An arc-analytic function with nondiscrete singular set

by Krzysztof Kurdyka (Le Bourget-du-Lac and Kraków)

Abstract. We construct an arc-analytic function (i.e. analytic on every real-analytic arc) in \mathbb{R}^2 which is analytic outside a nondiscrete subset of \mathbb{R}^2 .

Let M be a real-analytic manifold. A function $f: M \to \mathbb{R}$ is called arc-analytic iff for every analytic arc $\gamma:]-\varepsilon, \varepsilon[\to M$ the composition $f \circ \gamma$ is analytic (see [K1]). For every function f on M, let Sing f denote the set of points of nonanalyticity of f. If f is an arc-analytic function with subanalytic graph, then Sing f is a subanalytic subset of M (see [T] or [K2]); moreover, $\dim(\operatorname{Sing} f) \leq \dim M - 2$ (see [K1]). Actually, in this case a stronger result is true: there exists a locally finite composition π of local blowing-ups of M such that $f \circ \pi$ is analytic (see [BM], [P]). Recently examples of arc-analytic functions with nonsubanalytic graphs were given ([K3] and [BMP], where a discontinuous example is given).

Suppose that $f: \mathbb{R}^2 \to \mathbb{R}$ is an arc-analytic function. Professor Siciak asked whether Sing f is always discrete. By the previous remarks this is the case if, for example, f has subanalytic graph, because Sing f, being subanalytic of dimension 0, contains only isolated points.

In this note we construct an arc-analytic function $f: \mathbb{R}^2 \to \mathbb{R}$ such that Sing f is nondiscrete and f is unbounded at each point of Sing f. Our construction is based on an idea of [K3].

The author is grateful to Professor Siciak for stating the problem.

Let $a_{\nu} \in \mathbb{R}$, $\nu \in \mathbb{N}$, $\nu \geq 1$, be a convergent sequence in \mathbb{R} . Define

$$a_0 = \lim_{\nu \to \infty} a_{\nu}, \quad Z_0 = \{(a_{\nu}, 0) \in \mathbb{R}^2 : \nu \in \mathbb{N}, \ \nu \ge 0\}.$$

We will construct an arc-analytic function $f: \mathbb{R}^2 \to \mathbb{R}$ such that Sing $f = \mathbb{Z}_0$, and f is unbounded at each point of \mathbb{Z}_0 .

¹⁹⁹¹ Mathematics Subject Classification: Primary 32B20; Secondary 32B30. Key words and phrases: arc-analytic, blow-up, projective limit, strict transform.

We will blow up every point of Z_0 infinitely many times. To get a formal construction we take the projective limit of the following system.

Set
$$c_{\nu} = (a_{\nu}, 0), P_0 = \{y = 0\} \subset \mathbb{R}^2$$
.

(i) Let $X_0 = \mathbb{R}^2$, and let $\pi_{1,0} : X_1 \to X_0$ be the blowing-up of c_0 in X_0 . Let P_1 be the strict transform of P_0 . We put

$$c_0^1 = \pi_{1,0}^{-1}(c_0) \cap P_1$$
 and $c_{\nu}^1 = \pi_{1,0}^{-1}(c_{\nu})$ for $\nu \ge 1$

(we assume that $c_{\nu} \neq c_{\mu}$ for $\nu \neq \mu$).

(ii) Suppose we have already constructed $\pi_{n,n-1}: X_n \to X_{n-1}$, and P_n is the strict transform of P_{n-1} by $\pi_{n,n-1}$. Suppose we also have a sequence $c^n_{\nu} \in P_n$ such that $\pi_{n,n-1}(c^n_{\nu}) = c^{n-1}_{\nu}$, $\nu \in \mathbb{N}$. We define $\pi_{n+1,n}$ to be the compositon

$$X_n^n \xrightarrow{p_n^{n-1}} X_n^{n-1} \xrightarrow{p_n^{n-2}} \dots \xrightarrow{p_n^1} X_n^1 \xrightarrow{p_n^0} X_n^0 = X_n$$

where each $p_n^i: X_n^{i+1} \to X_n^i$, $i=0,\ldots,n-1$, is the blowing-up of $(p_n^{i-1} \circ \ldots \circ p_n^0)^{-1}(c_i^n)$ in X_n . We put $X_{n+1} = X_n^n$ and

$$\pi_{n+1,n} = p_n^{n-1} \circ \ldots \circ p_n^0.$$

Finally, let P_{n+1} be the strict transform of P_n by $\pi_{n+1,n}$ and let

$$c_{\nu}^{n+1} = (\pi_{n+1,n})^{-1}(c_{\nu}^{n}) \cap P_{n+1}, \quad \nu \in \mathbb{N}.$$

We define $Z_n = \{c_{\nu}^n \in X_n : \nu \in \mathbb{N}\}$. For every $n \in \mathbb{N}$ we put $\pi_{n,n} = \mathrm{id}_{X_n}$, and for $m \leq n$ we put

$$\pi_{n,m} = \pi_{n,n-1} \circ \ldots \circ \pi_{m+1,m} .$$

Hence we have constructed a projective system $\pi_{n,m}: X_n \to X_m, \ m \le n$, with a subsystem $Z_n \to Z_m$. Then there exist topological spaces $X = \varprojlim X_n, \ Z = \varprojlim Z_n$ and continuous mappings $\operatorname{pr}_n: X \to X_n$ such that $\operatorname{pr}_m = \pi_{n,m} \circ \operatorname{pr}_n$ for $m \le n$.

Set $L = X \setminus Z$. Clearly L is a Hausdorff σ -compact topological space. We will define a structure of a real-analytic manifold on L.

Let $x = (x_n)_{n \in \mathbb{N}} \in L$. Then there exists an open neighbourhood U of x in L and $n_0 \in \mathbb{N}$ such that if $y = (y_n) \in U$ then $y_k = \operatorname{pr}_k(y) \notin Z_k$ for $k \geq n_0$. Hence $\operatorname{pr}_k|_U : U \to \operatorname{pr}_k(U)$ is a homeomorphism. Notice that $\operatorname{pr}_k(U)$ is an open subset of the real-analytic manifold X_k . Clearly the family of all such mappings defines a structure of a real-analytic manifold on L. Moreover, each pr_k is analytic on L. Notice also that

$$\operatorname{pr}_n: L \setminus \operatorname{pr}_n^{-1}(Z_n) \to X_n \setminus Z_n$$

is an analytic diffeomorphism. In the sequel we need $\operatorname{pr}_0^{-1}: \mathbb{R}^2 \setminus Z_0 \to L$, which we denote by q. The mapping q has the following property:

LEMMA. Let $\gamma:]-\varepsilon, \varepsilon[\to \mathbb{R}^2$ be an analytic arc such that $\gamma(t) \notin P_0 =$ $\{y=0\}$ for $t\neq 0$. Then the mapping

$$q\circ\gamma: \left]-\varepsilon, 0\right[\cup \left]0, \varepsilon\right[\to L$$

extends to an analytic mapping from $]-\varepsilon,\varepsilon[$ to L.

Proof. If $\gamma(0) \notin Z_0$ then the assertion is trivial. Suppose that $\gamma(0) = c_{\nu_0}$ for some $\nu_0 \in \mathbb{N}$. The order of contact of $\gamma([-\varepsilon, \varepsilon])$ and $P_0 = \{y = 0\}$ at $\gamma(0)$ is finite. If we blow up the point $\gamma(0)$, then either the strict transforms of those curves are disjoint or the order of their contact decreases by 1. Hence for some $n \in \mathbb{N}$,

$$\lim_{t\to 0} (\pi_{n,0})^{-1} \circ \gamma(t) = \widetilde{\gamma}_n(0) \not\in P_n.$$

 $\lim_{t\to 0}(\pi_{n,0})^{-1}\circ\gamma(t)=\widetilde{\gamma}_n(0)\not\in P_n\,.$ Clearly $\widetilde{\gamma}_n=(\pi_{n,0})^{-1}\circ\gamma$ has an analytic extension through 0. Since

$$q \circ \gamma = \operatorname{pr}_n^{-1} \circ (\pi_{n,0})^{-1} \circ \gamma$$

and pr_n^{-1} is analytic outside Z_n (recall that $Z_n \subset P_n$), it follows that $q \circ \gamma$ extends to a function analytic at 0. This ends the proof of the lemma.

Recall that our analytic manifold L has a countable basis of topology, hence by the Grauert Embedding Theorem ([G]) there exists a proper analytic embedding $\varphi: L \to \mathbb{R}^N$ for some $N \in \mathbb{N}$.

Take now a countable subset A of $P_0 \setminus Z_0$ which is discrete in $\mathbb{R}^2 \setminus Z_0$ and $\overline{A} \setminus A = Z_0$. Notice that for every $n \in \mathbb{N}$ the set $\pi_{n,0}^{-1}(A)$ is also discrete in $X_n \setminus Z_n$; moreover, pr_n maps homeomorphically $L \setminus \operatorname{pr}_n^{-1}(Z_n)$ onto $X_n \setminus Z_n$. Hence $q^{-1}(A)$ is also discrete in $L = \underline{\lim} X_n \setminus \underline{\lim} Z_n$. Thus the set $\widetilde{A} =$ $\varphi(q^{-1}(A))$ is discrete in \mathbb{R}^N , since φ is proper.

We claim that there exists a discrete subset \widetilde{B} of $\varphi(L)$ such that if we set $B = \operatorname{pr}_0 \circ \varphi^{-1}(\widetilde{B})$ then

$$B \cap P_0 = \emptyset$$
 and $\overline{B} \setminus B = Z_0$.

To get such a \widetilde{B} let us arrange the elements of \widetilde{A} in a sequence $\widetilde{a}_k, k \in \mathbb{N}$. Notice that $\varphi(\operatorname{pr}_0^{-1}(P_0))$ is nowhere dense in $\varphi(L)$. Hence there exists a sequence

$$\widetilde{b}_k \in \varphi(L) \setminus \varphi(\operatorname{pr}_0^{-1}(P_0))$$

such that $\|\widetilde{a}_k - \widetilde{b}_k\| < 1/k$. We put $B = \{b_0, b_1, \ldots\}$, where $b_k = \operatorname{pr}_0 \circ \varphi^{-1}(\widetilde{b}_k)$. Let us write, in coordinates in \mathbb{R}^2 , $b_k = (x_k, y_k)$. Notice that $y_k \neq 0$ for all

Now take an analytic function $\widetilde{h}: \mathbb{R}^N \to \mathbb{R}$ such that $\widetilde{h}(\widetilde{b}_k) = y_k^{-2}$. Such an \widetilde{h} exists since $\varphi(L)$ is closed in $\mathbb{R}^{\mathbb{N}}$, hence \widetilde{B} is discrete in \mathbb{R}^{N} . Now put $h = h \circ \varphi \circ q$ and observe that h is analytic in $\mathbb{R}^2 \setminus Z_0$. Finally, put

$$f(x,y) = \begin{cases} yh(x,y) & \text{if } (x,y) \notin Z_0, \\ 0 & \text{if } (x,y) \in Z_0. \end{cases}$$

To see that f is arc-analytic take an analytic arc $\gamma:]-\varepsilon, \varepsilon[\to \mathbb{R}^2$. If $\gamma(]-\varepsilon,\varepsilon[) \subset P_0=\{y=0\}$ then $f\circ\gamma\equiv 0$ is analytic. Otherwise the set $\gamma^{-1}(Z_0)$ is discrete in $]-\varepsilon,\varepsilon[$ and by the lemma $q\circ\gamma$ extends to an analytic mapping from $]-\varepsilon,\varepsilon[$ to L. Hence also $h\circ\gamma$ extends to an analytic mapping on $]-\varepsilon,\varepsilon[$. Thus $f\circ\gamma$ is analytic on $]-\varepsilon,\varepsilon[$.

Clearly f is analytic in $\mathbb{R}^2 \setminus Z_0$. Observe that $f(b_k) = f(x_k, y_k) = y_k^{-1}$ and $\lim_{k \to \infty} y_k = 0$. Since $\overline{B} \setminus B = Z_0$, for every $(x_0, y_0) \in Z_0$ we have

$$\limsup_{(x,y)\to(x_0,y_0)} |f(x,y)| = +\infty.$$

This proves that Sing $f = Z_0$.

Remark. This example raises two questions about arc-analytic functions.

- 1) Can one find an arc-analytic function on a manifold M such that Sing f is dense in the analytic Zariski topology (i.e. every analytic function vanishing on Sing f must vanish on M)?
- 2) Given an arc-analytic function $f: M \to \mathbb{R}$, can one find a countable composition π of blowing-ups such that $f \circ \pi$ is analytic? Here countable composition might be understood as a projective limit as in our example.

References

- [BM] E. Bierstone and P. D. Milman, Arc-analytic functions, Invent. Math. 101 (1990), 411–424.
- [BMP] E. Bierstone, P. D. Milman and A. Parusiński, A function which is arcanalytic but not continuous, Proc. Amer. Math. Soc. 113 (1991), 419–423.
 - [G] H. Grauert, On Levi's problem and the imbedding of real-analytic manifolds, Ann. of Math. 68 (1958), 460–472.
 - K1] K. Kurdyka, Points réguliers d'un sous-analytique, Ann. Inst. Fourier (Grenoble) 38 (1) (1988), 133–156.
 - [K2] —, Ensembles semi-algébriques symétriques par arcs, Math. Ann. 282 (1988), 445–462.
 - [K3] —, A counterexample to subanalyticity of an arc-analytic function, Ann. Polon. Math. 55 (1991), 241–243.
 - [P] A. Parusiński, Subanalytic functions, Trans. Amer. Math. Soc., to appear.
 - [T] M. Tamm, Subanalytic sets in the calculus of variations, Acta Math. 146 (1981), 167–199.

LABORATORIE DE MATHÉMATIQUES UNIVERSITÉ DE SAVOIE CAMPUS SCIENTIFIQUE 73376 LE BOURGET-DU-LAC CEDEX, FRANCE. E-mail: KURDYKA@UNIV-SAVOIE.FR INSTITUTE OF MATHEMATICS JAGIELLONIAN UNIVERSITY REYMONTA 4 30-059 KRAKÓW, POLAND E-mail: KURDYKA@IM.UJ.EDU.PL