λ-Properties of Orlicz sequence spaces

by Shutao Chen and Huiying Sun (Harbin)

Abstract

It is proved that every Orlicz sequence space has the λ-property. Criteria for the uniform λ-property in Orlicz sequence spaces, with Luxemburg norm and Orlicz norm, are given.

1. Notations. Let X be a Banach space, $B(X)$ the closed unit ball, and $S(X)$ the unit sphere. A point e of a convex subset A of X is an extreme point of A if $x, y \in A$ and $2 e=x+y$ imply $e=x=y$. The set of extreme points of A is denoted by $\operatorname{Ext} A$. For each $x \in B(X)$, we introduce a number

$$
\lambda(x)=\sup \{\lambda \in[0,1]: x=\lambda e+(1-\lambda) y, y \in B(X), e \in \operatorname{Ext} B(X)\}
$$

If $\lambda(x)>0$, then we call x a λ-point of $B(X)$. If $\lambda(x)>0$ for all $x \in B(X)$, then X is said to have the λ-property. Moreover, if

$$
\lambda(X)=\inf \{\lambda(x): x \in B(X)\}>0
$$

then X is said to have the uniform λ-property.
It is well known that if X has the λ-property, then $B(X)=\operatorname{co}(\operatorname{Ext} B(X))$ and any element x in $B(X)$ can be expressed as $x=\sum \lambda_{i} x_{i}$, where $x_{i} \in$ Ext $B(X)$ and $\lambda_{i} \geq 0(i \in \mathbb{N}), \sum \lambda_{i}=1$. Moreover, if X has the uniform λ-property, then the series $x=\sum \lambda_{i} x_{i}$ converge uniformly for all x in $B(X)$ (see [1], [2]).

In [4], [5] and [7] the λ-property and uniform λ-property for Orlicz function spaces are discussed. This paper investigates those properties for Orlicz sequence spaces. We first introduce some notations. A function $M: \mathbb{R} \rightarrow \mathbb{R}$ is called an Orlicz function if it satisfies the following conditions:
(1) M is even, continuous, convex and $M(0)=0$;
(2) $M(u)>0$ for all $u \neq 0$, and

[^0](3) $\lim _{u \rightarrow 0} M(u) / u=0$ and $\lim _{u \rightarrow \infty} M(u) / u=\infty$.

Let $N(v)=\sup \{u v-M(u): u \in \mathbb{R}\}$. Then N is also an Orlicz function, and it is called the complementary function of M.

Let M be an Orlicz function. An interval $[a, b]$ is called a structural affine interval of M, or simply SAI of M, if M is affine on $[a, b]$ but it is not affine on either $[a-\varepsilon, b]$ or $[a, b+\varepsilon]$ for any $\varepsilon>0$. Let $\left\{\left[a_{i}, b_{i}\right]\right\}_{i}$ be all the SAIs of M. We call

$$
S_{M}=\mathbb{R} \backslash \bigcup_{i}\left(a_{i}, b_{i}\right)
$$

the set of strictly convex points of M. Clearly, if $u, v \in \mathbb{R}, \alpha \in(0,1)$ and $\alpha u+(1-\alpha) v \in S_{M}$, then

$$
M(\alpha u+(1-\alpha) v)<\alpha M(u)+(1-\alpha) M(v) .
$$

Furthermore, S_{M} contains infinitely many points near the origin and $0 \in S_{M}$ since $M(u)>0$ iff $u \neq 0$ (see [8]).

For any real number sequence $\{u(i)\}$, we introduce its modular by

$$
\varrho_{M}(u)=\sum_{i=1}^{\infty} M(u(i)) .
$$

Then the Orlicz sequence space

$$
l_{M}=\left\{u: \varrho_{M}(\lambda u)<\infty \text { for some } \lambda>0\right\}
$$

with Orlicz norm

$$
\|u\|^{\circ}=\inf \left\{k^{-1}\left[1+\varrho_{M}(k u)\right]: k>0\right\}
$$

or Luxemburg norm

$$
\|u\|=\inf \left\{\varrho_{M}(u / \alpha) \leq 1: \alpha>0\right\}
$$

is a Banach space. We denote $\left(l_{M},\| \|^{\circ}\right)$ and $\left(l_{M},\| \|\right)$ by l_{M}° and l_{M} respectively.

For $u \in l_{M}^{\circ}$, let

$$
\begin{aligned}
k^{*} & =k^{*}(u)=\inf \left\{k>0: \varrho_{N}(p(k|u|)) \geq 1\right\}, \\
k^{* *} & =k^{* *}(u)=\sup \left\{k>0: \varrho_{N}(p(k|u|)) \leq 1\right\},
\end{aligned}
$$

where p is the right derivative of M. Then

$$
K(u)=K_{M}(u)=\left[k^{*}, k^{* *}\right] \neq \emptyset \quad(u \neq 0) .
$$

Moreover, $k \in K(u)(u \neq 0)$ iff $\|u\|^{\circ}=k^{-1}\left[1+\varrho_{M}(k u)\right.$ (see [8]).

2. λ-property of l_{M}

Lemma 1. Suppose $\operatorname{Ext} B(X) \neq \emptyset$. If $x, y, z \in B(X)$ and $x=\alpha y+(1-$ $\alpha) z$ for some $\alpha \in(0,1)$, then $\lambda(x) \geq \alpha \lambda(y)$. Consequently, $\lambda(0)=1 / 2$ and

$$
\lambda(u) \geq \max \left\{2^{-1}(1-\|u\|), \lambda(u /\|u\|)\|u\|\right\}
$$

Proof. For any given $\varepsilon>0$, choose $e \in \operatorname{Ext} B(X)$ and $u \in B(X)$ such that $y=\lambda e+(1-\lambda) u$ and $\lambda(y)-\varepsilon<\lambda$. Then

$$
x=\alpha y+(1-\alpha) z=\alpha \lambda e+(1-\alpha \lambda) \frac{\alpha(1-\lambda) u+(1-\alpha) z}{1-\alpha \lambda} .
$$

Since

$$
\left\|\frac{\alpha(1-\lambda) u+(1-\alpha) z}{1-\alpha \lambda}\right\| \leq \frac{\alpha(1-\lambda)+(1-\alpha)}{1-\alpha \lambda}=1,
$$

we deduce $\lambda(x) \geq \alpha \lambda(y)$ as $\varepsilon>0$ is arbitrary.
Pick $e \in \operatorname{Ext} B(X)$ arbitrarily; then $0=2^{-1} e+\left(-2^{-1}\right) e$, hence, $\lambda(0) \geq$ $2^{-1} \lambda(e)=2^{-1}$. On the other hand, if $0=\lambda e+(1-\lambda) y$, where $e \in \operatorname{Ext} B(X)$ and $y \in B(X)$, then $1 \geq\|y\|=\lambda /(1-\lambda)$. Therefore, $\lambda \leq 2^{-1}$. Thus $\lambda(0)=1 / 2$.

The last claim follows from

$$
u=(1-\|u\|) 0+\|u\| \frac{u}{\|u\|}
$$

Lemma $2([6]) . x=(x(i)) \in \operatorname{Ext} B\left(l_{M}\right)$ iff $\varrho_{M}(x)=1$ and $\operatorname{card}\{i \in \mathbb{N}$: $\left.x(i) \in \mathbb{R} \backslash S_{M}\right\} \leq 1$.

Theorem 3. Each l_{M} has the λ-property.
Proof. In view of Lemma 1, we only need to show $\lambda(x)>0$ for each $x \in S\left(l_{M}\right) \backslash \operatorname{Ext} B\left(l_{M}\right)$. For convenience, we may assume $x(i) \geq 0$ for all $i \in \mathbb{N}$.

First we consider the case $\varrho_{M}(x)=1$. This implies that there exist at least two coordinates of x belonging to the interiors of some SAIs of M by Lemma 2. For each $\lambda \in[0,1]$, define

$$
y_{\lambda}(k)= \begin{cases}b_{i} & \text { if } b_{i}>x(k)>\lambda a_{i}+(1-\lambda) b_{i} \text { for some } i \geq 1 \\ a_{i} & \text { if } a_{i}<x(k) \leq \lambda a_{i}+(1-\lambda) b_{i} \text { for some } i \geq 1 \\ x(k) & \text { otherwise }\end{cases}
$$

and $f(\lambda)=\varrho_{M}\left(y_{\lambda}\right)$. Then $f(\lambda)$ is a nondecreasing, left-continuous function of λ and $f(0)<\varrho_{M}(x)=1<f(1)$. Moreover, if $y_{\lambda}(k)=b_{i}$, then

$$
M(x(k))>M\left(\lambda a_{i}+(1-\lambda) b_{i}\right)=\lambda M\left(a_{i}\right)+(1-\lambda) M\left(b_{i}\right)>(1-\lambda) M\left(b_{i}\right)
$$

implies

$$
f(\lambda) \leq\left(1+\frac{1}{1+\lambda}\right) \varrho_{M}(x)<\infty
$$

and so, $f(\lambda)$ is continuous at 0 and 1 by its definition and the Levy Theorem. Therefore, if we define $\sigma=\sup \left\{\lambda: \varrho_{M}\left(y_{\lambda}\right) \leq 1\right\}$, then $\sigma \in(0,1)$ and $\varrho_{M}\left(y_{\sigma}\right) \leq 1$. Set

$$
N_{i}=\left\{k \in \mathbb{N}: x(k)=\sigma a_{i}+(1-\sigma) b_{i}\right\}
$$

Then there exists $E_{i} \subset N_{i}(i \geq 1)$ such that the element $u=(u(k))_{k}$ defined by
$u(k)= \begin{cases}b_{i} & \text { if } b_{i}>x(k)>\sigma a_{i}+(1-\sigma) b_{i} \text { or } k \in E_{i} \text { for some } i \geq 1, \\ a_{i} & \text { if } a_{i}<x(k)<\sigma a_{i}+(1-\sigma) b_{i} \text { or } k \in N_{i} \backslash E_{i} \text { for some } i \geq 1, \\ x(k) & \text { otherwise, }\end{cases}$ satisfies $\varrho_{M}(u) \leq 1$, and for any $k \in N_{i} \backslash E_{i}$, if we change the value of $u(k)$ to be b_{i}, then the modular of u will become greater than one. (By the definition of σ, such $\left\{E_{i}\right\}_{i}$ do exist.) If $\varrho_{M}(u)=1$, then we define $y=u$. If $\varrho_{M}(u)<1$, then there exists at least one nonempty set $E_{i^{\prime}}$. In this case, we pick $k^{\prime} \in E_{i^{\prime}}$ arbitrarily and find $\alpha \in\left(a_{i^{\prime}}, b_{i^{\prime}}\right)$ such that $\varrho_{M}(y)=1$, where $y=(y(k))_{k}$ is defined by

$$
y(k)= \begin{cases}\alpha, & k=k^{\prime} \\ u(k), & k \neq k^{\prime}\end{cases}
$$

Clearly, by Lemma $2, y \in \operatorname{Ext} B\left(l_{M}\right)$. Set $z=\sigma^{-1}[x-(1-\sigma) y]$ when $\sigma \geq 1 / 2$. Then $x=(1-\sigma) y+\sigma z$ and $z(k)=y(k)$ when $y(k)=x(k)$. If $y(k)=b_{i}$, then

$$
b_{i}>x(k) \geq \sigma a_{i}+(1-\sigma) b_{i}
$$

Therefore

$$
\begin{aligned}
b_{i} & >x(k) \geq z(k)=\sigma^{-1}[x(k)-(1-\sigma) y(k)] \\
& \geq \sigma^{-1}\left[\sigma a_{i}+(1-\sigma) b_{i}-(1-\sigma) b_{i}\right]=a_{i}
\end{aligned}
$$

If $y(k)=a_{i}$, then by $\sigma \geq 1 / 2$, we also have

$$
\begin{aligned}
a_{i} & <z(k) \leq \sigma^{-1}\left[\sigma a_{i}+(1-\sigma) b_{i}-(1-\sigma) a_{i}\right] \\
& =a_{i}+\left(\sigma^{-1}-1\right)\left(b_{i}-a_{i}\right) \leq b_{i}
\end{aligned}
$$

Observe that M is affine on each $\left[a_{i}, b_{i}\right]$. Hence

$$
\begin{aligned}
1 & =\varrho_{M}(x)=\varrho_{M}((1-\sigma) y+\sigma z) \\
& =(1-\sigma) \varrho_{M}(y)+\sigma \varrho_{M}(z)=1-\sigma+\sigma \varrho_{M}(z)
\end{aligned}
$$

This shows that $\varrho_{M}(z)=1$, and thus, $\lambda(x) \geq 1-\sigma>0$. Similarly, if $0<\sigma<1 / 2$, then by defining

$$
z=\frac{1}{1-\sigma}(x-\sigma y)
$$

we can deduce that $\lambda(x) \geq \sigma>0$.

If $\varrho_{M}(x)<1$, then for any $\alpha \in(0,1)$, since $\varrho_{M}(x /(1-\alpha))=\infty$, we can select $n^{\prime} \in \mathbb{N}$ and $0<\alpha^{\prime}<\alpha$ such that

$$
\sum_{k=1}^{n^{\prime}} M\left(\frac{x(k)}{1-\alpha^{\prime}}\right)+\sum_{k>n^{\prime}} M(x(k))=1
$$

Define $v=x$ and $u=(u(k))_{k}$ by

$$
u(k)= \begin{cases}x(k) /\left(1-\alpha^{\prime}\right), & k \leq n^{\prime} \\ x(k), & k>n^{\prime}\end{cases}
$$

Then $x=\left(1-\alpha^{\prime}\right) u+\alpha^{\prime} v, \varrho_{M}(u)=1, \varrho_{M}(v)<1$. Thus, $\lambda(u)>0$, by the first part of the proof. Finally, Lemma 1 shows that $\lambda(x) \geq\left(1-\alpha^{\prime}\right) \lambda(u)$ >0.

Theorem 4. l_{M} has the uniform λ-property iff M is strictly convex near the origin.

Proof. \Leftarrow : Let M be strictly convex on $[0, d]$. Define $\beta=1 / M(d)+2$. Referring to the proof of Theorem 3, we only need to show $\lambda(x) \geq 1 / \beta$ for all $x=(x(i))_{i} \in S\left(l_{M}\right) \backslash \operatorname{Ext} B\left(l_{M}\right)$ with $\varrho_{M}(x)=1$ and $x(i) \geq 0(i \in \mathbb{N})$. For any $\lambda \in(0,1)$, we define y_{λ} and $\sigma \in(0,1)$ as in the proof of Theorem 3 . First we assume $\sigma \geq 1 / 2$. If $\sigma \leq 1-1 / \beta$, then by the proof of Theorem 3, $\lambda(x) \geq 1-\sigma \geq 1 / \beta$. Now, we consider the case $\sigma \geq 1-1 / \beta$. Let $I=\{i \in \mathbb{N}$: $\left.x(i) \in \mathbb{R} \backslash S_{M}\right\}$. Without loss of generality, we may assume $I=\{1, \ldots, m\}$ (clearly, $m<\beta$) and $x(i) \in\left(a_{i}, b_{i}\right)(i \leq m)$, where $\left\{\left[a_{i}, b_{i}\right]\right\}_{i \leq m}$ are SAIs of M. Set

$$
J=\left\{i \leq m: \lambda_{i} \leq 1 / \beta, x(i)=\left(1-\lambda_{i}\right) a_{i}+\lambda_{i} b_{i}\right\}
$$

Then $J \neq \emptyset$ since $\sigma>1-1 / \beta$. For convenience, we assume $J=\{1, \ldots, r\}$ and

$$
\lambda_{r}\left[M\left(b_{r}\right)-M\left(a_{r}\right)\right]=\max _{i \leq r}\left\{\lambda_{i}\left[M\left(b_{i}\right)-M\left(a_{i}\right)\right]\right\}
$$

For any $\delta \in[0,1]$, if we define $u_{\delta}=\left(u_{\delta}(i)\right)_{i}$ by

$$
u_{\delta}(i)= \begin{cases}(1-\delta) a_{r}+\delta b_{r}, & i=r \\ a_{i}, & i<r \\ b_{i}, & r<i \leq m \\ x(i), & i>m\end{cases}
$$

then since $r \lambda_{r}<1$, and

$$
\varrho_{M}\left(u_{0}\right)=\varrho_{M}\left(y_{1-1 / \beta}\right)<\varrho_{M}\left(y_{\sigma}\right) \leq 1
$$

and

$$
\begin{aligned}
\varrho_{M}\left(u_{\delta}\right)-1= & \varrho_{M}\left(u_{\delta}\right)-\varrho_{M}(x) \\
= & \sum_{i=1}^{r} M\left(a_{i}\right)+\delta\left[M\left(b_{r}\right)-M\left(a_{r}\right)\right] \\
& -\left\{\sum_{i=1}^{r}\left[\left(1-\lambda_{i}\right) M\left(a_{i}\right)+\lambda_{i} M\left(b_{i}\right)\right]+\sum_{i=r+1}^{m} M(x(i))\right\} \\
\geq & \delta\left[M\left(b_{r}\right)-M\left(a_{r}\right)\right]-\sum_{i=1}^{r} \lambda_{i}\left[M\left(b_{i}\right)-M\left(a_{i}\right)\right] \\
\geq & \left(\delta-r \lambda_{r}\right)\left[M\left(b_{r}\right)-M\left(a_{r}\right)\right]
\end{aligned}
$$

we can find $\delta^{\prime} \in\left[0, r \lambda_{r}\right]$ such that $\varrho_{M}\left(u_{\delta^{\prime}}\right)=1$. Let

$$
y=u_{\delta^{\prime}} \quad \text { and } \quad z=\frac{1}{1-1 / \beta}(x-y / \beta)
$$

Then

$$
z(r)=\frac{\beta x(r)-y(r)}{\beta-1}=a_{i}+\frac{1}{\beta+1}\left(\beta \lambda_{r}-\delta\right)\left(b_{r}-a_{r}\right)>a_{r} .
$$

It remains to show $\lambda(x) \geq 1 / \beta$; this is similar to the proof of Theorem 3 . Symmetrically, if $\sigma<1 / 2$, we also derive $\lambda(x) \geq 1 / \beta$.
\Rightarrow : If M is not strictly convex near origin, then for any $n \in \mathbb{N}, M$ has a SAI $[a, b]$ such that $n M(b) \leq 1$. Define $x(i)=(1-1 / n) a+b / n$ for $i \leq n$ and find $x(j) \in S_{M}(j>n)$ such that $\sum_{i=1}^{\infty} M(x(i))=1$. Then $x=(x(i))_{i} \in S\left(l_{M}\right)$. Now, for any $\lambda \in(0,1), e \in \operatorname{Ext} B\left(l_{M}\right)$ and $u \in B\left(l_{M}\right)$ satisfying $x=\lambda e+(1-\lambda) u$, we have $e(i)=x(i)$ for all $i>n$ and $e(i)=a$ or b for all $i \leq n$ except at most one $i^{\prime} \leq n$ according to Lemma 2. Since $e\left(i^{\prime}\right) \in[a, b]$ and

$$
\sum_{i \leq n} M(e(i))=\sum_{i \leq n} M(x(i))=(n-1) M(a)+M(b)
$$

we deduce that $e(j)=b$ for some $j \leq n$ and $e(i)=a$ for all $i \leq n$ other than j. Observe $u(j) \in[a, b]$; we find

$$
(1-1 / n) a+b / n=x(j)=\lambda e(j)+(1-\lambda) u(j) \geq \lambda b+(1-\lambda) a
$$

i.e., $\lambda \leq 1 / n$. This shows $\lambda(x) \leq 1 / n$, and so, $\lambda\left(l_{M}\right)=0$ since $n \in \mathbb{N}$ is arbitrary.

3. λ-property of l_{M}°

Lemma $5([3]) . x=(x(i))_{i} \in \operatorname{Ext} B\left(l_{M}^{\circ}\right)$ iff $\operatorname{card}\{i \in \mathbb{N}: x(i) \neq 0\}=1$ or $k x(i) \in S_{M}$ for all $k \in K(x)$ and all $i \in \mathbb{N}$.

Theorem 6. Each Orlicz space l_{M}° has the λ-property.

Proof. We shall prove $\lambda(x)>0$ for all $x \in S\left(l_{M}^{\circ}\right) \backslash \operatorname{Ext} B\left(l_{M}^{\circ}\right)$. Let $\left\{\left[a_{i}, b_{i}\right]\right\}_{i}$ be the set of all SAIs of M.

First, we select a point $k \in K(x)$ in the following way: if $K(x)=\{k\}$, then we have no alternative; if $K(x)$ contains more than one point, then for each $h \in \operatorname{int} K(x)$ and each $j \in \mathbb{N}, h x(j)=0$ or $h x(i) \in\left(a_{i}, b_{i}\right)$ for some $i \in \mathbb{N}$. Hence, by Lemma 5 , we can choose $k \in K(x)$ such that neither

$$
\left\{j \in \mathbb{N}: a_{i} \leq k x(j) \leq\left(a_{i}+b_{i}\right) / 2 \text { for some } i \in \mathbb{N}\right\}
$$

nor

$$
\left\{j \in \mathbb{N}: b_{i} \geq k x(j) \geq\left(a_{i}+b_{i}\right) / 2 \text { for some } i \in \mathbb{N}\right\}
$$

is empty. Therefore, for each $i \geq 1$, we can divide the set

$$
\left\{j \in \mathbb{N}: a_{i} \leq k x(j) \leq b_{i}\right\}
$$

into two sets E_{i} and F_{i} such that neither $\bigcup_{i} E_{i}$ nor $\bigcup_{i} F_{i}$ is empty and

$$
j \in E_{i} \Rightarrow k x(j) \leq\left(a_{i}+b_{i}\right) / 2 ; \quad j \in F_{i} \Rightarrow k x(j) \geq\left(a_{i}+b_{i}\right) / 2 .
$$

Next, we define a sequence $\{y(j)\}_{j}$ by considering two cases. If $K(x)=\{k\}$, then let

$$
y(j)= \begin{cases}a_{i} & \text { if } a_{i}<k x(j)<\left(a_{i}+b_{i}\right) / 2 \text { for some } i \geq 1 \\ b_{i} & \text { if } b_{i}>k x(j) \geq\left(a_{i}+b_{i}\right) / 2 \text { for some } i \geq 1 \\ k x(j) & \text { otherwise }\end{cases}
$$

If $K(x)$ contains more than one point, then we set

$$
y(j)= \begin{cases}a_{i} & \text { if } j \in E_{i}, i \geq 1 \\ b_{i} & \text { if } j \in F_{i}, i \geq 1 \\ k x(j) & \text { otherwise }\end{cases}
$$

Obviously, $y(j) \in S_{M}$ for all $j \in \mathbb{N}$. Now, we prove $y /\|y\|^{\circ} \in \operatorname{Ext} B\left(l_{M}^{\circ}\right)$. To show this, it suffices to verify $K\left(y /\|y\|^{\circ}\right)=\left\{\|y\|^{\circ}\right\}$, i.e., $K(y)=\{1\}$ according to Lemma 5 . Indeed, by the definition of E_{i}, F_{i} and the fact that p is a constant on each $\left[a_{i}, b_{i}\right)$, when $K(x)=\{k\}$ we have, for any ε in $(0,1)$, the following implications: if $y(j)=a_{i}$, then $(1+\varepsilon / 2)|k x(j)|<b_{i}$ implies $p(y(j))=p((1+\varepsilon / 2)|k x(j)|)$, and $(1+\varepsilon / 2)|k x(j)| \geq b_{i}$ implies

$$
2|k x(j)|<a_{i}+b_{i} \leq a_{i}+(1+\varepsilon / 2)|k x(j)| .
$$

Thus, $y(j)=a_{i} \geq(1-\varepsilon / 2)|k x(j)|$. Hence, we always have

$$
\varrho_{N}(p((1+\varepsilon)|y|)) \geq \varrho_{N}(p((1+\varepsilon)(1-\varepsilon / 2)|k x|))>1 .
$$

Similarly, we also have

$$
\varrho_{N}(p((1-\varepsilon)|y|)) \leq \varrho_{N}(p((1-\varepsilon)(1+\varepsilon / 2)|k x|))<1 .
$$

When $K(x)$ contains more than one point, we have

$$
\begin{aligned}
& \varrho_{N}(p((1+\varepsilon)|y|))>\varrho_{N}(p(|k x|))=1, \\
& \varrho_{N}(p((1-\varepsilon)|y|))<\varrho_{N}(p(|k x|))=1 .
\end{aligned}
$$

Hence, $K(y)=\{1\}$.

Finally, we set $z=2 k x-y$. Then $y(j)=k x(j)$ implies $z(j)=k x(j)$; $y(j)=a_{i}$ implies $a_{i} \leq k x(j) \leq z(j) \leq b_{i}$; and $y(j)=b_{i}$ implies $b_{i} \geq k x(j) \geq$ $z(j) \geq a_{i}$. Moreover, by the same method, we can verify $1 \in K(z)$. Hence

$$
\begin{aligned}
k & =\|k x\|^{\circ}=1+\varrho_{M}(k x)=1+\varrho_{M}\left(\frac{y+z}{2}\right) \\
& =\frac{1}{2}\left[1+\varrho_{M}(y)\right]+\frac{1}{2}\left[1+\varrho_{M}(z)\right] \\
& =\frac{1}{2}\|y\|^{\circ}+\frac{1}{2}\|z\|^{\circ}
\end{aligned}
$$

and so

$$
\begin{aligned}
x & =\frac{1}{2 k} y+\frac{1}{2 k} z=\frac{\|y\|^{\circ}}{2 k} \cdot \frac{y}{\|y\|^{\circ}}+\frac{\|z\|^{\circ}}{2 k} \cdot \frac{z}{\|z\|^{\circ}} \\
& =\frac{\|y\|^{\circ}}{2 k} \cdot \frac{y}{\|y\|^{\circ}}+\frac{2 k-\|y\|^{\circ}}{2 k} \cdot \frac{z}{\|z\|^{\circ}}
\end{aligned}
$$

which implies $\lambda(x) \geq\|y\|^{\circ} /(2 k)>0$.
Theorem 7. l_{M}° has the uniform λ-property iff

$$
\sup \left\{b_{i} / a_{i}: 0<b_{i} \leq 1\right\}<\infty
$$

where $\left\{\left[a_{i}, b_{i}\right]\right\}_{i}$ is the set of all SAIs of M.
Proof. \Leftarrow : For each $x \in S\left(l_{M}^{\circ}\right) \backslash \operatorname{Ext} B\left(l_{M}^{\circ}\right)$, define y as in Theorem 6.
We have already proved that $\lambda(x) \geq\|y\|^{\circ} /(2 k)$. Let

$$
c_{M}=1+\sup \left\{b_{i} / a_{i}: 0<b_{i} \leq 1\right\}
$$

Then $|y(j)| \geq\left(k / c_{M}\right)|x(j)|, j \in \mathbb{N}$. Hence

$$
\lambda(x) \geq \frac{1}{2 k}\|y\|^{\circ} \geq \frac{k}{2 k c_{M}}\|x\|^{\circ} \geq \frac{1}{2 c_{M}}
$$

Combining this with Lemma 1, we find that $\lambda\left(l_{M}^{\circ}\right) \geq 1 /\left(4 c_{M}\right)$.
\Rightarrow : Suppose that M has SAIs $\left\{\left[a_{n}, b_{n}\right]\right\}_{n}$ satisfying $b_{n}>n^{3} a_{n}>0$ and $n(n+2) N\left(p\left(b_{n}\right)\right)<1(n \in \mathbb{N})$. Then there exist $m_{n} \in \mathbb{N}$ such that

$$
\left(n m_{n}+1\right) N\left(p\left(a_{n}\right)\right)+N\left(p\left(b_{n}\right)\right) \leq 1,
$$

and

$$
\begin{equation*}
\left(n\left(m_{n}+1\right)+1\right) N\left(p\left(a_{n}\right)\right)+N\left(p\left(b_{n}\right)\right)>1 \tag{1}
\end{equation*}
$$

$(n \in \mathbb{N})$. Let

$$
c_{n}=\sup \left\{c \geq 0: N(p(c))+\left(n m_{n}+1\right) N\left(p\left(a_{n}\right)\right)+N\left(p\left(b_{n}\right)\right) \leq 1\right\}
$$

Then by (1) and $n(n+2) N\left(p\left(b_{n}\right)\right) \leq 1$,

$$
N\left(p\left(c_{n}\right)\right) \leq n N\left(p\left(a_{n}\right)\right)<n^{-1} \rightarrow 0 \quad(n \rightarrow \infty) .
$$

For each $n \in \mathbb{N}, r \leq n$, if we define

$$
G_{n}(r)=\left\{i \in \mathbb{N}:(r-1) m_{n}+4 \leq i \leq r m_{n}+3\right\}
$$

and

$$
\begin{aligned}
x_{n}= & c_{n} e_{1}+a_{n} e_{2}+b_{n} e_{3} \\
& +\sum_{r=1}^{n} \sum_{i \in G_{n}(r)}\left[\left(1-\frac{1}{r \ln n}\right) a_{n}+\frac{1}{r \ln n} b_{n}\right] e_{i}
\end{aligned}
$$

where $\left\{e_{i}\right\}$ is the natural basis of l_{1}, then by the definition of K, c_{n} and SAIs of M, it is obvious that $K\left(x_{n}\right)=\{1\}$, i.e., $K\left(x_{n} /\left\|x_{n}\right\|^{\circ}\right)=\left\|x_{n}\right\|^{\circ}$. We shall complete the proof by showing that $\lambda\left(x_{n} /\left\|x_{n}\right\|^{\circ}\right) \rightarrow 0$ as $n \rightarrow \infty$. Let $\lambda_{n} \in(0,1), y_{n} \in \operatorname{Ext} B\left(l_{M}^{\circ}\right)$ and $u_{n} \in B\left(l_{M}^{\circ}\right)$ satisfying $x_{n} /\left\|x_{n}\right\|^{\circ}=$ $\lambda_{n} y_{n}+\left(1-\lambda_{n}\right) u_{n}$. We have to show $\lambda_{n} \rightarrow 0$.

First, we take $k_{n} \in K\left(y_{n}\right)$ and $h_{n} \in K\left(u_{n}\right)$. Then by the convexity of M and Theorem 1.26 of [2], we have

$$
\begin{aligned}
& 1=\lambda_{n}\left\|y_{n}\right\|^{\circ}+\left(1-\lambda_{n}\right)\left\|u_{n}\right\|^{\circ} \\
&= \frac{\lambda_{n}}{k_{n}}\left[1+\varrho_{M}\left(k_{n} y_{n}\right)\right]+\frac{1-\lambda_{n}}{h_{n}}\left[1+\varrho_{M}\left(h_{n} u_{n}\right)\right] \\
&=\frac{\left(1-\lambda_{n}\right) k_{n}+\lambda_{n} h_{n}}{\lambda_{n} h_{n}}\left(1+\frac{\lambda_{n} h_{n}}{\left(1-\lambda_{n}\right) k_{n}+\lambda_{n} h_{n}} \varrho_{M}\left(k_{n} y_{n}\right)\right. \\
&\left.\quad+\frac{\left(1-\lambda_{n}\right) k_{n}}{\left(1-\lambda_{n}\right) k_{n}+\lambda_{n} h_{n}} \varrho_{M}\left(h_{n} u_{n}\right)\right) \\
& \geq \frac{\left(1-\lambda_{n}\right) k_{n}+\lambda_{n} h_{n}}{k_{n} h_{n}} \\
& \quad \times\left[1+\varrho_{M}\left(\frac{k_{n} h_{n}}{\left(1-\lambda_{n}\right) k_{n}+\lambda_{n} h_{n}}\left(\lambda_{n} y_{n}+\left(1-\lambda_{n}\right) u_{n}\right)\right)\right] \\
& \geq \| \frac{x_{n}}{\left\|x_{n}\right\|^{\circ} \|^{\circ}=1 .}
\end{aligned}
$$

This implies
(2) $\left\|x_{n}\right\|^{\circ}=\frac{k_{n} h_{n}}{\left(1-\lambda_{n}\right) k_{n}+\lambda_{n} h_{n}}$, i.e., $\frac{1}{\left\|x_{n}\right\|^{\circ}}=\frac{1-\lambda_{n}}{h_{n}}+\frac{\lambda_{n}}{k_{n}}$
and that $x_{n}(i), k_{n} y_{n}(i), h_{n} u_{n}(i)$ are in the same SAI of M for each $i \in$ \mathbb{N}. Hence, by Lemma 5 and $y_{n} \in \operatorname{Ext} B\left(l_{M}^{\circ}\right)$, we derive $k_{n} y_{n}(1) \rightarrow 0$ and $k_{n} y_{n}(i)=a_{n}$ or b_{n} for all $i>1$.

Second, since

$$
\begin{aligned}
M\left(b_{n}\right) & =\int_{0}^{b_{n}} p(t) d t>\int_{a_{n}}^{b_{n}} p(t) d t \geq\left(b_{n}-a_{n}\right) p\left(a_{n}\right), \\
N\left(p\left(a_{n}\right)\right) & =a_{n} p\left(a_{n}\right)-M\left(a_{n}\right)<a_{n} p\left(a_{n}\right),
\end{aligned}
$$

we find

$$
n m_{n} M\left(b_{n}\right) \geq n m_{n}\left(b_{n} / a_{n}-1\right) N\left(p\left(a_{n}\right)\right) \geq(1-1 / n)\left(n^{3}-1\right) .
$$

Let

$$
H_{n}=\left\{i \in \mathbb{N}: k_{n} y_{n}(i)=b_{n}\right\}, \quad r(n)=\max \left\{r \leq n: G_{n}(r) \cap H_{n} \neq \emptyset\right\}
$$

Then for any $i \in H_{n} \cap G_{n}(r(n))$,
(3) $\left(1-\frac{1}{r(n) \ln n}\right) a_{n}+\frac{1}{r(n) \ln n} b_{n}=x_{n}(i)$

$$
\begin{aligned}
& =\frac{\lambda_{n}\left\|x_{n}\right\|^{\circ}}{k_{n}} k_{n} y_{n}(i)+\frac{\left(1-\lambda_{n}\right)\left\|x_{n}\right\|^{\circ}}{h_{n}} h_{n} u_{n}(i) \\
& >\frac{\lambda_{n}\left\|x_{n}\right\|^{\circ}}{k_{n}} b_{n}(i) .
\end{aligned}
$$

Combining this with $\sum_{i=1}^{n} 1 / i>\ln n$ and

$$
M\left(b_{n}\right) \geq M\left(n^{3} a_{n}\right)>n^{3} M\left(a_{n}\right)
$$

we have

$$
\begin{aligned}
& \lim _{n} \frac{k_{n}}{\left\|x_{n}\right\|^{\circ}} \\
&=\lim _{n} \frac{1+\varrho_{M}\left(k_{n} y_{n}\right)}{1+\varrho_{M}\left(x_{n}\right)} \\
& \leq \lim _{n} \frac{1+M\left(k_{n} y_{n}(1)\right)+n m_{n} M\left(a_{n}\right)+\sum_{i \leq r(n)} M\left(b_{n}\right) \operatorname{card}\left(H_{n} \cap G_{n}(i)\right)}{1+\sum_{r \leq n} \frac{1}{r \ln n} m_{n} M\left(b_{n}\right)} \\
& \quad \leq \lim _{n} \frac{1+n m_{n} M\left(a_{n}\right)+\frac{r(n)}{n} n m_{n} M\left(b_{n}\right)}{n m_{n} M\left(b_{n}\right) / n} \\
& \quad \leq \lim _{n}\left(\frac{n}{\left(n^{3}-1\right)(1-1 / n)}+\frac{1}{n^{2}}+r(n)\right) .
\end{aligned}
$$

Hence, if $r(n)=0$, then (2) implies

$$
\lim _{n} \lambda_{n} \leq \lim _{n} \frac{k_{n}}{\left\|x_{n}\right\|^{\circ}}=0
$$

and if $r(n) \neq 0$, then (3) also implies

$$
\begin{aligned}
\lim _{n} \lambda_{n} & \leq \lim _{n} \frac{k_{n}}{\left\|x_{n}\right\|^{\circ}}\left\{\left(1-\frac{1}{r(n) \ln n}\right) \frac{a_{n}}{b_{n}}+\frac{1}{r(n) \ln n}\right\} \\
& <\lim _{n}\left(n \frac{a_{n}}{b_{n}}+\frac{1}{\ln n}\right) \leq \lim _{n}\left(\frac{1}{n^{2}}+\frac{1}{\ln n}\right)=0
\end{aligned}
$$

References

[1] R. M. Aron and R. H. Lohman, A geometric function determined by extreme points of the unit ball of a normed space, Pacific J. Math. 127 (1987), 209-231.
[2] R. M. Aron, R. H. Lohman and A. Suárez, Rotundity, the C.S.R.P., and the λ-property in Banach spaces, Proc. Amer. Math. Soc. 111 (1991), 151-155.
[3] S. Chen and Y. Shen, Extreme points and rotundity of Orlicz spaces, J. Harbin Normal Univ. 2 (1985), 1-5.
[4] S. Chen, H. Sun and C. Wu, λ-property of Orlicz spaces, Bull. Polish Acad. Sci. Math. 39 (1991), 63-69.
[5] A. Suárez, λ-property in Orlicz spaces, ibid. 37 (1989), 421-431.
[6] Z. Wang, Extreme points of sequence Orlicz spaces, J. Daqing Petroleum College 1 (1983), 112-121.
[7] C. Wu and H. Sun, On the λ-property of Orlicz space L_{M}, Comment. Math. Univ. Carolin. 31 (1990), 731-741.
[8] C. Wu, T. Wang, S. Chen and Y. Wang, Geometry of Orlicz Spaces, Harbin Institute of Technology Press, Harbin, 1986.

Shutao Chen
DEPARTMENT OF MATHEMATICS
HARBIN NORMAL UNIVERSITY
harbin, China

Huiying Sun
DEPARTMENT OF MATHEMATICS HARBIN INSTITUTE OF TECHNOLOGY

HARBIN, CHINA

[^0]: 1991 Mathematics Subject Classification: Primary 46E30.
 Key words and phrases: Orlicz function, Orlicz sequence space, extreme point, λ-property.

 The authors are supported by the National Science Foundation of China and Heilongjiang Science Foundation.

