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Remarks concerning Driver’s equation

by GERD HERZOG and ROLAND LEMMERT (Karlsruhe)

Abstract. We consider uniqueness for the initial value problem z’ = 14 f(x) — f(t),
z(0) = 0. Several uniqueness criteria are given as well as an example of non-uniqueness.

Let f: R — R be continuous. We consider the initial value problem
" ¥(0) = 1+ f(alt) ~ £(t), t20,
z(0) =0,
which has z(t) = ¢ as a solution. Driver [1] asks whether this is in general

the only one and proves [2]:

PROPOSITION 1. There is no solution x with x(t) <t (t > 0) and x'(t)
decreasing and no solution x(t) > t (t > 0) with x'(t) increasing (in the
wider sense).

(f is to be substituted by —g in Driver’s terminology.)

Nowak [3] remarks that Driver’s question is not completely answered yet.

We will sharpen Proposition 1 in several ways and give examples of
continuous functions f such that (1) is not uniquely solvable. We also provide
conditions on f such that (1) is uniquely solvable.

We begin with

PROPOSITION 2. For each solution z of (1) we have z(t) <t,t>0.

Proof. We rewrite the differential equation as

exp(z’(t) — 1) = exp(f(2(t))) - exp(= f (1)),

and because exp(s — 1) > s (s € R) we get

o' (t) exp(—f(2(t))) < exp(—£(t))
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and by integration
z(t) t
J exp(=f(s)ds < [ exp(~f(s))ds,
0 0
which gives z(t) <t, t > 0.
Another way of looking at this problem is the following:
The initial value problem

o) {410 = S0 - exp(- 1)
y(0)=0
is uniquely solvable, since it has separated variables with exp(f(0)) # 0; its
solution is y(t) = ¢, and any solution of (1) is a subsolution to (2), hence
x(t) <t m
We next give a necessary condition which solutions of (1) have to satisfy.

PROPOSITION 3. Let d(t) = t — x(t), x any solution of (1), denote by
o¢(t) the oscillation of f over the interval [0,t], and let (-)+ be the positive
part of a function. Then

t
(3) 0<d(t) <op(t) [ (d(s)yds, t>0.
0

Proof. Let t > 0 and c a constant which will be determined later. Then

d satisfies

d'(t) = =(f(x(t)) — )d'(t) + f(t) — c = (f(2(t)) — c)2'(t).
By integration we get

[ =) =)ds= [ (f(a(s) —o)(a'(s) = 1)ds.
0

z(t)

(This relation is most easily verified by differentiation.)
Now setting ¢ = min{f(s) : 0 < s <t} we have

or) 2 f(s)—c20,  op(t)> fla(s) —c >0

and therefore
(t—z(t)(1—of(t) < of(t) f (=d'(s))+ ds,
0

from which (3) easily follows by using ¢t — x(t) = fg d'(s)ds. m

Proposition 3 shows that (1) cannot have a solution different from ¢
near 0 such that 2/(t) < 1 (which in particular holds if 2’ decreases since
2'(0) = 1): In this case (d'(s))+ = d'(s), which implies d = 0 for small ¢ > 0
(i.e., for those ¢t with of(t) < 1).
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Now fix ¢y > 0 and assume there is a solution of (1) such that x(tg) = to.
Then z(t) = z(t + to) — to satisfies
Z(t) =1+g(2(t)) —g(t),
2(0) =0,
where g is defined by g(s) = f(s + tg) — to. By Proposition 3 we have
t
0<t—z(t)<op(t) [[(1—2(s)sds, >0,
0
from which we get
t
0<t—a(t) <op(to,t) [ (1—a'(s)ds, t>to,
to
where o ¢(to,t) denotes the oscillation of f over the interval [to,t]. This shows
that no solution can leave the diagonal at a time ¢y > 0 if 2/(¢) < 1.

Of course, if f is decreasing, (1) is uniquely solvable by standard unique-
ness theorems. On the other hand, Proposition 3 implies uniqueness if f is
increasing; for in this case we have the inequality z'(¢) < 1, t > 0, because
of z(t) <t (t > 0). Remarkably enough, from the above considerations we
see that if f is locally of bounded variation, then (1) is uniquely solvable:
We write f = fi1 — fa, f1, f2 increasing, and get

#(t) = 14 fi(x(t) = fi(t), =0,
so x(t) > t, and finally x(t) =t, ¢t > 0.
PROPOSITION 4. Let f'(s) exist for s > 0 and let there exist ¢ <€ < 1
such that
F(s) < §+1—6, se(0,1].
Then problem (1) is uniquely solvable in [0, 1].
Proof. From 1 —2/(t) = — f(x(t)) + f(t) we get for ¢, z(t) > 0,

t
1=2/'(t)= [ f(s)ds < (1-2)(t—(t) + c(logt — log z(t))
z(t)
or
(4) 2'(t) > 1+ clogx(t) — clogt + (1 —¢)(z(t) — t).
If (1) is not uniquely solvable, we may assume by Kneser’s theorem that there
is a solution z : [0,1] — R, positive in (0,1], such that 1 > (1) > d > 0,
with d to be determined in a moment.
We now consider the initial value problem

{z’(t) =1+clogz(t) —clogt+ (1 —¢)(2(t) — t),

(5) (1) = 2(1).
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By (4), = is a subsolution to the left for (5) in (0,1]. Now, because of ¢ <
¢ < 1, there is 1 > d > 0 such that

c(s—1)<clogs, d<s<1,
so that y(t) = x(1) - t satisfies
y'(t) <1+clogy(t) —clogt+ (1—0)(y(t) —t), 0<t<1.

Therefore y is a supersolution of (5) to the left and by standard comparison
theorems we get

(6) w(t) < y(t), te (1],
But then z cannot be a solution of (1), since (6) implies 2/(0) < z(1) < 1. m

PRrROPOSITION 5. If f satisfies

—_

ft) = fla) = S(t—2), Osa<tsl,

then (1) is uniquely solvable in [0, 1].

Proof. The proof follows the same ideas as the proof of Proposition 4.
In this case we write

1—a/(t) = f() — f(a(t)) <

Then z is a subsolution to the left for

1

2'(t) = ;z(t), z2(1) = z(1).

Standard comparison theorems [4] give z(t) < x(1) -¢, 0 < t < 1, since
z(t) = x(1)-t is the solution to this latter problem. Hence again 2/(0) < x(1),
which is impossible if z(1) < 1. m

| =

(t—=x(t)), 0<t<1.

~

We finally construct an example of a bounded continuous function f :
R — R such that (1) is not uniquely solvable.

To this end we define by induction a sequence by = 1,a1, ba, as, bs, ... of
numbers which tends strictly monotonically to zero; f will be zero outside
(0,1) and on any interval [b,y1,a,] (n > 1), and positive elsewhere.

Let by = 1 > a3 > 0 (the value of a; will be fixed later), v : [0,1] —
[0,1] continuous, v(0) = (1) = 0 and m = fo v(s)ds > 0. We define
7(s) = v(s —a1)/(1 —a1)), m1 = (1/(b1 — aq1) f 71 (s)ds and remark
that my =m

By I(p) we denote fol ds/(1+4 pvy(s)). Let (uy) be a sequence of positive
numbers tending to zero, u; =1, p, < 1.
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In [a1,b1] we solve 2/ (t) = 1 —~1(t), z(b1) = a1 and set bs = z(a;), which
gives

al—bgzbl—al— f’yl(s)ds

or
al—bg = (1—m)(1—a1).
Therefore by < a;, and we define f =7 in [a1,b1], f =0 in [ba, aq].
Next we choose ag such that

b2—a2:(a1—b2)-l(;):(1—m)(1—a1).1(;2)

and solve z/(t) = 1 + v2(x(t)), z(a1) = b, where

b1 —a
f(s) = fyg(s) = M2fyl<b1 ! (3 — ag) —|—a1), as < s <by.
2 — a2

Since the differential equation for x has separated variables, an easy calcu-
lation shows ay = z(bs).

Up to now f is defined on [az, 1], and z satisfies the differential equation
from (1) on [ag, 1], z being increasing with values in [as, 1].

To proceed by induction, let a,, < b, be defined,

f(t) == m(t) = uw(bnlan

We solve z/(t) = 1 — v, (t), t € [an, by, (by) = an, set byy1 = z(an) < an,
define f =0 in [by41,a,] and a1 by

(t—an)>, ap <t<b,.

I(png1) (b1 — @ng1) = an — by,

80 bpy1 > apy1. Now we solve z/(t) = 1+ ypp1(x(t)), z(an) = bpt1 on
[@n+1,bn41], the solution of which satisfies ©(b,+1) = apn+1, f is defined on
[an+1,1] and z satisfies the differential equation in (1).

By our construction we have, for n > 1,

Ap — anrl = (]— - Hnm)(bn - an) s

1
bot1 — ant1 = (1 — pnm)(bn — an) (ins)
so for n > 2,
n—1 n
b —an, =(1—ay)(1—m)- H (1-—
k=2 k= 2
n—1

n—1
an_l—bn:(l—al)(l—m)- H 1—
k=2
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From Jensen’s inequality, applied to the convex functions h(x) = 1/(1+ ux)
(>0, >0), we have

b1
1 ds 1
I(p) = f > ;
b1 —ay . 1+ puyi(s) = 1+ um
therefore the sequence b1, a1, bs, as,bs, as, ... is convergent if
oo n—1
> 110 = wim?)
n=3 k=2

converges, which is the case, for example, for ux =1/ VE, k € N, as is easily
verified using Raabe’s test for convergence. For suitable a; < 1 we finally
get lim,, .o a, = lim, .o b, = 0. So f is defined everywhere, continuous,
bounded, and the solution x solves (1) with z(¢) <t,t € (0,1]. m

Remarks. 1) For a suitable choice of v, the function f is C*° in R\ {0}.

2) If we define F(t,x) =1+ f(x) — f(t), Kamke’s or related uniqueness
theorems are of course applicable if f satisfies an appropriate condition.
Our condition in Proposition 4 cannot be subsumed under this, since, for an
autonomous equation z’ = g(x), the condition ¢'(z) < ¢/z does not imply
uniqueness, as g(z) = y/x shows.

3) It would be interesting to know whether the condition f'(¢) < 1/t+1,
0 < t < 1, implies uniqueness for (1). This condition would contain the
conditions of Propositions 4 and 5.
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