ+1

[F (Ii)− S(f,Π(Ii), Ii)]

+
p∑
k=1

[F (Jk)− S(f,Π(Jk), Jk)] .

Consequently,
∑µ
i=1 |F (Ii)−f(xi)|Ii|n| ≤ ε/2, and the remaining inequality∑m

i=µ+1 |F (Ii)− f(xi)|Ii|n| ≤ ε/2 follows analogously.

Next we use Lemma 3.1 to prove that the indefinite integral F of an
integrable function f is differentiable a.e. with F ′ = f .

Lemma 3.2. Let f : I → R be integrable on the interval I and denote
by F the indefinite integral of f . Then F is differentiable a.e. on I with
F ′ = f .

P r o o f. We denote by E the set of all x ∈ I◦ at which F is not differ-
entiable or where F ′(x) 6= f(x); we have to show |E|n = 0. Clearly for each
x ∈ E we can find positive numbers ε(x) and r(x) such that for any δ > 0
there exists a subinterval J of I with x ∈ J, d(J) < δ, r(J) ≥ r(x) and
|F (J)− f(x)|J |n| > ε(x)|J |n.

For m ∈ N we let Em = {x ∈ E : ε(x) ≥ 1/m, r(x) ≥ 1/m} and
it suffices to prove |Em|n = 0. Thus let ε > 0 and choose a δ : I → R+

according to Lemma 3.1 for the parameters ε/m, r = 1/m, K = 1. We
denote by V the family of all subintervals J of I with r(J) ≥ 1/m for which
there exists an x ∈ J ∩ Em such that d(J) < δ(x) and |F (J)− f(x)|J |n| ≥
|J |n/m. A glance shows that V is a Vitali cover of Em, and thus there are
(at most) countably many disjoint intervals Ji ∈ V with |Em −

⋃
i Ji|n = 0.

To each Ji there corresponds by definition a point xi ∈ Ji ∩ Em and since
for each p ∈ N the sequence {(xi, Ji) : 1 ≤ i ≤ p} satisfies the requirements
of Lemma 3.1 we get

|Em|n ≤ lim
p→∞

p∑
i=1

|Ji|n ≤ lim sup
p→∞

m

p∑
i=1

|F (Ji)− f(xi)|Ji|n| ≤ ε ,

hence |Em|n = 0.

R e m a r k 3.1. In the sequel we will need the following simple facts.

(i) Assume an n-null set E and a function f : E → R to be given.
Then for any ε > 0 there exists a δ : E → R+ such that

∑
|f(xi)||Ii|n ≤ ε

for any (E, δ)-fine sequence {(xi, Ii)}. For, let Ek = {x ∈ E : k − 1 ≤
|f(x)| < k} (k ∈ N), find open sets Gk ⊇ Ek with |Gk|n ≤ ε/(k2k) and
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for x ∈ Ek choose a δ(x) > 0 such that B(x, δ(x)) ⊆ Gk. Then for any
(E, δ)-fine sequence {(xi, Ii)} we get∑

|f(xi)||Ii|n ≤
∑
k

k
∑
xi∈Ek

|Ii|n ≤
∑
k

k|Gk|n ≤ ε ,

as desired.
(ii) Denote by I an interval and let f : I → R be a function. Then for

any ε > 0, K > 0 there is a δ : I → R+ such that
∑
|f(xi)||Ii|n ≤ ε

for any (I, δ)-fine sequence {(xi, Ii)} satisfying
∑
|∂Ii|n−1 ≤ K. For, let

ε > 0, K > 0 be given and set δ(·) = ε/(K(1 + |f(·)|)) on I. Since |J |n ≤
d(J)|∂J |n−1 for any interval J , we get, for any (I, δ)-fine sequence {(xi, Ii)}
with

∑
|∂Ii|n−1 ≤ K,∑
|f(xi)||Ii|n ≤

∑
|f(xi)|d(Ii)|∂Ii|n−1 ≤

ε

K

∑
|∂Ii|n−1 ≤ ε .

Now comes the definition of our null conditions.

Definition 3.1. Let I be an interval and F be an interval function
on I.

(i) Given an n-null set E ⊆ I, we say that F satisfies the condition
Nn on E if for any ε > 0, r > 0 there exists a δ : E → R+ such that∑
|F (Ii)| ≤ ε for any (E, δ)-fine sequence {(xi, Ii)} with Ii ⊆ I and r(Ii) ≥ r

for all i.
If F satisfies Nn on every n-null set E ⊆ I we say that F satisfies Nn

(on I).
(ii) F is said to satisfy the condition Nn−1 (on I) if for any ε > 0, K > 0

there exists a δ : I → R+ such that
∑
|F (Ii)| ≤ ε for any (I, δ)-fine sequence

{(xi, Ii)} with Ii ⊆ I for all i and
∑
i |∂Ii|n−1 ≤ K.

R e m a r k 3.2. The following facts are obvious (for (ii) use Remark 3.1(i)).

(i) Suppose the n-null set E ⊆ I is the disjoint countable union of the
sets Ei. Then F satisfies Nn on E iff F satisfies Nn on all Ei.

(ii) If F is differentiable at each point of an n-null set E ⊆ I◦, then F
satisfies Nn on E.

Lemma 3.3. Let f : I → R be integrable on the interval I and denote
by F the indefinite integral of f . Then F satisfies the conditions Nn and
Nn−1 on I.

P r o o f. To prove Nn apply Remark 3.1(i) and Lemma 3.1 with param-
eters ε, r,K = 1; to verify Nn−1 apply Remark 3.1(ii) and Lemma 3.1 with
parameters ε, r = 1/2,K.

We can now give the following descriptive definition of our integral.
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Theorem 3.1. Let I be an interval and f : I → R. Then f is integrable
on I iff there exists an additive interval function F on I which is differ-
entiable a.e. on I with F ′ = f and which satisfies the conditions Nn and
Nn−1 on I. In that case we have F (J) =

∫
J
f for each subinterval J of I.

P r o o f. Assume F to be an additive interval function with the given
properties. We will show that f is integrable on I with

∫
I
f = F (I). Denote

by E ⊆ I an n-null set containing ∂I such that F ′ = f on I − E, and let
positive numbers ε, r,K be given.

If x ∈ I−E choose a δ1(x) > 0 such that |F (J)−f(x)|J |n|≤ε|J |n/(5|I|n)
for any subinterval J of I with x ∈ J, d(J) < δ1(x), r(J) ≥ r. Furthermore,
since F satisfies Nn on E, we choose a δ1 : E → R+ for the parameters
ε/5, r and by Remark 3.1(i) we may assume

∑
|f(xi)||Ii|n ≤ ε/5 for any

(E, δ1)-fine sequence {(xi, Ii)}. According to Remark 3.1(ii) and the fact
that F satisfies Nn−1 we choose a δ2 : I → R+ for the parameters ε/5,K,
and we set δ = min(δ1, δ2). Let Π = {(xi, Ii)} ∈ P(I, r,K, δ). Then

|F (I)− S(f,Π, I)|
≤

∑
xi∈I−E
r(Ii)≥r

|F (Ii)− f(xi)|Ii|n|+
∑
xi∈E
r(Ii)≥r

|F (Ii)|+
∑

r(Ii)<r

|F (Ii)|

+
∑

xi∈I−E
r(Ii)<r

|f(xi)||Ii|n +
∑
xi∈E

|f(xi)||Ii|n ≤ 5
ε

5
= ε ,

since
∑
r(Ii)<r

|∂Ii|n−1 ≤ K.
The converse follows by Remark 2.2 and Lemmata 3.2–3.3.

R e m a r k 3.3. A null condition of the type Nn was first introduced in
[Ju-Kn] to characterize the so called “weak” n-dimensional Denjoy–Perron
integral (cf. also [Ku-Jar1–3]). Indeed, if we cancel the requirement Nn−1 in
Theorem 3.1 we are just led to the non-additive GP -integral. Thus, it is the
additional condition Nn−1 which produces an additive integral.

4. Further properties of the integral. In this section we apply The-
orem 3.1 to show that our integral extends the Lebesgue integral and to
establish a quite general divergence theorem.

4a. Extension of the Lebesgue integral. For any interval I we denote
by L(I) the set of all measurable functions f : I → R for which a finite
Lebesgue integral

∫
I

L |f | exists.

Proposition 4.1. Let I be an interval , and f : I → R. Then f ∈ L(I)
iff f and |f | are integrable, and in that case we have

∫
I

L f =
∫
I
f .
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P r o o f. Assume first f ∈ L(I) and define an additive interval function
by F (J) =

∫
J

L f for any subinterval J of I. According to [Saks], F is
differentiable a.e. on I with F ′ = f and it remains to show that F satisfies
the conditions Nn and Nn−1. Then, by Theorem 3.1, f is integrable on I
and

∫
I

L f = F (I) =
∫
I
f . Since f ∈ L(I) implies |f | ∈ L(I) we will be done.

To see that F satisfies Nn on I let an n-null set E ⊆ I and positive
numbers ε, r be given. By the absolute continuity we can find an η > 0 such
that |

∫
A

L f | ≤ ε/2 for any measurable subset A of I with |A|n < η. Choose
an open set G ⊇ E with |G|n < η and for x ∈ E take a δ(x) > 0 such that
B(x, δ(x)) ⊆ G. Then for any (E, δ)-fine sequence {(xi, Ii)} with Ii ⊆ I we
have |

⋃
i Ii|n ≤ |G|n < η and thus∑

|F (Ii)| =
∑

F (Ii)≥0

F (Ii)−
∑

F (Ii)<0

F (Ii) ≤ ε .

Similarly one checks the conditionNn−1 on I (recall that |J |n ≤ d(J)|∂J |n−1

for any interval J).
Conversely, suppose f and |f | to be integrable. Since f is the a.e. deriva-

tive of an interval function (by Theorem 3.1), f is measurable according to
[Saks]. Thus take gn = min(n, |f |)↗ |f | and observe that∫

I

L |f | = lim
n→∞

∫
I

L gn = lim
n→∞

∫
I

gn ≤
∫
I

|f | ,

by the monotonicity of our integral.

R e m a r k 4.1. We could now formulate the usual convergence theorems
for our integral which are reduced via Proposition 4.1 to the classical situ-
ation.

4b. The Divergence Theorem with singularities. Let I be an interval,
~v : I → Rn be a vector-valued function, and x ∈ I. Then we call x a
singularity (of ~v) if ~v is not continuous at x and if there is an α with
1− n < α ≤ 0 such that

~v(y)− ~v(x) = O(1)‖y − x‖α (y → x, y 6= x, y ∈ I) .

If x ∈ I◦ and if ~v is differentiable at x then div~v(x) has the usual meaning
and at all other points of I we set div~v = 0.

For an interval I we denote by ~nI its usual exterior normal.

Lemma 4.1. Let 1−n < α ≤ 0. Then there is a positive constant c(n, α),
only depending on n and α, such that for any interval J and any x ∈ J ,∫

∂J

‖y − x‖α dH(y) ≤ c(n, α)d(J)α+n−1 .
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P r o o f. For j ∈ N let Cj = {z ∈ Rn : d(J)/2j < ‖z − x‖ ≤ d(J)/2j−1},
and recall that |B(y, r) ∩ ∂J |n−1 ≤ β(n)rn−1 for any y ∈ Rn and any r > 0
with an absolute positive constant β(n). Thus∫

∂J

‖y − x‖α dH(y)

≤
∑
j

∫
Cj∩∂J

‖y − x‖α dH(y) ≤
∑
j

(
d(J)
2j

)α
|Cj ∩ ∂J |n−1

≤ β(n)
∑
j

(
d(J)
2j

)α(
d(J)
2j−1

)n−1

= c(n, α)d(J)α+n−1 ,

with

c(n, α) =
β(n) · 2n−1

2α+n−1 − 1
.

Lemma 4.2. Let I be an interval and assume the vector-valued function
~v : I → Rn is continuous on I except for an at most countable set S of
singularities. Then for any subinterval J of I a finite integral

F (J) =
∫
∂J

~v · ~nJ dH

exists and the interval function F thus defined is additive. Furthermore, we
have

(i) For every ε > 0 there is a δ : S → R+ such that
∑
|F (Ii)| ≤ ε for

any (S, δ)-fine sequence {(xi, Ii)} with Ii ⊆ I. In particular , F satisfies Nn
on S.

(ii) F satisfies Nn−1 on I.
(iii) F satisfies Nn on H ∩ I for any plane H.
(iv) If ~v is differentiable at x ∈ I◦, so is F and F ′(x) = div~v(x).

P r o o f. In what follows we will often apply the well-known divergence
theorem for linear vector-valued functions.

Fix a subinterval J of I. Then we can associate with any x ∈ ∂J a
neighborhood U(x) such that either ~v is bounded on U(x) ∩ I or ‖~v(y) −
~v(x)‖ ≤ K(x)‖y−x‖α for y 6= x, y ∈ U(x)∩I with a constant K(x) > 0 and
a suitable α. Thus ∂J is covered by finitely many neighborhoods U(xk), and
the finiteness of

∫
U(xk)∩∂J |~v · ~nJ | dH follows by Lemma 4.1. The additivity

of F is obvious.

(i) Write S = {s1, s2, . . .} and let ε > 0. There are 1− n < αk ≤ 0 and
positive numbers Kk and δ(sk) such that ‖~v(y) − ~v(sk)‖ ≤ Kk‖y − sk‖αk
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for each y 6= sk, y ∈ B(sk, δ(sk)) ∩ I. Without loss of generality we may
assume δ(sk)αk+n−1 ≤ ε/(2n+kKkc(n, αk)). Let {(xi, Ii)} be an (S, δ)-fine
sequence with Ii ⊆ I. Then in case of xi = sk we have

|F (Ii)| =
∣∣∣ ∫
∂Ii

[~v(y)− ~v(sk)] · ~nIi
(y) dH(y)

∣∣∣
≤ Kk

∫
∂Ii

‖y − sk‖αk dH(y)

≤ Kkc(n, αk)d(Ii)αk+n−1 ≤ ε/2n+k by Lemma 4.1 .

Since at most 2n of the xi equal a fixed sk, we get∑
|F (Ii)| ≤

∑
k

∑
xi=sk

|F (Ii)| ≤
∑
k

2n
ε

2n+k
= ε .

(ii) Let ε > 0, K > 0 be given. For x ∈ I − S choose a δ(x) > 0 such
that ‖~v(y) − ~v(x)‖ ≤ ε/(2K) for any y ∈ B(x, δ(x)) ∩ I, by the continuity
of ~v at x. This defines a function δ : I − S → R+ and according to (i) we
choose a δ : S → R+ for ε/2. Now let {(xi, Ii)} be any (I, δ)-fine sequence
with Ii ⊆ I and

∑
|∂Ii|n−1 ≤ K. Then∑

|F (Ii)| =
∑
xi 6∈S

∣∣∣ ∫
∂Ii

[~v(y)− ~v(xi)] · ~nIi(y) dH(y)
∣∣∣+

∑
xi∈S

|F (Ii)|

≤
∑
xi 6∈S

ε

2K
|∂Ii|n−1 +

ε

2
≤ ε .

(iii) We may assume H ∩ I 6= ∅, and since F satisfies Nn on S by (i), we
only have to show that F satisfies Nn on (H ∩ I) − S (cf. Remark 3.2(i)).
Let ε > 0, r > 0 be given. For x ∈ (H ∩ I)− S choose a δ(x) > 0 such that

‖~v(y)− ~v(x)‖ ≤ ε′

for all y ∈ B(x, δ(x))∩ I with ε′ = εr/(n2n+1(1 + |H ∩ I|n−1)) and consider
an ((H ∩ I)− S, δ)-fine sequence {(xi, Ii)} with Ii ⊆ I and r(Ii) ≥ r for all
i. Then we get∑

|F (Ii)| =
∑∣∣∣ ∫

∂Ii

[~v(y)− ~v(xi)] · ~nIi(y) dH(y)
∣∣∣ ≤∑ ε′|∂Ii|n−1

≤ 2nε′

r

∑
|H ∩ Ii|n−1 ≤

2nε′

r
2n|H ∩ I|n−1 ≤ ε

by Lemma 2.1.
(iv) Assume ~v to be differentiable at x ∈ I◦, let ε > 0, r > 0 be given

and choose a δ(x) > 0 such that ‖~v(y) − ~v(x) − ~v ′(x)(y − x)‖ ≤ ε′‖y − x‖
for any y ∈ B(x, δ(x)) (⊆ I◦) with ε′ = εrn/(2n

√
n
n). Denoting by J any
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subinterval of I with x ∈ J, d(J) < δ(x) and r(J) ≥ r we see that

|F (J)− div~v(x)|J |n| =
∣∣∣ ∫
∂J

[~v(y)− ~v(x)− ~v ′(x)(y − x)] · ~nJ(y) dH(y)
∣∣∣

≤ ε′d(J)|∂J |n−1 ≤ 2nε′d(J)n ≤ 2n
(√

n

r

)n
ε′|J |n

= ε|J |n ,
and thus F is differentiable at x with F ′(x) = div~v(x).

Theorem 4.1 (Divergence Theorem). Suppose an interval I and a
vector-valued function ~v : I→Rn are given. Assume ~v to be differentiable
on I◦ except on at most countably many planes Hk and that ~v is continuous
on I except for at most countably many singularities. Then a finite integral∫
∂I
~v · ~nI dH exists, div~v is integrable on I and∫

I

div~v =
∫
∂I

~v · ~nI dH .

P r o o f. Using Lemma 4.2 we can define an additive interval function F
on I by F (J) =

∫
∂J
~v · ~nJ dH for any subinterval J of I. Furthermore, F

satisfies Nn−1 on I and F is differentiable on I◦ −
⋃
kHk with F ′ = div~v.

Again by Lemma 4.2(iii) and Remark 3.2(i) we see that F satisfies Nn on
T = ∂I∪

⋃
k(Hk∩I). To see that F satisfiesNn on I take an n-null set E ⊆ I

and observe that F is differentiable on E − T . Hence, by Remark 3.2(ii), F
satisfies Nn on E − T and therefore on E.

Consequently, by Theorem 3.1, div~v is integrable on I and
∫
I

div~v =
F (I) =

∫
∂I
~v · ~nI dH.

R e m a r k 4.2. Note that in Theorem 4.1 the set of those singularities at
which ~v is not locally bounded is necessarily finite.

Corollary 4.1. Let I be an interval and assume the vector field ~v : I →
Rn is continuous on I and differentiable on I◦. Then div~v is integrable on
I and

∫
I

div~v =
∫
∂I
~v · ~nI dH.
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