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An initial value problem for
a third order differential equation

by Wojciech Mydlarczyk (Wroc law)

Abstract. For an initial value problem u′′′(x) = g(u(x)), u(0) = u′(0) = u′′(0) = 0,
x > 0, some theorems on existence and uniqueness of solutions are established.

1. Introduction. We consider the initial value problem

(1.1)
u′′′(x) = g(u(x)) (x > 0) ,
u(0) = u′(0) = u′′(0) = 0 ,

where

(i) g : (0,∞)→ [0,∞) is continuous,
(ii) x1/2g(x) is bounded as x→ 0,
(iii) 0 <

∫ δ
0
g(s)s−1/2 ds <∞ (δ > 0).

In the paper δ always denotes some positive constant. We permit it to
change its value from paragraph to paragraph.

We are looking for a nonnegative function u ∈ C2[0, δ) satisfying (1.1).
It is known (see [1]–[3]) that for g nondecreasing a similar problem for the
nth order differential equation

u(n)(x) = g(u(x)) ,

u(0) = u′(0) = . . . = u(n−1)(0) = 0 (n an integer) ,

has a nontrivial solution u 6≡ 0 if and only if the generalized Osgood condi-
tion

δ∫
0

(
s

g(s)

)1/n
ds

s
<∞ (δ > 0)

is satisfied. For further results of this type, see [4], [5].
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Our aim is to give a similar condition for the existence of nontrivial
solutions of (1.1) in the case of a class of functions g satisfying (i)–(iii).

To study the problem (1.1) we transform it into its integral form

u(x) =
1
2

x∫
0

(x− s)2g(u(s)) ds (0 < x < δ) .

Taking v(x) = 2−2/3[u′(u−1(x))]2, where u−1 is the inverse function to u,
we get the integral equation

(1.2) v(x) =
x∫

0

(x− s)g(s)v(s)−1/2 ds (0 < x < δ) .

The integral equation (1.2), with an unknown nonnegative function v ∈
C[0, δ), will be equivalent to problem (1.1) if we assume

(1.3)
δ∫

0

v(s)−1/2 ds <∞ (δ > 0) ,

which is motivated by the relation v(x)−1/2 = 21/3(u−1)′(x).
To analyse (1.2), we introduce the integral operator

(1.4) Tw(x) =
x∫

0

(x− s)g(s)w(s)−1/2 ds (x > 0)

defined for any continuous function w : [0,∞) → [0,∞) such that the inte-
gral on the right-hand side is finite, and set

ϕ(x) =
x∫

0

(x− s)g(s)s−1/2 ds and q(x) = x1/3ϕ(x)2/3 (x > 0) .

Some properties of ϕ and q which we shall use in the sequel are collected
in the two following lemmas.

Lemma 1.1. Let g satisfy (i)–(iii). Then

(a) ϕ(x)/x is nondecreasing for x > 0;
(b) there exists a constant c > 0 such that xϕ′2(x) ≤ cϕ(x) for x ∈ (0, δ);
(c) if x1/2g(x) is nondecreasing for x ∈ (0, δ), then xϕ′2(x)/ϕ(x) is also

nondecreasing on (0, δ).

P r o o f. (a) It suffices to observe that ϕ is convex and ϕ(0) = 0.
(b) Notice that

(1.5) xϕ′2(x) =
x∫

0

(2sϕ′′(s) + ϕ′(s))ϕ′(s) ds (x > 0) .

Now, our assertion follows by the fact that 2sϕ′′(s) + ϕ′(s) is bounded on
(0, δ).
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(c) We first note that
ϕ2(xϕ′2/ϕ)′ = {(2xϕ′′ + ϕ′)ϕ− xϕ′2}ϕ′ .

Further, from (1.5) and by the fact that 2sϕ′′(s)+ϕ′(s) is nondecreasing on
(0, δ) we obtain

xϕ′2(x) ≤ (2xϕ′′(x) + ϕ′(x))ϕ(x) for x ∈ (0, δ) .

So, (xϕ′2/ϕ)′ ≥ 0 on (0, δ), which completes the proof.

Lemma 1.2. Let g satisfy (i)–(iii). Then

(a) Tq(x) is well defined for x > 0;
(b) if x1/2g(x) is nondecreasing on (0, δ), then Tq(x) ≤ 9

2q(x) for x ∈
(0, δ).

P r o o f. (a) We first observe that
x∫

0

g(s)q(s)−1/2 ds =
x∫

0

ϕ′′(s)
(
ϕ(s)
s

)−1/3

ds (0 < x) .

By the estimate given in Lemma 1.1(b) we can integrate by parts to obtain

(1.6)
x∫

0

ϕ′′(s)
(
ϕ(s)
s

)−1/3

ds = ϕ′(x)
(
ϕ(x)
x

)−1/3

+
1
3

x∫
0

ϕ′(s)
(
ϕ(s)
s

)−1/2(
ϕ(s)
s

)′(
ϕ(s)
s

)−5/6

ds .

In order to estimate the right-hand side of (1.6) we use Lemma 1.1(b) once
more, which gives

x∫
0

ϕ′′(s)
(
ϕ(s)
s

)−1/3

ds <∞ for x ∈ (0, δ) .

Hence our assertion follows immediately.
(b) We use Lemma 1.1(c) in order to estimate the integral on the right-

hand side of (1.6). Then we obtain
x∫

0

ϕ′′(s)
(
ϕ(s)
s

)−1/3

ds ≤ 3ϕ′(x)
(
ϕ(s)
s

)−1/3

for x ∈ (0, δ) .

Now, we derive

Tq(x) =
x∫

0

( s∫
0

g(ξ)q(ξ)−1/2 dξ
)
ds

= 3
x∫

0

ϕ′(s)
(
ϕ(s)
s

)−1/3

ds ≤ 9
2
q(x) for x ∈ (0, δ) ,

which completes the proof.
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In view of Lemma 1.2(a), we can put

Q(x) = Tq(x) for x ∈ (0, δ) .

In the following theorem necessary and sufficient conditions for the ex-
istence of nontrivial solutions u 6≡ 0 of (1.1) are established.

Theorem 1.1. Let (i)–(iii) be satisfied. If

(1.7)
δ∫

0

q(s)−1/2 ds <∞ (δ > 0) ,

then (1.1) has a nontrivial solution. Conversely , if (1.1) has a nontrivial
solution, then

(1.8)
δ∫

0

Q(s)−1/2 ds <∞ (δ > 0) .

Define

K0 = {g : s1/2g(s) is nondecreasing for 0 < s < δ (δ > 0)} .

Let

h∗(x) = sup s1/2g(s) for 0 < s ≤ x and g∗(x) = x−1/2h∗(x) (x > 0)

where g is any function satisfying (i)–(iii). For g∗ we define T ∗, ϕ∗, q∗ and
Q∗ similarly to those corresponding to g. Define

J(x) =
x∫

0

g(s)s−1/2 ds , J∗(x) =
x∫

0

g∗(s)s−1/2 ds ,

K = {g : sup(J∗(x)/J(x)) <∞ for 0 < x ≤ δ} .
Of course, K0 ⊆ K. Moreover, both K0 and K contain nondecreasing func-
tions g satisfying (i). We shall also present an example of g ∈ K which takes
the value 0 at some points xn, n = 1, 2, . . . , such that xn → 0 as n→∞.

If we are interested only in functions g ∈ K, then conditions (1.7) and
(1.8) turn out to be equivalent. This is stated in the following theorem.

Theorem 1.2. If g ∈ K, then the condition
δ∫

0

ds

{s1/2ϕ(s)}1/3
<∞ (δ > 0)

is necessary and sufficient for the existence of a unique solution u of (1.1)
such that u(x) > 0 for x > 0.

2. Proofs of theorems. To prove Theorems 1.1 and 1.2 we need three
lemmas. In the first one we give an a priori estimate of solutions of (1.2).
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Lemma 2.1. For any continuous solution v of (1.2) we have

q(x) ≤ v(x) ≤ Q(x) (x > 0) .

P r o o f. Using (1.2) we easily check that v(x)/x, x > 0, is nondecreasing.
Therefore

(2.1) v(x) =
x∫

0

(x− s)g(s)v(s)−1/2 ds ≥
(
v(x)
x

)−1/2

ϕ(x) (x > 0) .

Hence we get the left-hand inequality. Now the right-hand inequality follows
from the monotonicity properties of T .

The problem of the existence of solutions of (1.2) is considered in the
following lemmas.

Lemma 2.2. There exists at least one continuous solution of (1.2).

P r o o f. We regularize (1.2) as follows:

(2.2) vε(x) = εx+
x∫

0

(x− s)g(s)vε(s)−1/2 ds (ε, x > 0) ,

where vε is sought in C[0, δ). Define

Tεw(x) = εx+
x∫

0

(x− s)g(s)w(s)−1/2 ds

for any continuous w : (0, δ) → [0,∞) such that the integral on the right-
hand side is finite and set

w0(x) = εx for 0 < x < δ and wn = Tnε w0 , n = 1, 2, . . .

The following useful properties of Tε can easily be obtained:

(2.3) w0 ≤ Tεv for any v ≥ 0 ;
(2.4) if 0 ≤ v1 ≤ v2 , then Tεv1 ≥ Tεv2 ;
(2.5) Tε(cv) ≥ c−1/2Tεv for any c ≥ 1 and v ≥ 0 .

From (2.3) and (2.4) it follows that

(2.6) w0 ≤ w2 ≤ w4 ≤ . . . ≤ w5 ≤ w3 ≤ w1 .

Since

Tεw0(x) = εx+ ε−1/2
x∫

0

(x− s)g(s)s−1/2 ds ,

from (iii) it follows that there exists δε > 0 such that

w0(x) ≤ w1(x) ≤ 3
2w0(x) for 0 < x < δε .
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Applying (2.5) and using an inductive argument we can see that

(2.7) 1 ≤ w2k+1(x)
w2k(x)

≤
(

3
2

)(1/2)2k

for 0 < x < δε and k = 0, 1, 2, . . .

From (2.6) and (2.7) we conclude that the sequence {wn} is convergent. Since
the function w(x) = limn→∞ wn(x), 0 < x < δε, satisfies (2.2) on (0, δε),
from its construction it follows that vε(x) = w(x) is a unique continuous
solution of (2.2) on a (0, δε). Now, noting that vε(x)/x is nondecreasing, we
get the a priori estimates

(2.8) q(x) ≤ vε(x) ≤ εx+Q(x) , v′ε(x) ≤ ε+Q′(x) for x > 0 ,

from which we conclude that vε can be extended from [0, δε) to a unique
continuous solution of (2.2) defined on a whole interval independent of ε.

Now, estimate (2.8) allows us to apply the Arzelà–Ascoli theorem. Thus
we see that there exists a convergent sequence {vεn

} of solutions of (2.2),
where εn → 0, as n → ∞. The limit v(x) = limn→∞ vεn(x), x > 0, is a
solution of (1.2), which completes the proof.

A uniqueness result for equation (1.2) is given in the following lemma.

Lemma 2.3. If there exists a constant m such that

(2.9) Q(x) ≤ mq(x) (0 < x ≤ δ) ,

then the equation (1.2) has exactly one continuous solution v.

P r o o f. Let v1, v2 be two continuous solutions of (1.2). By Lemma 2.1
we have

q(x) ≤ v1(x), v2(x) ≤ mq(x) (0 < x < δ) .
Therefore there exist constants c1, c2 > 0 such that

(2.10) c1v1(x) ≤ v2(x) ≤ c2v1(x) (0 ≤ x ≤ δ) .

Note also that for any c > 0 and for any solution v of (1.2) we have

Tn(cv) = c(−1/2)n

v .

Therefore applying Tn to each term of (2.10), by the monotonicity properties
of T we easily get v1 = v2, which completes the proof.

Now we are ready to prove our theorems.

P r o o f o f T h e o r e m 1.1. It is easily seen that Theorem 1.1 is a simple
corollary of Lemmas 2.1 and 2.2.

P r o o f o f T h e o r e m 1.2. In view of Theorem 1.1 and Lemma 2.3, to
prove Theorem 1.2 it suffices to show that there exists a constant m such
that (2.9) is satisfied.
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It follows from the definition of K that there exists a constant c > 0
such that

(2.11) cq∗(x) ≤ q(x) ≤ q∗(x) for x ∈ (0, δ) .

Hence we get

Q(x) = Tq(x) ≤ c−1/2Tq∗(x)(2.12)
≤ c−1/2T ∗q∗(x) = c−1/2Q∗(x) for x ∈ (0, δ) .

Now it suffices to note that g∗ ∈ K0. Therefore, by Lemma 1.2(b), Q∗(x) ≤
9
2q
∗(x) for x ∈ (0, δ), which combined with (2.11) and (2.12) gives the re-

quired result.

3. Examples. In this section we give two examples of application of the
previous results.

Example 3.1. Let g(x) = x−1/2(− lnx)−γ , γ > 0, 0 < x < δ, for some
δ>0. If 0<γ≤1, then we can easily check that g does not satisfy condition
(iii) which, in view of inequality (2.1), is one of the necessary conditions for
the existence of nontrivial solutions of (1.1).

If γ > 1, then g belongs to K0 and we can easily check that the condition
given in Theorem 1.2 is satisfied. Therefore in the case of γ > 1 the problem
(1.1) has a unique solution u such that u(x) > 0 for 0 < x < δ.

Before giving a second example we consider another subclass of K.
Namely, let a bounded function g satisfy condition (i). We set

g(x) = sup g(s) for 0 < s ≤ x (0 < x < δ) ,

and we define

G(x) =
x∫

0

g(s) ds , G(x) =
x∫

0

g(s) ds (0 < x < δ) .

Denote by K1 the class of bounded functions g satisfying (i) and such
that

sup(G(x)/G(x)) <∞ for x ∈ (0, δ) .
R e m a r k 3.1. K1 ⊆ K.

P r o o f. Let g ∈ K1. Since g is bounded, an integration by parts shows
that

x∫
0

g(s)s−1/2 ds = x−1/2G(x) +
1
2

x∫
0

G(s)s−3/2 ds .

Using the same formula for g we obtain

(3.1)
x∫

0

g(s)s−1/2 ds ≤ c
x∫

0

g(s)s−1/2 ds for x ∈ (0, δ) ,
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where c > 0 is some constant. Hence and by the fact that g∗ ≤ g on (0, δ)
it follows that g ∈ K, which ends the proof.

In the case of g ∈ K1 the following theorem gives a necessary and suffi-
cient condition for the existence of nontrivial solutions of (1.1).

Theorem 3.1. Let g ∈ K1. Then (1.1) has a unique solution u such that
u(x) > 0 for x > 0 if and only if

δ∫
0

(
s

g(s)

)1/3
ds

s
<∞ (δ > 0) .

P r o o f. Since g is nondecreasing, we get

2−1g(x/2)x1/2 ≤
x∫

0

g(s)s−1/2 ds ≤ 2g(x)x1/2 (0 < x < δ) .

Therefore the required result follows from Theorem 1.2 by applying (3.1).

Example 3.2. Let xk = (2k + 1)−1π−1, yk = (2kπ)−1, ak =
(2k + 5/6)−1π−1, bk = (2k + 1/6)−1π−1 for any integer k ≥ k0, where
k0 is a fixed integer number such that yk0 ∈ (0, δ). We define

(3.2) g(x) =
{

sin 1/x for xk ≤ x ≤ yk,
0 for yk+1 < x < xk (k > k0)

and

g1(x) =
{

1/2 for ak ≤ x ≤ bk,
0 for bk+1 < x < ak (k > k0).

Thus we have g1(x) ≤ g(x) ≤ g(x) = 1 for x ∈ (0, δ). Set

G1(x) =
x∫

0

g1(s) ds , G(x) =
x∫

0

g(s) ds = x for x ∈ (0, δ) ,

rk =
∞∑
l=k

(bl − al) for k > k0 .

For x ∈ (ak+1, ak) (k > k0) we get

(3.3)
G(x)
G(x)

≤ x

G1(x)
≤ 2

x

rk+1
≤ 2

ak
rk+1

= 2
ak+1

rk+1

ak
ak+1

.

Of course, ak/ak+1 < c for some constant c and k > k0. Since

rk = π−1
∞∑
l=k

(2l + 5/6)−1(2l + 1/6)−1 ,

we can compare rk with
∫∞
k
s−2 ds. As a result, ak/rk < c for some constant

c and k > k0. Now, by (3.3) we conclude that g ∈ K1. Applying Theorem 3.1
we see that the problem (1.1) with g defined in (3.2) has a nontrivial solution.
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