ANNALES
POLONICI MATHEMATICI
LIX.3 (1994)

An arc-analytic function with nondiscrete singular set

by KrzyszTor KURDYKA (Le Bourget-du-Lac and Krakéw)

Abstract. We construct an arc-analytic function (i.e. analytic on every real-analytic
arc) in R? which is analytic outside a nondiscrete subset of R.

Let M be a real-analytic manifold. A function f : M — R is called
arc-analytic iff for every analytic arc v : |—¢,e[ — M the composition f o~y
is analytic (see [K1]). For every function f on M, let Sing f denote the set of
points of nonanalyticity of f.If f is an arc-analytic function with subanalytic
graph, then Sing f is a subanalytic subset of M (see [T] or [K2]); moreover,
dim(Sing f) < dim M — 2 (see [K1]). Actually, in this case a stronger result
is true: there exists a locally finite composition 7 of local blowing-ups of M
such that fom is analytic (see [BM], [P]). Recently examples of arc-analytic
functions with nonsubanalytic graphs were given ([K3] and [BMP], where a
discontinuous example is given).

Suppose that f : R? — R is an arc-analytic function. Professor Siciak
asked whether Sing f is always discrete. By the previous remarks this is
the case if, for example, f has subanalytic graph, because Sing f, being
subanalytic of dimension 0, contains only isolated points.

In this note we construct an arc-analytic function f : R? — R such
that Sing f is nondiscrete and f is unbounded at each point of Sing f. Our
construction is based on an idea of [K3].

The author is grateful to Professor Siciak for stating the problem.

Let a, € R, v € N, v > 1, be a convergent sequence in R. Define

ap = lim a,, Zo=1{(a,,0)€R*:veN, v>0}.

We will construct an arc-analytic function f : R> — R such that Sing f =
Zy, and f is unbounded at each point of Zj.
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We will blow up every point of Z; infinitely many times. To get a formal
construction we take the projective limit of the following system.
Set ¢, = (a,,0), Py = {y =0} C R2%

(i) Let Xo = R?, and let 719 : X1 — Xo be the blowing-up of ¢g in Xp.
Let P; be the strict transform of FPy. We put

C(l):Ff’(l)(Co)ﬂpl and c},zwié(cy) forv>1

(we assume that ¢, # ¢, for v # p).

(ii) Suppose we have already constructed m, n—1 : X, — X,,—1, and P,
is the strict transform of P,_; by 7, ,—1. Suppose we also have a sequence
c" € P, such that 7, ,—1(c?) = 7', v € N. We define 7,41, to be the
compositon

pn—l 1 pn—2 pl 1 pO 0
n ¥n n— n n n —_
Xty Pyl P w0

where each p¢ : X*1 — X! §=0,...,n—1, is the blowing-up of (p%, 1o
cooopd)THe) in X,,. We put X, = X and

1

n— 0
Tn+lmn —Pn  ©---OPp -

Finally, let P, 1 be the strict transform of P, by 7,41, and let
C:,H—l = (7'['“4_17“)_1(03) N Pn+1, veN.

We define Z,, = {c}; € X,, : v € N}. For every n € N we put 7, , =idx,,
and for m < n we put

Tnom = Tnn—1°0...0TTm41,m -

Hence we have constructed a projective system m, , : X,, — X, m <
n, with a subsystem Z,, — Z,,. Then there exist topological spaces X =
lim X,,, Z = limZ,, and continuous mappings pr,, : X — X, such that
pI,, = Tpn,m © pr,, for m < n.

Set L = X \ Z. Clearly L is a Hausdorff o-compact topological space.
We will define a structure of a real-analytic manifold on L.

Let © = (25,)nen € L. Then there exists an open neighbourhood U of x
in L and ng € N such that if y = (y,,) € U then yx, = pry(y) € Z for k > ny.
Hence pry|y : U — pry(U) is a homeomorphism. Notice that pr,(U) is an
open subset of the real-analytic manifold Xj. Clearly the family of all such
mappings defines a structure of a real-analytic manifold on L. Moreover,
each pr; is analytic on L. Notice also that

pry : L\prgl(Zn) — Xn\ Zn

is an analytic diffeomorphism. In the sequel we need pry 1. R2 \ Zy — L,
which we denote by g. The mapping ¢ has the following property:



An arc-analytic function 253

LEMMA. Let v :]—e,e[ — R? be an analytic arc such that y(t) & Py =
{y =0} for t #0. Then the mapping

qory: ]—E,O[U]O,E[—) L
extends to an analytic mapping from |—e, e[ to L.

Proof. If v(0) € Zy then the assertion is trivial. Suppose that v(0)=c,,
for some 1y € N. The order of contact of v(]—¢, ¢[) and Py = {y = 0} at v(0)
is finite. If we blow up the point v(0), then either the strict transforms of
those curves are disjoint or the order of their contact decreases by 1. Hence
for some n € N,

lim (1,.0) ™" 0 7(t) = 54 (0) & P
Clearly ¥, = (m,0) ! oy has an analytic extension through 0. Since
goy=pr, o (mm0) oy

and pr,; ! is analytic outside Z,, (recall that Z,, C P,), it follows that q o~y
extends to a function analytic at 0. This ends the proof of the lemma.

Recall that our analytic manifold L has a countable basis of topology,
hence by the Grauert Embedding Theorem ([G]) there exists a proper ana-
lytic embedding ¢ : L — R for some N € N.

Take now a countable subset A of Py\ Zy which is discrete in R?\ Zy and
A\ A = Zy. Notice that for every n € N the set m, {(A) is also discrete in
X, \ Zp; moreover, pr,, maps homeomorphically L\ pr,!(Z,) onto X, \ Z,.
Hence ¢~'(A) is also discrete in L = lim X,, \ Jim Z,,. Thus the set A=
©(q~(A)) is discrete in RY, since ¢ is proper.

We claim that there exists a discrete subset B of (L) such that if we

set B = pry o ¢ 1(B) then
BNPy=0 and B\B=Z%.
To get such a B let us arrange the elements of Aina sequence ag, k € N.

Notice that ¢(pry*(Py)) is nowhere dense in ¢(L). Hence there exists a
sequence

b, € o(L) \ ¢(prg ' (Fo))
such that ||a,—bg|| <1/k. We put B = {bg, b1, ...}, where b, = proop~t(bg).
Let us write, in coordinates in R?, by = (x, yz). Notice that y; # 0 for all

k € N.
Now take an analytic function h : RY — R such that h(by) = y; 2. Such

an h exists since ¢(L) is closed in RY, hence B is discrete in RN, Now put
h = hoyoq and observe that h is analytic in R? \ Zy. Finally, put

_ Jyh(z,y) if (z,9) &€ Zo,
f(x’y)_{o if(x,y)ezg.
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To see that f is arc-analytic take an analytic arc v : ]—e,e[ — R? . If
v(J—¢,e]) € Py = {y = 0} then f o~ = 0 is analytic. Otherwise the set
v~ Y(Zy) is discrete in ]—¢, €[ and by the lemma g oy extends to an analytic
mapping from |—¢, e[ to L. Hence also ho~ extends to an analytic mapping
on |—&,¢e[. Thus f o~ is analytic on |—¢,¢].

Clearly f is analytic in R? \ Zo. Observe that f(bx) = f(zk, yx) = y; |
and limy_, o, yx = 0. Since B\ B = Zj, for every (zo,y0) € Zo we have

limsup | f(x,y)| = +oo.
(z,9)—(x0,y0)

This proves that Sing f = Zj.

Remark. This example raises two questions about arc-analytic func-
tions.

1) Can one find an arc-analytic function on a manifold M such that
Sing f is dense in the analytic Zariski topology (i.e. every analytic function
vanishing on Sing f must vanish on M)?

2) Given an arc-analytic function f : M — R, can one find a countable
composition 7 of blowing-ups such that f o7 is analytic? Here countable
composition might be understood as a projective limit as in our example.
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