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λ-Properties of Orlicz sequence spaces

by Shutao Chen and Huiying Sun (Harbin)

Abstract. It is proved that every Orlicz sequence space has the λ-property. Criteria
for the uniform λ-property in Orlicz sequence spaces, with Luxemburg norm and Orlicz
norm, are given.

1. Notations. Let X be a Banach space, B(X) the closed unit ball, and
S(X) the unit sphere. A point e of a convex subset A of X is an extreme
point of A if x, y ∈ A and 2e = x+ y imply e = x = y. The set of extreme
points of A is denoted by ExtA. For each x ∈ B(X), we introduce a number

λ(x) = sup{λ ∈ [0, 1] : x = λe+ (1− λ)y, y ∈ B(X), e ∈ ExtB(X)} .
If λ(x) > 0, then we call x a λ-point of B(X). If λ(x) > 0 for all x ∈ B(X),
then X is said to have the λ-property . Moreover, if

λ(X) = inf{λ(x) : x ∈ B(X)} > 0

then X is said to have the uniform λ-property .
It is well known that if X has the λ-property, then B(X) = co(ExtB(X))

and any element x in B(X) can be expressed as x =
∑
λixi, where xi ∈

ExtB(X) and λi ≥ 0 (i ∈ N),
∑
λi = 1. Moreover, if X has the uniform

λ-property, then the series x =
∑
λixi converge uniformly for all x in B(X)

(see [1], [2]).
In [4], [5] and [7] the λ-property and uniform λ-property for Orlicz func-

tion spaces are discussed. This paper investigates those properties for Orlicz
sequence spaces. We first introduce some notations. A function M : R→ R
is called an Orlicz function if it satisfies the following conditions:

(1) M is even, continuous, convex and M(0) = 0;
(2) M(u) > 0 for all u 6= 0, and
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(3) limu→0M(u)/u = 0 and limu→∞M(u)/u =∞.

Let N(v) = sup{uv−M(u) : u ∈ R}. Then N is also an Orlicz function,
and it is called the complementary function of M .

Let M be an Orlicz function. An interval [a, b] is called a structural affine
interval of M , or simply SAI of M , if M is affine on [a, b] but it is not affine
on either [a − ε, b] or [a, b + ε] for any ε > 0. Let {[ai, bi]}i be all the SAIs
of M . We call

SM = R \
⋃
i

(ai, bi)

the set of strictly convex points of M . Clearly, if u, v ∈ R, α ∈ (0, 1) and
αu+ (1− α)v ∈ SM , then

M(αu+ (1− α)v) < αM(u) + (1− α)M(v) .

Furthermore, SM contains infinitely many points near the origin and
0 ∈ SM since M(u) > 0 iff u 6= 0 (see [8]).

For any real number sequence {u(i)}, we introduce its modular by

%M (u) =
∞∑
i=1

M(u(i)) .

Then the Orlicz sequence space

lM = {u : %M (λu) <∞ for some λ > 0}

with Orlicz norm

‖u‖◦ = inf{k−1[1 + %M (ku)] : k > 0}

or Luxemburg norm

‖u‖ = inf{%M (u/α) ≤ 1 : α > 0}

is a Banach space. We denote (lM , ‖ ‖◦) and (lM , ‖ ‖) by l◦M and lM respec-
tively.

For u ∈ l◦M , let

k∗ = k∗(u) = inf{k > 0 : %N (p(k|u|)) ≥ 1} ,
k∗∗ = k∗∗(u) = sup{k > 0 : %N (p(k|u|)) ≤ 1} ,

where p is the right derivative of M . Then

K(u) = KM (u) = [k∗, k∗∗] 6= ∅ (u 6= 0) .

Moreover, k ∈ K(u) (u 6= 0) iff ‖u‖◦ = k−1[1 + %M (ku)] (see [8]).
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2. λ-property of lM

Lemma 1. Suppose ExtB(X) 6= ∅. If x, y, z ∈ B(X) and x = αy + (1−
α)z for some α ∈ (0, 1), then λ(x) ≥ αλ(y). Consequently , λ(0) = 1/2 and

λ(u) ≥ max{2−1(1− ‖u‖) , λ(u/‖u‖)‖u‖} .

P r o o f. For any given ε > 0, choose e ∈ ExtB(X) and u ∈ B(X) such
that y = λe+ (1− λ)u and λ(y)− ε < λ. Then

x = αy + (1− α)z = αλe+ (1− αλ)
α(1− λ)u+ (1− α)z

1− αλ
.

Since ∥∥∥∥α(1− λ)u+ (1− α)z
1− αλ

∥∥∥∥ ≤ α(1− λ) + (1− α)
1− αλ

= 1 ,

we deduce λ(x) ≥ αλ(y) as ε > 0 is arbitrary.
Pick e ∈ ExtB(X) arbitrarily; then 0 = 2−1e+ (−2−1)e, hence, λ(0) ≥

2−1λ(e) = 2−1. On the other hand, if 0 = λe+(1−λ)y, where e ∈ ExtB(X)
and y ∈ B(X), then 1 ≥ ‖y‖ = λ/(1 − λ). Therefore, λ ≤ 2−1. Thus
λ(0) = 1/2.

The last claim follows from

u = (1− ‖u‖)0 + ‖u‖ u

‖u‖
.

Lemma 2 ([6]). x = (x(i)) ∈ ExtB(lM ) iff %M (x) = 1 and card{i ∈ N :
x(i) ∈ R \ SM} ≤ 1.

Theorem 3. Each lM has the λ-property.

P r o o f. In view of Lemma 1, we only need to show λ(x) > 0 for each
x ∈ S(lM ) \ ExtB(lM ). For convenience, we may assume x(i) ≥ 0 for all
i ∈ N.

First we consider the case %M (x) = 1. This implies that there exist at
least two coordinates of x belonging to the interiors of some SAIs of M by
Lemma 2. For each λ ∈ [0, 1], define

yλ(k) =

 bi if bi > x(k) > λai + (1− λ)bi for some i ≥ 1,
ai if ai < x(k) ≤ λai + (1− λ)bi for some i ≥ 1,
x(k) otherwise,

and f(λ) = %M (yλ). Then f(λ) is a nondecreasing, left-continuous function
of λ and f(0) < %M (x) = 1 < f(1). Moreover, if yλ(k) = bi, then

M(x(k)) > M(λai + (1− λ)bi) = λM(ai) + (1− λ)M(bi) > (1− λ)M(bi)

implies

f(λ) ≤
(

1 +
1

1 + λ

)
%M (x) <∞
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and so, f(λ) is continuous at 0 and 1 by its definition and the Levy Theorem.
Therefore, if we define σ = sup{λ : %M (yλ) ≤ 1}, then σ ∈ (0, 1) and
%M (yσ) ≤ 1. Set

Ni = {k ∈ N : x(k) = σai + (1− σ)bi} .

Then there exists Ei ⊂ Ni (i ≥ 1) such that the element u = (u(k))k defined
by

u(k)=

bi if bi > x(k) > σai + (1− σ)bi or k ∈ Ei for some i ≥ 1,
ai if ai < x(k) < σai + (1− σ)bi or k ∈ Ni\Ei for some i ≥ 1,
x(k) otherwise,

satisfies %M (u) ≤ 1, and for any k ∈ Ni \ Ei, if we change the value of
u(k) to be bi, then the modular of u will become greater than one. (By the
definition of σ, such {Ei}i do exist.) If %M (u) = 1, then we define y = u. If
%M (u) < 1, then there exists at least one nonempty set Ei′ . In this case, we
pick k′ ∈ Ei′ arbitrarily and find α ∈ (ai′ , bi′) such that %M (y) = 1, where
y = (y(k))k is defined by

y(k) =
{
α, k = k′,
u(k), k 6= k′.

Clearly, by Lemma 2, y ∈ ExtB(lM ). Set z = σ−1[x − (1 − σ)y] when
σ ≥ 1/2. Then x = (1 − σ)y + σz and z(k) = y(k) when y(k) = x(k). If
y(k) = bi, then

bi > x(k) ≥ σai + (1− σ)bi .

Therefore
bi > x(k) ≥ z(k) = σ−1[x(k)− (1− σ)y(k)]

≥ σ−1[σai + (1− σ)bi − (1− σ)bi] = ai .

If y(k) = ai, then by σ ≥ 1/2, we also have

ai < z(k) ≤ σ−1[σai + (1− σ)bi − (1− σ)ai]

= ai + (σ−1 − 1)(bi − ai) ≤ bi .

Observe that M is affine on each [ai, bi]. Hence

1 = %M (x) = %M ((1− σ)y + σz)
= (1− σ)%M (y) + σ%M (z) = 1− σ + σ%M (z) .

This shows that %M (z) = 1, and thus, λ(x) ≥ 1 − σ > 0. Similarly, if
0 < σ < 1/2, then by defining

z =
1

1− σ
(x− σy)

we can deduce that λ(x) ≥ σ > 0.
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If %M (x) < 1, then for any α ∈ (0, 1), since %M (x/(1− α)) =∞, we can
select n′ ∈ N and 0 < α′ < α such that

n′∑
k=1

M

(
x(k)

1− α′

)
+
∑
k>n′

M(x(k)) = 1 .

Define v = x and u = (u(k))k by

u(k) =
{
x(k)/(1− α′), k ≤ n′,
x(k), k > n′.

Then x = (1 − α′)u + α′v, %M (u) = 1, %M (v) < 1. Thus, λ(u) > 0, by the
first part of the proof. Finally, Lemma 1 shows that λ(x) ≥ (1 − α′)λ(u)
> 0.

Theorem 4. lM has the uniform λ-property iff M is strictly convex near
the origin.

P r o o f. ⇐: Let M be strictly convex on [0, d]. Define β = 1/M(d) + 2.
Referring to the proof of Theorem 3, we only need to show λ(x) ≥ 1/β for
all x = (x(i))i ∈ S(lM ) \ ExtB(lM ) with %M (x) = 1 and x(i) ≥ 0 (i ∈ N).
For any λ ∈ (0, 1), we define yλ and σ ∈ (0, 1) as in the proof of Theorem 3.
First we assume σ ≥ 1/2. If σ ≤ 1− 1/β, then by the proof of Theorem 3,
λ(x) ≥ 1−σ ≥ 1/β. Now, we consider the case σ ≥ 1−1/β. Let I = {i ∈ N :
x(i) ∈ R \ SM}. Without loss of generality, we may assume I = {1, . . . ,m}
(clearly, m < β) and x(i) ∈ (ai, bi) (i ≤ m), where {[ai, bi]}i≤m are SAIs
of M . Set

J = {i ≤ m : λi ≤ 1/β, x(i) = (1− λi)ai + λibi} .

Then J 6= ∅ since σ > 1− 1/β. For convenience, we assume J = {1, . . . , r}
and

λr[M(br)−M(ar)] = max
i≤r
{λi[M(bi)−M(ai)]} .

For any δ ∈ [0, 1], if we define uδ = (uδ(i))i by

uδ(i) =


(1− δ)ar + δbr, i = r,
ai, i < r,
bi, r < i ≤ m,
x(i), i > m,

then since rλr < 1, and

%M (u0) = %M (y1−1/β) < %M (yσ) ≤ 1
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and
%M (uδ)− 1 = %M (uδ)− %M (x)

=
r∑
i=1

M(ai) + δ[M(br)−M(ar)]

−
{ r∑
i=1

[(1− λi)M(ai) + λiM(bi)] +
m∑

i=r+1

M(x(i))
}

≥ δ[M(br)−M(ar)]−
r∑
i=1

λi[M(bi)−M(ai)]

≥ (δ − rλr)[M(br)−M(ar)]

we can find δ′ ∈ [0, rλr] such that %M (uδ′) = 1. Let

y = uδ′ and z =
1

1− 1/β
(x− y/β) .

Then

z(r) =
βx(r)− y(r)

β − 1
= ai +

1
β + 1

(βλr − δ)(br − ar) > ar .

It remains to show λ(x) ≥ 1/β; this is similar to the proof of Theorem 3.
Symmetrically, if σ < 1/2, we also derive λ(x) ≥ 1/β.
⇒: If M is not strictly convex near origin, then for any n ∈ N, M

has a SAI [a, b] such that nM(b) ≤ 1. Define x(i) = (1 − 1/n)a + b/n for
i ≤ n and find x(j) ∈ SM (j > n) such that

∑∞
i=1M(x(i)) = 1. Then

x = (x(i))i ∈ S(lM ). Now, for any λ ∈ (0, 1), e ∈ ExtB(lM ) and u ∈ B(lM )
satisfying x = λe+ (1− λ)u, we have e(i) = x(i) for all i > n and e(i) = a
or b for all i ≤ n except at most one i′ ≤ n according to Lemma 2. Since
e(i′) ∈ [a, b] and∑

i≤n

M(e(i)) =
∑
i≤n

M(x(i)) = (n− 1)M(a) +M(b)

we deduce that e(j) = b for some j ≤ n and e(i) = a for all i ≤ n other
than j. Observe u(j) ∈ [a, b]; we find

(1− 1/n)a+ b/n = x(j) = λe(j) + (1− λ)u(j) ≥ λb+ (1− λ)a ,

i.e., λ ≤ 1/n. This shows λ(x) ≤ 1/n, and so, λ(lM ) = 0 since n ∈ N is
arbitrary.

3. λ-property of l◦M
Lemma 5 ([3]). x = (x(i))i ∈ ExtB(l◦M ) iff card{i ∈ N : x(i) 6= 0} = 1

or kx(i) ∈ SM for all k ∈ K(x) and all i ∈ N.

Theorem 6. Each Orlicz space l◦M has the λ-property.
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P r o o f. We shall prove λ(x) > 0 for all x ∈ S(l◦M ) \ ExtB(l◦M ). Let
{[ai, bi]}i be the set of all SAIs of M .

First, we select a point k ∈ K(x) in the following way: if K(x) = {k},
then we have no alternative; if K(x) contains more than one point, then for
each h ∈ intK(x) and each j ∈ N, hx(j) = 0 or hx(i) ∈ (ai, bi) for some
i ∈ N. Hence, by Lemma 5, we can choose k ∈ K(x) such that neither

{j ∈ N : ai ≤ kx(j) ≤ (ai + bi)/2 for some i ∈ N}
nor

{j ∈ N : bi ≥ kx(j) ≥ (ai + bi)/2 for some i ∈ N}
is empty. Therefore, for each i ≥ 1, we can divide the set

{j ∈ N : ai ≤ kx(j) ≤ bi}
into two sets Ei and Fi such that neither

⋃
iEi nor

⋃
i Fi is empty and

j ∈ Ei ⇒ kx(j) ≤ (ai + bi)/2; j ∈ Fi ⇒ kx(j) ≥ (ai + bi)/2 .

Next, we define a sequence {y(j)}j by considering two cases. If K(x) = {k},
then let

y(j) =

 ai if ai < kx(j) < (ai + bi)/2 for some i ≥ 1,
bi if bi > kx(j) ≥ (ai + bi)/2 for some i ≥ 1,
kx(j) otherwise.

If K(x) contains more than one point, then we set

y(j) =


ai if j ∈ Ei, i ≥ 1,
bi if j ∈ Fi, i ≥ 1,
kx(j) otherwise.

Obviously, y(j) ∈ SM for all j ∈ N. Now, we prove y/‖y‖◦ ∈ ExtB(l◦M ).
To show this, it suffices to verify K(y/‖y‖◦) = {‖y‖◦}, i.e., K(y) = {1}
according to Lemma 5. Indeed, by the definition of Ei, Fi and the fact that
p is a constant on each [ai, bi), when K(x) = {k} we have, for any ε in (0, 1),
the following implications: if y(j) = ai, then (1 + ε/2)|kx(j)| < bi implies
p(y(j)) = p((1 + ε/2)|kx(j)|), and (1 + ε/2)|kx(j)| ≥ bi implies

2|kx(j)| < ai + bi ≤ ai + (1 + ε/2)|kx(j)| .
Thus, y(j) = ai ≥ (1− ε/2)|kx(j)|. Hence, we always have

%N (p((1 + ε)|y|)) ≥ %N (p((1 + ε)(1− ε/2)|kx|)) > 1 .

Similarly, we also have

%N (p((1− ε)|y|)) ≤ %N (p((1− ε)(1 + ε/2)|kx|)) < 1 .

When K(x) contains more than one point, we have

%N (p((1 + ε)|y|)) > %N (p(|kx|)) = 1 ,
%N (p((1− ε)|y|)) < %N (p(|kx|)) = 1 .

Hence, K(y) = {1}.
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Finally, we set z = 2kx − y. Then y(j) = kx(j) implies z(j) = kx(j);
y(j) = ai implies ai ≤ kx(j) ≤ z(j) ≤ bi; and y(j) = bi implies bi ≥ kx(j) ≥
z(j) ≥ ai. Moreover, by the same method, we can verify 1 ∈ K(z). Hence

k = ‖kx‖◦ = 1 + %M (kx) = 1 + %M

(
y + z

2

)
= 1

2 [1 + %M (y)] + 1
2 [1 + %M (z)]

= 1
2‖y‖

◦ + 1
2‖z‖

◦

and so

x =
1
2k
y +

1
2k
z =
‖y‖◦

2k
· y

‖y‖◦
+
‖z‖◦

2k
· z

‖z‖◦

=
‖y‖◦

2k
· y

‖y‖◦
+

2k − ‖y‖◦

2k
· z

‖z‖◦
,

which implies λ(x) ≥ ‖y‖◦/(2k) > 0.

Theorem 7. l◦M has the uniform λ-property iff

sup{bi/ai : 0 < bi ≤ 1} <∞
where {[ai, bi]}i is the set of all SAIs of M .

P r o o f. ⇐: For each x ∈ S(l◦M ) \ ExtB(l◦M ), define y as in Theorem 6.
We have already proved that λ(x) ≥ ‖y‖◦/(2k). Let

cM = 1 + sup{bi/ai : 0 < bi ≤ 1} .
Then |y(j)| ≥ (k/cM )|x(j)|, j ∈ N. Hence

λ(x) ≥ 1
2k
‖y‖◦ ≥ k

2kcM
‖x‖◦ ≥ 1

2cM
.

Combining this with Lemma 1, we find that λ(l◦M ) ≥ 1/(4cM ).
⇒: Suppose that M has SAIs {[an, bn]}n satisfying bn > n3an > 0 and

n(n+ 2)N(p(bn)) < 1 (n ∈ N). Then there exist mn ∈ N such that

(nmn + 1)N(p(an)) +N(p(bn)) ≤ 1 ,

and

(1) (n(mn + 1) + 1)N(p(an)) +N(p(bn)) > 1

(n ∈ N). Let

cn = sup{c ≥ 0 : N(p(c)) + (nmn + 1)N(p(an)) +N(p(bn)) ≤ 1} .
Then by (1) and n(n+ 2)N(p(bn)) ≤ 1,

N(p(cn)) ≤ nN(p(an)) < n−1 → 0 (n→∞) .

For each n ∈ N, r ≤ n, if we define

Gn(r) = {i ∈ N : (r − 1)mn + 4 ≤ i ≤ rmn + 3}
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and
xn = cne1 + ane2 + bne3

+
n∑
r=1

∑
i∈Gn(r)

[(
1− 1

r lnn

)
an +

1
r lnn

bn

]
ei

where {ei} is the natural basis of l1, then by the definition of K, cn and
SAIs of M , it is obvious that K(xn) = {1}, i.e., K(xn/‖xn||◦) = ‖xn‖◦.
We shall complete the proof by showing that λ(xn/‖xn‖◦) → 0 as n → ∞.
Let λn ∈ (0, 1), yn ∈ ExtB(l◦M ) and un ∈ B(l◦M ) satisfying xn/‖xn‖◦ =
λnyn + (1− λn)un. We have to show λn → 0.

First, we take kn ∈ K(yn) and hn ∈ K(un). Then by the convexity of
M and Theorem 1.26 of [2], we have

1 = λn‖yn‖◦ + (1− λn)‖un‖◦

=
λn
kn

[1 + %M (knyn)] +
1− λn
hn

[1 + %M (hnun)]

=
(1− λn)kn + λnhn

λnhn

(
1 +

λnhn
(1− λn)kn + λnhn

%M (knyn)

+
(1− λn)kn

(1− λn)kn + λnhn
%M (hnun)

)
≥ (1− λn)kn + λnhn

knhn

×
[
1 + %M

(
knhn

(1− λn)kn + λnhn
(λnyn + (1− λn)un)

)]
≥
∥∥∥∥ xn
‖xn‖◦

∥∥∥∥◦ = 1 .

This implies

(2) ‖xn‖◦ =
knhn

(1− λn)kn + λnhn
, i.e.,

1
‖xn‖◦

=
1− λn
hn

+
λn
kn

and that xn(i), knyn(i), hnun(i) are in the same SAI of M for each i ∈
N. Hence, by Lemma 5 and yn ∈ ExtB(l◦M ), we derive knyn(1) → 0 and
knyn(i) = an or bn for all i > 1.

Second, since

M(bn) =
bn∫
0

p(t) dt >
bn∫
an

p(t) dt ≥ (bn − an)p(an) ,

N(p(an)) = anp(an)−M(an) < anp(an) ,

we find

nmnM(bn) ≥ nmn(bn/an − 1)N(p(an)) ≥ (1− 1/n)(n3 − 1) .
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Let

Hn = {i ∈ N : knyn(i) = bn} , r(n) = max{r ≤ n : Gn(r) ∩Hn 6= ∅} .

Then for any i ∈ Hn ∩Gn(r(n)),

(3)
(

1− 1
r(n) lnn

)
an +

1
r(n) lnn

bn = xn(i)

=
λn‖xn‖◦

kn
knyn(i) +

(1− λn)‖xn‖◦

hn
hnun(i)

>
λn‖xn‖◦

kn
bn(i) .

Combining this with
∑n
i=1 1/i > lnn and

M(bn) ≥M(n3an) > n3M(an)

we have

lim
n

kn
‖xn‖◦

= lim
n

1 + %M (knyn)
1 + %M (xn)

≤ lim
n

1 +M(knyn(1)) + nmnM(an) +
∑
i≤r(n)

M(bn) card(Hn ∩Gn(i))

1 +
∑
r≤n

1
r lnn

mnM(bn)

≤ lim
n

1 + nmnM(an) + r(n)
n nmnM(bn)

nmnM(bn)/n

≤ lim
n

(
n

(n3 − 1)(1− 1/n)
+

1
n2

+ r(n)
)
.

Hence, if r(n) = 0, then (2) implies

lim
n
λn ≤ lim

n

kn
‖xn‖◦

= 0

and if r(n) 6= 0, then (3) also implies

lim
n
λn ≤ lim

n

kn
‖xn‖◦

{(
1− 1

r(n) lnn

)
an
bn

+
1

r(n) lnn

}
< lim

n

(
n
an
bn

+
1

lnn

)
≤ lim

n

(
1
n2

+
1

lnn

)
= 0 .
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