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Decompositions of hypersurface singularities of
type Jk,0

by Piotr Jaworski (Warszawa)

Abstract. Applications of singularity theory give rise to many questions concerning
deformations of singularities. Unfortunately, satisfactory answers are known only for sim-
ple singularities and partially for unimodal ones. The aim of this paper is to give some
insight into decompositions of multi-modal singularities with unimodal leading part. We
investigate the Jk,0 singularities which have modality k − 1 but the quasihomogeneous
part of their normal form only depends on one modulus.

1. Introduction. Let 0 ∈ W ⊂ Cn be an analytic hypersurface with
an isolated singular point at the origin. When we deform the hypersurface
W then the singular point may decompose, i.e. the deformed hypersurface
W ′ may have near the origin several less complicated singular points. The
investigation of such decompositions has important applications, e.g. in the
theory of Legendrian singularities, i.e. the singularities of wave fronts (com-
pare [1], §21).

In this paper we deal with hypersurfaces given by the equation

W = f−1(0) ,

where

f(x, y, z) = y3 + λy2xk + x3k +
( k−2∑
i=1

cix
i
)
yx2k +

n−2∑
i=1

z2
i , k = 2, 3, . . . ,

c1, . . . , ck−2, λ are complex parameters, and 4λ3 +27 6= 0. The hypersurface
W has an isolated singular point at the origin. In Arnold’s classification (see
[1], §15) such singularities are called Jk,0. We investigate how the decompo-
sitions depend on the modulus λ. It turns out that the exceptional values
of λ are 0 and e where 2e3 + 27 = 0. Moreover, these values are universal.
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Namely, every decomposition of any Jk,0 hypersurface singularity occurs (up
to topological type) for c = 0 and λ = 0 or λ = e. From this we deduce that
for a given k, the Legendrian singularities Jk,0(λ, 0), λ = 0, e, are universal
for all Jk,0 Legendrian singularities.

2. Notation

2.1. V-equivalence. In this paper we shall base on the following notion of
equivalence, the so-called V-equivalence. Let f, g : (Cn, 0)→ (C, 0) be germs
of analytic functions and let W and U be the germs of the hypersurfaces
f−1(0) and g−1(0). We say that the germs W and U are equivalent (resp.
the germs f and g are V-equivalent) if there exists an analytic change of the
coordinate system φ (and an invertible germ h resp.) such that

φ(U) = W (and respectively f(φ(z)) = h(z)g(z)) .

If φ is only a homeomorphism then we say that W and U (resp. f and g)
are topologically equivalent , i.e. have the same topological type.

We remark that the topological type of a singular point coincides with
the notion of µ-stratum (for the definition see e.g. [1], § 15.0), i.e. singularities
belonging to one µ-stratum are topologically equivalent. Therefore to denote
the topological type we shall use the symbol of the corresponding µ-stratum.

2.2. Decompositions. Let W be the germ of the hypersurface f−1(0),
where f : (Cn, 0) → (C, 0) is an analytic function with an isolated critical
point at the origin. Let S be the analytic type of this point. Let S1, . . . , Sm
be topological types of singular points of analytic hypersurfaces. We say
that there exists a decomposition

S → S1, . . . , Sm

if there exists a one-parameter analytic deformation Fε of f (F0 = f) such
that for ε close enough to 0 (but ε 6= 0) the hypersurface W = F−1

ε (0)
has just m singular points, of types S1, . . . , Sm, which tend to the origin as
ε→ 0. We remark that the coordinates of the critical points of the function
Fε are Puiseux series of ε. Hence the notion of limit is well-defined.

If the deformation Fε has only one singular point tending to the ori-
gin and moreover it is topologically equivalent to S then we say that the
deformation is trivial , otherwise is nontrivial.

We recall that analytically equivalent singularites have the same decom-
positions.

3. Main results. The case k = 2 is well known. The decompositions of
J2,0 do not depend on the modulus (see [6]). We shall deal with the next
cases; k ≥ 3 (cf. [8, 2, 3] for k = 3). We denote by Jk,0(λ, c) the singular
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point of the hypersurface f−1
λ,c(0) where

fλ,c(x, y, z) = y3 + λy2xk + x3k +
( k−2∑
i=1

cix
i
)
yx2k +

n−2∑
i=1

z2
i , k = 2, 3, . . .

First we reduce the problem to the quasihomogeneous case, i.e. to the
case c1 = . . . = ck−2 = 0.

Theorem 1. If there exists a decomposition

Jk,0(λ, c)→ S1, . . . , Sm

then there exists a decomposition

Jk,0(λ, 0)→ S1, . . . , Sm .

The analytic type of the quasihomogeneous part of f ,

y3 + λy2xk + x3k +
n−2∑
i=1

z2
i ,

is classified by the so-called j-invariant ,

j = j(λ) =
−4λ6

27(4λ3 + 27)
.

We recall that the j-invariant classifies the quasihomogeneous polynomials

H(x, y) = Ay3 +By2xk + Cyx2k +Dx3k, A 6= 0 ,

up to:

• the change of the coordinate system

y → ay + bxk, a 6= 0, x→ cx, c 6= 0 ;

• multiplication by a nonzero constant, H → dH, d 6= 0.

If H(x, y) = h(y − αxk)(y − βxk)(y − γxk) then

j =
4(α2 + β2 + γ2 − αβ − βγ − γα)3

27(α− β)2(β − γ)2(γ − α)2
.

For more details about j see [4], §IV.4.
We shall show that there are only two exceptional values of j, namely 0

and 1 (the harmonic and anharmonic cases).

Theorem 2. For λ1, λ2 such that j(λ1), j(λ2) 6= 0, 1,∞ there exists a
decomposition

Jk,0(λ1, 0)→ S1, . . . , Sm

if and only if there exists a decomposition

Jk,0(λ2, 0)→ S1, . . . , Sm .
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For k ≥ 3 the cases j = 0, 1 are distinguished.

Theorem 3. There exist decompositions

Jk,0(λ, 0)→ E6, E6k−10 , Jk,0(λ, 0)→ E7, E6k−9

only if respectively j(λ) = 0 or 1.

Moreover, the cases j = 0, 1 are universal.

Theorem 4. For any λ with j(λ) 6= 0, 1,∞, there exists a decomposition

Jk,0(λ, 0)→ S1, . . . , Sm

if and only if there exist decompositions

Jk,0(0, 0)→ S1, . . . , Sm, Jk,0(e, 0)→ S1, . . . , Sm, j(e) = 1 .

R e m a r k. Since the variables z1, . . . , zn−2 play no role in our investiga-
tions, we shall omit them (i.e. we shall consider the two-dimensional case).

The crucial point of the proofs of Theorems 1, 2 and 4 is to consider the
following group actions on deformations of Jk,0 singularities:

• the quasihomogeneous C∗ action: t∗F (x, y) = F̃ (x, y) where t ∈ C∗ =
C \ {0} and

F̃ (x, y) = t3kF

(
x

t
,
y

tk

)
,

• the shift C action: t ◦ F (x, y) = F̃ (x, y) where t ∈ C and

F̃ (x, y) = (1 + tx)3kF
(

x

1 + tx
,

y

(1 + tx)k

)
.

Both these actions preserve the types of singular points of F−1(0). More-
over, they transform diagonal deformations to underdiagonal ones. By abuse
of language we shall mean by an underdiagonal deformation of the quasiho-
mogeneous singularity Jk,0(∗, 0) the polynomial

F (x, y) =
∑

ai,jx
iyj where i+ kj ≤ 3k .

In contrast to the quasihomogeneous C∗ action the shift action changes the
j-invariant of the leading part

ΓF (x, y) =
∑

ai,jx
iyj where i+ kj = 3k.

The proof of Theorem 3 is based on reduction to the well-known case
k = 3 (see [8, 3, 2]) obtained with the help of a σ-process.
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4. Proof of Theorem 1. Let Fε(x, y) be an analytic deformation of
the Jk,0(λ, c) singularity

F0(x, y) = y3 + λy2xk + x3k +
( k−2∑
i=1

cix
i
)
yx2k .

Let Fε(x, y) =
∑
ai,j(ε)xiyj be the Taylor expansion of Fε (ai,j(ε) are germs

of analytic functions of ε). Let

M = min{(ordε ai,j(ε))/(3k − i− kj) : 0 < i+ kj < 3k} .
We shall base on the following estimate:

Lemma 1. Let (x(ε), y(ε)) be a critical point of Fε tending to the origin
as ε→ 0. Then

ordε x(ε) ≥M, ordε y(ε) ≥ kM .

P r o o f. Let the coordinates of the critical point have the following
Puiseux expansions:

x(ε) = x0ε
m + o(εm), y(ε) = y0ε

km+ o(εkm) ,

where 0 < m < M and (x0, y0) 6= (0, 0) (we denote by o(·) the terms of
higher order). After substitution we obtain

∂Fε
∂x

(x(ε), y(ε)) = (3kx3k−1
0 + kλy2

0x
k−1
0 )ε(3k−1)m + o(ε(3k−1)m) ,

∂Fε
∂y

(x(ε), y(ε)) = (3y2
0 + 2λy0xk0)ε2km + o(ε2km) .

Since 4λ3 + 27 6= 0, the above implies that x0 = y0 = 0, a contradiction.

To prove Theorem 1 we apply the method similar to [5], Section 3. We
make a substitution ε = α4k and apply the quasihomogeneous transforma-
tion for t = 1/α:

F̃α(x, y) = α−3kFα4k(αx, αky)

=
∑

αi+jk−3kai,j(α4k)xiyj =
∑

ãi,j(α)xiyj .

Now

(i) if i+ kj < 3k then ai,j(0) = 0, hence

ordα ai,j(α4k) = 4k ordε ai,j(ε) ≥ 4k ,

thus
ord ãi,j(α) = i+ jk − 3k + ordα ai,j(α4k) > 0 ;

(ii) if i+ kj = 3k then ãi,j(α) = ai,j(α4k),
(iii) if i+ kj > 3k then

ordα ãi,j(α) ≥ i+ jk − 3k > 0 .
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Therefore
F̃0(x, y) = y3 + λy2xk + x3k .

Corollary. Any one-parameter deformation of a semi-quasihomogene-
ous singularity Jk,c(λ, c) may be transformed by a quasihomogeneous trans-
formation to a deformation of the quasihomogeneous singularity Jk,0(λ, 0).
Moreover , both deformed curves

F−1
ε (0) and F̃−1

α (0) for α, ε 6= 0, ε = α4k ,

have the same singular points (up to analytic equivalence) which tend to the
origin as ε respectively α tends to 0.

Indeed, the singular point (x(ε), y(ε)) of Fε = 0 is transformed to the
singular point (x̃(α), ỹ(α)) of F̃α, where

x̃(α) = α−1x(α4k), ỹ(α) = α−ky(α4k) .

Hence

ordα x̃(α) = 4k ordε x(ε)− 1, ordα ỹ(α) = 4k ordε y(ε)− k .
The deformation Fε is analytic, thus M is greater than 1/(3k). Therefore, by
the above lemma, if (x(ε), y(ε)) tends to the origin then so does (x̃(α), ỹ(α)).

This finishes the proof of Theorem 1.

5. Reduction to an underdiagonal deformation. Repeating the
procedure of the previous section for other α and t we may reduce our
problem to the investigation of polynomials with constant coefficients.

Let Fε be a nontrivial deformation. Without loss of generality we may
assume that Fε(0, 0) = 0 for all ε, i.e. the constant term a0,0 is zero. Let p
and q be positive integers such that

p/q = M = min{(ordε ai,j(ε))/(3k − i− kj) : 0 < i+ kj < 3k} .
We make the substitution ε = αq, and apply the quasihomogeneous trans-
formation for t = 1/αp:

F̃α(x, y) = α−3kpFαq (αpx, αkpy)

=
∑

α(i+kj−3k)pai,j(αq)xiyj =
∑

ãi,j(α)xiyj .

Obviously all ãi,j(α) are analytic germs of α. But now in contrast to the
previous section there is at least one pair of indices (i, j), 0 < i + kj < 3k,
such that ãi,j(0) is not zero, namely those for which q(ordε ai,j(ε)) = p(3k−
i− jk). Hence

F̃0(x, y) = y3 + λy2xk + x3k +
∑

bi,jx
iyj , i+ jk < 3k .

Moreover, bi,j = ai,j(0), thus not all bi,j are zeros.
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Remark. The singular points of F−1
ε (0), ε 6= 0, which tend to the origin

as ε→ 0, correspond to the singular points of F̃−1
α (0), α 6= 0, which tend to

the singular points of F̃−1
0 (0) as α→ 0. Moreover, the corresponding points

have the same analytic type (for ε = αq).

6. The shift transformation of an underdiagonal deformation.
In this section we shall consider the orbit of the polynomial F̃0 from the pre-
vious section under the shift transformation. By the change of coordinates

y → y + d0 + d1x+ . . .+ dkx
k, x→ x ,

we transform the polynomial F̃0 to the form

G(x, y) = y3 + y

2k∑
i=0

Aix
i +

3k∑
i=0

Bix
i .

The j-invariant of the leading part of G,

y3 +A2kx
2ky +B3kx

3k ,

equals

j =
4A3

2k

4A3
2k + 27B2

3k

.

We apply to G the shift transformation:

G̃(x, y) = (1 + tx)3kG
(

x

1 + tx
,

y

(1 + tx)k

)
= (1 + tx)3k

(
y3

(1 + tx)3k
+ y

2k∑
i=0

Aix
i

(1 + tx)k+i
+

3k∑
i=0

Bix
i

(1 + tx)i

)

= y3 + y

2k∑
i=0

Aix
i(1 + tx)2k−i +

3k∑
i=0

Bix
i(1 + tx)3k−i

= y3 + y

2k∑
i=0

Aix
i

(
1
x

+ t

)2k−i

+
3k∑
i=0

Bix
i

(
1
x

+ t

)3k−i

.

The leading part of G̃ is y3 + yA(t)x2k +B(t)x3k, where A(t) =
∑
Ait

2k−i

and B(t) =
∑
Bit

3k−i. The new j-invariant is

J(t) =
4A(t)3

4A(t)3 + 27B(t)2
.

Lemma 2. (i) J(t) is constant only in one of the following cases:

(a) A ≡ 0; then J ≡ 0;
(b) B ≡ 0; then J ≡ 1;
(c) A(t)3 = cB(t)2, c 6= 0; then J ≡ 4c/(4c+ 27).
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(ii) Otherwise the image of J(t) is the whole complex line except possibly
a finite number of points.

P r o o f. Obviously J(t) is constant only in one of cases (a)–(c) of (i).
Otherwise J(t) is a nonconstant function defined on the complex line except
the zeros of the discriminant ∆ = 4A3 + 27B2. On the other hand, it may
be extended to a rational function J̃ : CP1 → CP1 by

J̃(t) =

 J(t) if ∆(t) 6= 0 ,
∞ if ∆(t) = 0, A(t) 6= 0 ,
limτ→t J(τ) if A(t) = B(t) = 0, or t =∞.

Since J̃ is onto, the image of J contains the complement of the set of J̃(t)
where t is a common zero of A(t) and B(t) or t = ∞, i.e. the image of J
contains the whole complex line except possibly a finite number of points.

Next we shall investigate the exceptional cases.

(a) A ≡ 0. Then G = y3 + b(x). The multiple factors of b(x) give rise to
singular points of G−1(0). Let

b(x) = b
∏

(x− xi)αi ,

where all xi are different. In the local coordinate system {x̃, ỹ} in a neigh-
bourhood of the point (xi, 0),

G = ỹ3 + x̃αi ,

where

x̃ = (x− xi)
(
b
∏
j 6=i

(x− xj)αj

)1/αi

, ỹ = y .

Therefore the point (xi, 0) has the following singularity type:

αi = 2 ⇒ A2;
αi = 3 ⇒ D4;
αi = 3m+ 1,m ≥ 1 ⇒ E6m;
αi = 3m+ 2,m ≥ 1 ⇒ E6m+2;
αi = 3m,m ≥ 2 ⇒ Jm,0, j = 0, quasihomogeneous.

(b) B ≡ 0. Then

G = y3 + a(x)y = y(y2 + a(x)) .

The factors of a(x) give rise to singular points of G−1(0). Let

a(x) = a
∏

(x− xi)αi ,
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where all xi are different. In the local coordinate system {x̃, ỹ} in a neigh-
bourhood of (xi, 0),

G = ỹ(ỹ2 + x̃αi) ,
where

x̃ = (x− xi)
(
a
∏
j 6=i

(x− xj)αj

)1/αi

, ỹ = y .

Therefore we have the following types of singularity at (xi, 0):

αi = 1 ⇒ A1;
αi = 2 ⇒ D4;
αi = 2m+ 1,m ≥ 1 ⇒ E6m+1;
αi = 2m,m ≥ 2 ⇒ Jm,0, j = 1, quasihomogeneous.

(c) A(t)3 = cB(t)2, c 6= 0. Then

G = y3 + a(x)y + b(x), a(x)3 = cb(x)2, c 6= 0 .

In this case a(x) and b(x) have the same roots. Thus there is a polynomial
d(x) such that b(x) = cd(x)3 and a(x) = cd(x)2. Hence

G = y3 + cd(x)2y + cd(x)3 .

The factors of d(x) give rise to singular points of G−1(0). Let

d(x) = d
∏

(x− xi)αi ,

where all xi are different. In the local coordinate system {x̃, ỹ} in a neigh-
bourhood of (xi, 0),

G = ỹ3 + cx̃2αi ỹ + cx̃3αi ,

where

x̃ = (x− xi)
(
d
∏
j 6=i

(x− xj)αj

)1/αi

, ỹ = y .

This gives the following singularity types:

αi = 1 ⇒ D4;
αi = m, m ≥ 2 ⇒ Jm,0, j = 4c/(4c+ 27), quasihomogeneous.

7. Proofs of Theorems 2 and 4. Theorems 2 and 4 follow directly
from the following proposition.

Proposition 1. If there exists a decomposition

Jk,0(λ, 0)→ S1, . . . , Sm, for some λ with j(λ) 6= 0, 1,∞ ,

then there exists a decomposition

Jk,0(κ, 0)→ S1, . . . , Sm, for any κ with j(κ) 6=∞ .
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P r o o f. We note that there are two obvious cases:

(i) m = 0: the curve Fε = 0 is smooth for small nonzero ε;
(ii) m = 1, S1 = Jk,0: the trivial deformation (all Jk,0 singularities have

the same topological type).

Hence we may restrict ourselves to nontrivial deformations with at least
one singular point tending to the origin as ε → 0. Moreover, we may shift
this point to the origin (if necessary we substitute ε := εν). Let Fε be such
a deformation of the singularity Jk,0(λ, 0), j(λ) 6= 0, 1,∞. We shall show
that, for any κ, there exists a deformation Hα of Jk,0(κ, 0) which has the
same (up to topological type) singular points as Fε .

We apply the quasihomogeneous transformation to Fε, as in Section 5.
We obtain

F̃α(x, y) = α−3kpFαq (αpx, αkpy) ,
where

F̃0(x, y) = y3 + λy2xk + x3k +
∑

bi,jx
iyj , i+ jk < 3k ,

where not all bi,j vanish.
Let X1, . . . , Xv be the analytic types of the singular points of F̃−1

0 (0).
Thus the decomposition induced by Fε has the form

Jk,0(λ, 0)→ S1,1, . . . , S1,m1 , . . . , Sv,1, . . . , Sv,mv
,

where
Xi → Si,1, . . . , Si,mi

, i = 1, . . . , v .
To prove the proposition it is enough to show that there exists a defor-
mation H̃α of Jk,0(κ, 0) which has, for α 6= 0, singular points of analytic
types X ′1, . . . , X

′
v, where X ′i is topologically equivalent to Xi and all the

decompositions of Xi occur for X ′i. Indeed, we may deform H̃α and obtain
a deformation Hα of Jk,0(κ, 0) which has singular points of types

S1,1, . . . , S1,m1 , S2,1, . . . , Sv,mv ,

where
X ′i → Si,1, . . . , Si,mi , i = 1, . . . , v

(cf. [7]).
We now construct the H̃α.
As in Section 6 we transform F̃0 to

G(x, y) = y3 + a(x)y + b(x) .

Next we apply the shift transformation:

Gt(x, y) = (1 + tx)3kG
(

x

1 + tx
,

y

(1 + tx)k

)
.
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There are three cases to be considered (in terms of Section 6):

(i) j(κ) belongs to the image of J(t);
(ii) j(κ) belongs to the closure of J(t);
(iii) J(t) is constant and not equal to j(κ).

Remark. If J(t) is constant and equal to j(κ) then j(κ) = J(0) = j(λ) ,
hence the singularity Jk,0(κ, 0) is analytically equivalent to Jk,0(λ, 0). Thus
they have the same decompositions.

Case (i): j(κ) = J(τ) for some τ ∈ C. We apply the quasihomogeneous
transformation:

H̃α(x, y) = α3kGτ

(
x

α
,
y

αk

)
.

Obviously H̃−1
α (0), α 6=0, has the same singular points as F̃−1

0 (0). Moreover,
H̃0 is a quasihomogeneous germ of type Jk,0 and its j-invariant equals j(κ).

Case (ii): j(κ) = limt→τ J(t) for some τ ∈ C or τ =∞. We consider the
leading part of the family of polynomials Gt,

ΓGt(x, y) = y3 +A(t)yx2k +B(t)x3k .

If τ is finite then both A(τ) and B(τ) vanish. Let

p = min{ 1
2 ordtA(τ + t), 1

3 ordtB(τ + t)} .

In the case τ =∞ we put

p = max{ 1
2 degtA(t), 1

3 degtB(t)} .

Next we shall deal with the meromorphic family of polynomials

G̃α(x, y) =
{
α−3pGτ+α(x, αpy) if τ ∈ C ,
α3pG1/α(x, y/αp) if τ =∞ .

For α 6= 0 the family G̃α(x, y) is locally analytic in α. The coefficients are
Puiseux series of α and may have poles at the origin but the coefficients of
the leading part are finite. Indeed,

ΓG̃α(x, y) = y3 + Ã(α)yx2k + B̃(α)x3k

=
{
y3 +A(τ + α)α−2pyx2k +B(τ + α)α−3px3k if τ ∈ C ,
y3 +A(1/α)α2pyx2k +B(1/α)α3px2k if τ =∞ .

Moreover, Ã(α) and B̃(α) do not vanish simultaneously at α = 0 and the
j-invariant of ΓG̃0 equals limt→τ J(t):
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j =
4Ã(0)3

4Ã(0)3 + 27B̃(0)2
= lim
α→0

4Ã(α)3

4Ã(α)3 + 27B̃(α)2

=


lim
α→0

4A(τ + α)3α−6p

4A(τ + α)3α−6p + 27B(τ + α)2α−6p
if τ ∈ C

lim
α→0

4A(1/α)3α6p

4A(1/α)3α6p + 27B(1/α)2α6p
if τ =∞

= lim
t→τ

4A(t)3

4A(t)3 + 27B(t)2
= lim
t→τ

J(t) .

Next we apply the quasihomogeneous transformation:

H̃α(x, y) = α3kqG̃α

(
x

αq
,
y

αkq

)
,

where we choose q to be large enough not only to eliminate poles but also
to make H̃0(x, y) quasihomogeneous:

H̃0(x, y) = y3 + Ã(0)yx2k + B̃(0)x3k .

Obviously for α 6= 0, H̃−1
α (0) has the same singularities as F̃−1

0 (0).

Case (iii): J(t) is constant. This case will be proved by induction on k.
We assume that the proposition is valid for J2,0, . . . , Jk−1,0. We have (see
Lemma 1)

G(x, y) = y3 + cd(x)2 + ycd(x)3 .

Moreover, the singular points of G−1(0) are analytically equivalent to D4 or
to quasihomogeneous Jm,0,m < k, with j-invariant equal to the j-invariant
of the leading part of G, i.e. j = j(λ) 6= 0, 1,∞.

We choose c′ such that
4c′

4c′ + 27
= j(κ).

We put

G′(x, y) = y3 + c′d(x)2y + c′d(x)3 .

Obviously, the singular points of G−1(0) and G′−1(0) are pairwise topo-
logically equivalent, they can only have different j-invariants. But j(λ) 6=
0, 1,∞, hence the decompositions of singular points of G−1(0) occur for
singular points of G′−1(0) (up to topological type). Therefore we may put

H̃α(x, y) = α3kG′
(
x

α
,
y

αk

)
.

Remark. One may prove in the same way the extension of the proposi-
tion for nonisolated singularities, i.e. for j(κ) =∞.
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8. Proof of Theorem 3

8.1. Existence. First we show that the decompositions

Jk,0(λ, 0)→ E6, E6k−10 and Jk,0(λ, 0)→ E7, E6k−9

exist for k ≥ 3 and respectively j(λ) = 0 and j(λ) = 1. Indeed, they are
given by the deformations

Fα(x, y) = y3 + x3k−4(x− α)4, F0(x, y) = y3 + x3k ,

and
Fα(x, y) = y3 + yx2k−3(x− α)3, F0(x, y) = y3 + yx2k

(cf. Section 6, cases (a) and (b)).

8.2. Uniqueness. The case k = 3. It is well known that for k = 3 the
decompositions

J3,0(λ, 0)→ E6, E8 and J3,0(λ, 0)→ E7, E7

occur only if respectively j(λ) = 0 or 1 (see [3, 2, 8]). We give a short proof
of this fact.

We consider the dimension of the stratum in the base of the (right)
miniversal deformation of the germ J3,0(λ, 0) corresponding to a given de-
composition. The dimension of the base is

µ(J3,0) = 16

(cf. [1], §8). The codimensions of the strata (E6, E8) and (E7, E7) are 14.
Moreover, the decompositions of J3,0 do not depend on the upper diagonal
modulus (c1 in our notation) (see [9]). So the above decompositions may
exist only for distinct values of the j-invariant. But if one of them exists
for respectively j(λ) 6= 0 or j(λ) 6= 1 then the shift technique from Sections
6 and 7 gives us that it exists for any j: a contradiction (cf. the proof of
Proposition 1, cases (i) and (ii).

8.3. Uniqueness. The case k > 3. Let Fα be any deformation of

F0 = y3 + λy2 + xk + x3k

such that F−1
α (0) has two singular points of types E6k−10 and E6 or respec-

tively E6k−11 and E7. We shift the singular point E6k−10 or respectively
E6k−11 to the origin and apply the blowing-up transformation

F̃α(x, y) = x−3(k−3)Fα(x, xk−3y) .

Then F̃α(x, y) is a deformation of

F̃0(x, y) = y3 + λy2x3 + x9 ,

i.e. of J3,0; moreover, the j-invariant is left unaltered. For α 6= 0, F̃−1
α (0)

has two singular points: E8 or E7 at the origin and E6 or respectively E7
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elsewhere. From Subsection 8.2 we know that the j-invariant must be 0 or
1 respectively. Hence j(λ) = 0 or 1 respectively.

This finishes the proof of Theorem 3.

9. Applications. The Legendrian singularities. The theory of Leg-
endrian maps is closely connected with the theory of hypersurface singular-
ities (see [1], §20). Our results concerning deformations of Jk,0 hypersurface
singularities may be restated in terms of Jk,0 Legendrian singularities.

Let f : (Cn, 0) → (C, 0) be the germ of an analytic function with an
isolated singular point at the origin of Jk,0(λ, c) type.

Let F (x, q), x ∈ Cn, q ∈ Cµ−1, be a (right-) miniversal deformation of
germ f(x) without the constant term.

Then F is a generating family of the germ of a Legendrian submanifold

L(λ, c) = {(p, q, z) : ∃x ∂F/∂x = 0, p = ∂F/∂q, z = F (x, q)}
in the space Cµ−1 × Cµ−1 × C with contact structure dz − pdq.

The image of the submanifold L by the projection

π : (p, q, z)→ (q, z)

is called a front. The restriction of the projection π to the Legendrian sub-
manifold L is a Legendrian map. In the notation of [1], §21, the germ of
π|L(λ,c) at the origin has type Jk,0(λ, c).

Let L′(λ, c) be a subset of L(λ, c) consisting only of simple points, i.e.
of such points (p, q, z) that the hypersurface F−1(z) ⊂ Cn has only sim-
ple singularities. From Theorems 1 and 4 we deduce that the Legendrian
singularities Jk,0(κ, 0), j(κ) = 1, 0, are universal.

Theorem 5. Let c ∈ Ck−2, j(λ) 6= 0, 1,∞. There exists an open ball
B1 = B(0, r1) ⊂ C2µ−1 such that for any open ball B2 = B(0, r2) ⊂ C2µ−1

and for any point P1 ∈ L′(λ, c) ∩B1 there exists a point P2 ∈ L′(κ, 0) ∩B2

with j(κ) = 1 (respectively j(κ) = 0) such that the germ of the Legendrian
map π|L(λ,c) at P1 is equivalent to the germ of π|L(κ,0) with j(κ) = 1
(respectively j(κ) = 0) at P2.
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