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An initial value problem for
a third order differential equation

by WoOJCIECH MYDLARCZYK (Wroctaw)

Abstract. For an initial value problem v (z) = g(u(x)), u(0) = «/(0) = «”(0) = 0,
x > 0, some theorems on existence and uniqueness of solutions are established.

1. Introduction. We consider the initial value problem

u”(z) = g(u(z)) (z>0),
1) u(0) = u/(0) = u”(0) =0,

where
(i) g : (0,00) — [0, 00) is continuous,
(ii) 2*/2¢(z) is bounded as z — 0,
(iii) 0 < [3 g(s)s™/2ds < 00 (6 > 0).
In the paper § always denotes some positive constant. We permit it to
change its value from paragraph to paragraph.
We are looking for a nonnegative function u € C?[0,) satisfying (1.1).

It is known (see [1]-[3]) that for g nondecreasing a similar problem for the
nth order differential equation

ul™ (z) = g(u()),
w(0) =u/(0) =...=u™V(0)=0 (n an integer),

has a nontrivial solution u # 0 if and only if the generalized Osgood condi-

tion
) 1/n d
| (S> T (6>0)
g \g(s) 5

is satisfied. For further results of this type, see [4], [5].
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Our aim is to give a similar condition for the existence of nontrivial
solutions of (1.1) in the case of a class of functions g satisfying (i)—(iii).

To study the problem (1.1) we transform it into its integral form

u(z) =

N

f (z —s)g(u(s))ds (0<x<d).

Taking v(x) = 2723w/ (u="(z))]?, where u~! is the inverse function to wu,
we get the integral equation

(1.2) v(x) = f (x —s)g(s)v(s)"V2%ds (0<x <),
0

The integral equation (1.2), with an unknown nonnegative function v €
C10,9), will be equivalent to problem (1.1) if we assume

s
(1.3) [o(s)™?ds <0 (6>0),

0
which is motivated by the relation v(z)~ /2 = 21/3(u=1) (z).
To analyse (1.2), we introduce the integral operator
x

(1.4) Tw(z) = [ (z—s)g(s)w(s)/?ds (> 0)

0
defined for any continuous function w : [0,00) — [0, 00) such that the inte-
gral on the right-hand side is finite, and set

o(z) = f (z —s)g(s)s 2ds and q(z) = 2 3p(2)¥? (x> 0).
0
Some properties of ¢ and ¢ which we shall use in the sequel are collected
in the two following lemmas.

LEMMA 1.1. Let g satisfy (1)—(iii). Then

(a) o(x)/x is nondecreasing for x > 0;

(b) there exists a constant ¢ > 0 such that z¢o"*(x) < cp(z) for z € (0,0);

(c) if x1/2g(x) is nondecreasing for x € (0,8), then xp'(x)/¢(x) is also
nondecreasing on (0,0).

Proof. (a) It suffices to observe that ¢ is convex and ¢(0) = 0.

(b) Notice that

xT

(1.5) 2" () = [ (259" (s) + ()¢ (s)ds (x> 0).
0

Now, our assertion follows by the fact that 2s¢”(s) + ¢’(s) is bounded on
(0,9).
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(c) We first note that

P (29" /0) = {(22¢" + ¢')p — 20"}’
Further, from (1.5) and by the fact that 2s¢”(s) +¢'(s) is nondecreasing on
(0,9) we obtain

wp(2) < (209" (2) + ¢'(2))p(x)  for z € (0,6).
So, (z¢"?/p) > 0 on (0,§), which completes the proof.
LEMMA 1.2. Let g satisfy (i)—(iii). Then

(a) T'q(z) is well defined for x > 0;
(b) if 2'/?g(x) is nondecreasing on (0,0), then Tq(z) < 3q(z) for = €
(0,9).

Proof. (a) We first observe that

T T s —-1/3
J a2 as= [ e(2L) T as 0<a.

S
0

By the estimate given in Lemma 1.1(b) we can integrate by parts to obtain

(1.6) Of 2 (s) (80(5))_1/3 ds = ¢/ (z) <90(93)> ~1/3

S x

) ) () e

In order to estimate the right-hand side of (1.6) we use Lemma 1.1(b) once
more, which gives

f 0" (s) () ds < oo forx € (0,6).
s
0
Hence our assertion follows immediately.
(b) We use Lemma 1.1(c) in order to estimate the integral on the right-
hand side of (1.6). Then we obtain

f ¢"(s) (‘M)m ds < 3¢/ (z) <*D(3)>1/3 for z € (0,0).

S S
0

Now, we derive

Tq(x) = f (
0

T s —-1/3
=3 f ©'(s) <tp()> ds < gq(:L‘) for z € (0,9),
0

9(€)a() "/ dg ) ds

O%m

s 2

which completes the proof.
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In view of Lemma 1.2(a), we can put
Q(x) =Tq(x) for z € (0,9).

In the following theorem necessary and sufficient conditions for the ex-
istence of nontrivial solutions u Z 0 of (1.1) are established.

THEOREM 1.1. Let (i)—(iii) be satisfied. If

5
(1.7) f q(s)"V?ds < oo (6>0),
0

then (1.1) has a nontrivial solution. Conversely, if (1.1) has a nontrivial
solution, then

5
(1.8) f Q(s)™V2ds < oo (6>0).
0

Define
Ko = {g: s/2g(s) is nondecreasing for 0 < s < ¢ (§ > 0)}.
Let
h*(x) =sups'/2g(s) for0<s<z and g¢*(z)=z"2n*(z) (z>0)

where g is any function satisfying (i)—(iii). For g* we define T*, ¢*, ¢* and
Q" similarly to those corresponding to g. Define

J(x):fg(s)s_1/2ds, J*(x) :fg*(s)s_1/2 ds,

K ={g:sup(J*(x)/J(x)) < oo for 0 < x < d}.

Of course, Ky C K. Moreover, both Ky and K contain nondecreasing func-
tions g satisfying (i). We shall also present an example of g € K which takes
the value 0 at some points x,,, n = 1,2,..., such that x,, — 0 as n — oco.
If we are interested only in functions g € K, then conditions (1.7) and
(1.8) turn out to be equivalent. This is stated in the following theorem.

THEOREM 1.2. If g € K, then the condition

s
ds

| gy < 020

is necessary and sufficient for the existence of a unique solution u of (1.1)

such that u(xz) > 0 for x > 0.

2. Proofs of theorems. To prove Theorems 1.1 and 1.2 we need three
lemmas. In the first one we give an a priori estimate of solutions of (1.2).
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LEMMA 2.1. For any continuous solution v of (1.2) we have
q(z) <v(z) <Qx) (x>0).

Proof. Using (1.2) we easily check that v(x)/x, z > 0, is nondecreasing.
Therefore

(2.1)  wv(x)= f (z — S)g(s)v(s)_1/2 ds > <U(‘r)
0

X

—1/2
) e @0,
Hence we get the left-hand inequality. Now the right-hand inequality follows
from the monotonicity properties of 1.

The problem of the existence of solutions of (1.2) is considered in the
following lemmas.

LEMMA 2.2. There exists at least one continuous solution of (1.2).

Proof. We regularize (1.2) as follows:
(2.2) ve(x) = ex + f (z — 5)g(s)ve(s)"Y2ds  (e,2 > 0),
where v, is sought in C[0,¢). Define

Tow(z) =ex+ [ (z—s)g(s)w(s) "/ ds

S

for any continuous w : (0,d) —
hand side is finite and set

0,00) such that the integral on the right-

wo(z) =ex for0<z<d and w,=T"wy, n=12...

The following useful properties of T, can easily be obtained:

(2.3) wo < T.v  forany v > 0;

(2.4) if 0 <w; <wy, then T > Tovo;

(2.5) T.(cv) > ¢ /2T.v  forany ¢ >1and v >0.
From (2.3) and (2.4) it follows that

(2.6) wy <wg <wy <...<ws <ws<wi.

Since
X

Towo(z) = ex 4 e~ 1/2 f (z — s)g(s)s™/?ds,
0
from (iii) it follows that there exists 6. > 0 such that

wo(z) < wi(z) < 3wo(z) for 0 <z <6..
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Applying (2.5) and using an inductive argument we can see that

(1/2)2"
(2.7) 1gw2’“+(1(?)g(;’> for 0 <z <4, and k=0,1,2, ...
Wk \ T

From (2.6) and (2.7) we conclude that the sequence {w,, } is convergent. Since
the function w(z) = lim, . wy(z), 0 < x < J, satisfies (2.2) on (0,9.),
from its construction it follows that v.(x) = w(z) is a unique continuous
solution of (2.2) on a (0,d.). Now, noting that v.(x)/x is nondecreasing, we
get the a priori estimates

(2.8) q(x) <wve(z) <ex+Qz), vi(z)<e+Q'(z) forz>0,

from which we conclude that v. can be extended from [0,d.) to a unique
continuous solution of (2.2) defined on a whole interval independent of .

Now, estimate (2.8) allows us to apply the Arzela—Ascoli theorem. Thus
we see that there exists a convergent sequence {v., } of solutions of (2.2),
where ¢, — 0, as n — oo. The limit v(z) = lim, v, (x), z > 0, is a
solution of (1.2), which completes the proof.

A uniqueness result for equation (1.2) is given in the following lemma.
LEMMA 2.3. If there exists a constant m such that

(2.9) Q(z) <mg(z) (0<z<d),

then the equation (1.2) has exactly one continuous solution v.

Proof. Let v1, va be two continuous solutions of (1.2). By Lemma 2.1
we have

q(z) <vi(x), wvolz) <mq(z) (0<z<9).
Therefore there exist constants ¢y, co > 0 such that
(2.10) avi(z) <wvg(z) < cgui(z)  (0<z<9).
Note also that for any ¢ > 0 and for any solution v of (1.2) we have
T (cv) = 727y
Therefore applying T" to each term of (2.10), by the monotonicity properties
of T' we easily get v; = vy, which completes the proof.

Now we are ready to prove our theorems.

Proof of Theorem 1.1. It is easily seen that Theorem 1.1 is a simple
corollary of Lemmas 2.1 and 2.2.

Proof of Theorem 1.2. In view of Theorem 1.1 and Lemma 2.3, to
prove Theorem 1.2 it suffices to show that there exists a constant m such
that (2.9) is satisfied.
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It follows from the definition of K that there exists a constant ¢ > 0
such that

(2.11) cq*(z) < q(x) < g*(x) for z € (0,9).
Hence we get
(2.12) Q(z) = Tq(x) < ¢ '/2Tq" (x)

< VPt (2) = ¢PQ () for x € (0,6).

Now it suffices to note that g* € K. Therefore, by Lemma 1.2(b), Q*(z) <
2¢*(x) for z € (0,0), which combined with (2.11) and (2.12) gives the re-
quired result.

3. Examples. In this section we give two examples of application of the
previous results.

EXAMPLE 3.1. Let g(z) = 27 Y/2(—=Inx)™7, v > 0,0 < x < §, for some
6>0. If 0<y<1, then we can easily check that g does not satisfy condition
(iii) which, in view of inequality (2.1), is one of the necessary conditions for
the existence of nontrivial solutions of (1.1).

If v > 1, then g belongs to Ky and we can easily check that the condition
given in Theorem 1.2 is satisfied. Therefore in the case of v > 1 the problem
(1.1) has a unique solution u such that u(z) > 0 for 0 < x < 6.

Before giving a second example we consider another subclass of K.
Namely, let a bounded function g satisfy condition (i). We set

g(x) =supg(s) for0<s<z (0<z<9d),

and we define
xT xT

G(z)= [ g(s)ds, G(x)= [g(s)ds (0<z<3).
0 0
Denote by K the class of bounded functions ¢ satisfying (i) and such
that

sup(G(z)/G(z)) < oo for z € (0,0).
Remark 3.1. K1 C K.

Proof. Let g € K. Since g is bounded, an integration by parts shows
that

x 1 xX
f g(s)s™ % ds = 27 V2G(x) + 3 f G(s)s™3/2ds.
0 0
Using the same formula for g we obtain
(3.1) f g(s)s Y2ds < ¢ f g(s)s™Y2ds  for z € (0,0),
0 0
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where ¢ > 0 is some constant. Hence and by the fact that ¢g* < g on (0,0)
it follows that g € K, which ends the proof.

In the case of g € K; the following theorem gives a necessary and suffi-
cient condition for the existence of nontrivial solutions of (1.1).

THEOREM 3.1. Let g € Ky. Then (1.1) has a unique solution u such that
u(x) >0 for x >0 if and only if

f6 <8>1/3ds <oo (6>0).

g \9(s) 5

Proof. Since g is nondecreasing, we get
27'g(z/2)x? < [ G(s)s™/?ds < 25(x)2'/? (0 <z <d).
0

Therefore the required result follows from Theorem 1.2 by applying (3.1).
EXAMPLE 3.2. Let z = 2k + 1)7'n~ Y,y = (2km)7Y, ap =
(2k +5/6)"'n~t bp = (2k + 1/6) 17! for any integer k > kg, where
ko is a fixed integer number such that yi, € (0,6). We define
_ [sinl/z for a <z <y,
(32) g(])) o {0 for Ye+1 < T < Tk (k‘ > k‘o)

and

(x)_ 1/2 forakaSbk,
INETZ0  for bpgr <z < ax (k> ko).

Thus we have g1(z) < g(x) <g(z) =1 for z € (0,0). Set

Gi(z) = f gi(s)ds, G(z)= f g(s)ds==a for x € (0,0),
0 0
re=Y (bh—a) fork> k.
I=k

For x € (ak4+1,ar) (k> ko) we get

G(x) T o T o Gk _ Okt Gk

Gz) ~ Gi(x) = "The1 T Thta Thtl Qi1
Of course, ay/ar+1 < ¢ for some constant ¢ and k > kg. Since

(3.3)

rp=m " i(zl +5/6)" (20 4+1/6)"1,
=k

we can compare 1 with fkoo s72ds. As aresult, ay/r < c for some constant
cand k > ko. Now, by (3.3) we conclude that g € K;. Applying Theorem 3.1
we see that the problem (1.1) with g defined in (3.2) has a nontrivial solution.
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