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Convolution of radius functions on R3

by KonsTaNTY HoLLy (Krakéw)

Abstract. We reduce the convolution of radius functions to that of 1-variable func-
tions. Then we present formulas for computing convolutions of an abstract radius function
on R? with various integral kernels—given by elementary or discontinuous functions. We
also prove a theorem on the asymptotic behaviour of a convolution at infinity. Lastly,
we deduce some estimates which enable us to find the asymptotics of the velocity and
pressure of a fluid (described by the Navier—Stokes equations) in the boundary layer.

1. Reduction of the convolution of radius functions on R? to a
convolution on R!. The convolution of Borel measurable functions f,g :
R™ — [0, 00] is the function

frg:R* 320 [ flz—y)g(y)dy € [0,00],
o

where dy denotes the Lebesgue measure on R”.

(1.1) ExampLE. For a,b > 0,

n/2 n/2 n/2
(1.2) (“) el <b> e (16‘1’) o—(ab/ (@b
T 7 Ta+b

(1.3) ExaAMPLE. For A € |0, n| consider the hyperboloid
Ky:R" 3z |z|7* €0, ).
If0<a,06<nand a+ B> n, then
(1.4) C(n,a)Ky *C(n,B)Kg =C(n,a+ 3 —n)Kayp—n,

where C(n, \) := 2*(47) /2T (\/2)T'((n—\)/2)~'. Identity (1.4) is known
as the law of composition of the M. Riesz kernels (see [4] and [3]). m

The proofs of (1.2) and of Theorem (1.6) are included in Section 1'.
Section 2’ contains the proofs of the theorems from Section 2, etc.
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(1.5) From now on it is assumed that all Borel measurable functions
which are integrated have separable ranges.

Consider Banach spaces Wy, Wy, W over a number field K (€ {R,C})
and a continuous K-bilinear operator Wy x Wy 3 (v1,v2) — vivg € W. The
convolution of Borel measurable functions f1 : R — Wy, fo : R™ — Ws is
the function

()@= [ filz—y)fay)dy
o

with values in W, defined on

dom(fy  fo) :={z € R : (| f1] * [ f2])(z) < o0}
A function of the form
R" 35z — k(|z]) € W,

where k : Ry — W, is called a radius function. The functions mentioned in
Examples (1.1), (1.3) are such functions.

(1.6) THEOREM. Consider Borel measurable functions w; : R — W,

1 = 1,2, such that w1 s odd, while wo is even and absolutely continuous.
Fiz x € R®. Then

(1.7) (wl * 'LUQ)(‘J:") — ‘2xﬂ|- ( _ wly('| | ’) % w2|(‘ ‘ |))(.%')

provided

wi (]| - wa(] -
(Jwi| * |wa])(|z]) < 00 and (’ 1‘(_” D‘ x ‘ 2’('|| D D(m) < 0.
In practice the functions f; : R® — W, (i = 1,2) are usually given and
we look for functions w; : R — W; (i = 1,2) such that

wi(l-1) wa(] - 1)

T T

We do not know any analogue of Theorem (1.6) for R", n # 3. For
instance, for n = 2 on the right-hand side of the analogue of (1'.5) there
appears the Bessel function Jy, which excludes any further analogies with
our reasoning.

fi=-

fa=

2. Various applications of Theorem (1.6). First, we will show that
the boundary value problem { Au = &(|-|), u(0co) = 0} in R? may be reduced
to the study of a one-dimensional integral.

(2.1) REMARK. Let k :]0,00[ — W be a Borel measurable function such
that fol r2k(r)| dr < oo and [° r|k(r)| dr < co. Then for every z € R*\{0}
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we have
— k(] - | )x r?r(r)dr+ [ rr(
(0 e f

This formula is “logically equivalent” to the formula from Corollary (1’.15)—
see Lemma (1’.11) and Digression (1’.15)*.

(2.2) COROLLARY. For all ¢ > 0 and x € R3,
1

1 2 1 2. 2
—c|-| - —clzl*7* 17
(47T|‘|>|<e >(x) 206[6 T. m

The convolution of the integral kernel (—4r|-|)~! of the stationary heat
equation

0=Au+f

in R3, with the kernel (47vt)=3/2exp(—| - |?/(4vt)) of the heat evolution
equation

ou

e (1) = vAu(t, ) + 18,
appears in the integral kernel of the nonstationary Navier—Stokes equations
in R3—see (0.5) in [1]. Corollary (2.2) may also be derived from the following:

(2.3) REMARK. If k :]0,00[ — [0,00] is a Borel measurable function
and ¢ > 0, then for all x € R3\ {0},

1 _ 2 o 2 < _ QSh(C‘$| )
il . (c/2)|"] — o (c/2)]z| 2¢—(e/2)r" 22010
pp </€(| |) xe >(£L’) =e f K(r)r ol dr.

We now give a few formulas for the convolution of a radius function
with the rational function (a + |- |*)™™ (a > 0, m € N). Differentiation or
integration with respect to the parameter a sometimes enables us to obtain
some formulas from simpler ones. For instance, for the relations given below
we have

%(2.5):(2.?) = (210), [ (210)db= (2.9),

d(210) (2.11), 622(2.11)2(2.12).

da
(2.4) LEMMA. Let & : 0, oo[ — W be a Borel measurable function such
that fol r2k(r)|dr < oo and [{° |k(r)|dr < co. Then for all x € R*\ {0},

(2.5) i<m*ﬁ(|. >g; lef < M)m(r)dr.
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(2.6) COROLLARY. If k : |0,00[ — W is a Borel measurable function such
that fol r2k(r)|dr < oo and [ r72|k(r)| dr < oo, then for all x € R?,

1 1
@) (e el D) @) =

(2.8) COROLLARY. Let a,b > 0, and let x denote convolution in R®. Then

~—

r2k(r) dr

(a+(r=lzD)*)(a+ (r+|z[)?)

1 1 2?2 |- |
2. = t
(2.9) a2+|-\2*b2+|-|2 |.‘arcana+b
(for x =0 see (3.11) and (3.12)),
2
(2.10) ! L L

:(m 1+|~|2)2’

7 (a+0b)2

e (a)  (55m) - 5 ()

3 2
" L_Fa—l—b 1 +(a—l—b) 1 ‘
8a? 2a (a+0b)2+] |2 b (a+0b)2+ |2

From the point of view of symmetry, (2.11) resembles the formulas (1.2),
(1.4).

From now on we compute the convolution of a radius function with
specific discontinuous functions.

%] 3

(2.13) REMARK. Fiz 0 < p < oo. Let x, denote the characteristic
unction of the interval [—o, 0]. If k€ L (10, 00[, W) and Yrlk(r)| dr < 00,
loc 0
then for all z € R3\ {0},

|z|+0
(Xg(l'!)*/’i(l'l))(ﬂﬁ)Z‘37| [ (@ = Ir =1zl P)ra(r)) dr,
|z|—e
9 lz|+e
((\-!Xg(\-!))*ﬁ(!'\))(x):% [ (@ = Ir = 2| *)ru(|r]) dr.
|z|—o

(2.14) REMARK. Assume that 0 < p < 00, 3 < A < o0 and let k :
10,00[ — W be a Borel measurable function such that fol’f"/ﬁ}(T’)‘dT < o0
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and [ 372 |k(r)|dr < co. Define

(2.15) Fr) = {OA frse

r if > .
Then for all z € R3\ {0},

(2.16)  (f(I-[) = w(l-])(=)
:&mﬂ(g?—k Jorslehdr+ [ e fel P () dr ).
r—lal <o r—lal 1>

3. Asymptotic behaviour of a convolution as |z| — co. We start
with two estimates of a convolution that involves the function (14 |-])~7

(3.1) REMARK. Let f : R"—10,00] be a Borel measurable function with
compact support, i.e. 0 1= SUp (420 |x| < co. Then for all v € R,

(3.2) sup (1+ ) (L + 1) = f)z) < 1+ ) If e
(3.3) LEMMA. If 0 <~y < X and A > 3 then
(3.4) Sg£3(1 )T+ DT (] )T (@) < oo

In spite of the resemblance between (3.2) and (3.4), Lemma (3.3) does
not follow from Remark (3.1), because supp(1 + | - |)~ is unbounded.

The functions ¢ and w considered in (3.5) below are not necessarily
radius functions.

(3.5) THEOREM. Assume that A > 3,0 < v < X\, » : R® — W, and
w: R — Wy, Assume that

(3.6)  the functions (1+ |- ) ¢, (1+|-|)?w are bounded and Borel mea-
surable.

Moreover, suppose that
(3.7) lim ([z[Yw(z) — weo (2/|2[)) = 0,

where W : So — Wsy is continuous. Then

(38)  Jim (Jal"(pxw)(@) - [ (a/la))) =0

(3.9)* The need for such a theorem appeared in a natural way in the
theory of the Navier—Stokes equations. It is used in the proof of a theorem
(announced in [2]) on the asymptotic behaviour of the velocity v(t,z) and
pressure p(t,z) of the free fluid in R? as |z| — oc.
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When v = A, Theorem (3.5) is not true, as shown by the following
example:

(3.10) ExamMPLE. The functions
11’
—w:i=|-—s>
4 71+ |?
satisfy assumptions (3.6), (3.7) for v = A = 4, ws = 7 2. Note that

1
* : R? — R is continuous
+ P21+ ]2 ’

(3.11) the function .

since 1/(1+]-|?) € L?(R3). Bearing that in mind and using (2.9) we compute:

1 dy 1 1 L
(3.12) R[ w(y)dyZﬂR[(1+|y|2)2:w2(1+|,|2*1+|-\2)(0)

1 . 1 1 (2)
= — 1m * X
w2 0#£e—0 \ 14+ |- 2 142
1 272
= — lim T arctan m =1.
w2 0£2—0 |z 2

For a = b =1 the formula (2.11) takes the form

e (Bt

T 44|
Finally,
2 |zt
. 4 = 1
lim [z[*(pxw)(z) = lim 72 (4 + [z]2)?
2 1
== 41- == [ o)) dy weo. m

2 w2 R{

4. Some special estimates. We present three inequalities needed in
the proof of the theorem mentioned in Digression (3.9)*. From now on the
parameters a, v are fixed positive numbers.

(4.1) LEMMA. Let E :]0,00[xR3? — R be the heat kernel in R3, i.e.

E(t,z) := (V2ut) 2 exp < — ;‘ 2).
1

Then for all t > 0,
3uvt 1
2_3/27 Eit. )< |(1 _ ) —
I P e R e G PR N EiE

T
V2t
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(4.2) LEMMA. Define

2v) "2 x| if |2 < V2vuT
F RS ( )
10, 00[xR"> (7, z) = {O if x| > V2vT.

Then there exists an increasing continuous function M : Ry — Ry (see
(4'.12)) such that for all T > 0,

(a+|- )"« F(r,-) < (wr)"V2M(vrfa)(a+ |- )~
(4.3) LEMMA. Define
) )0 if x| < V2T,
G :10,00[xR? 3 (7, 2) { 2 if o] > vaur

Then there exist a constant C' € Ry (see (4'.18)) and an increasing contin-
uous function M : Ry — Ry (see (4.19)) such that for all T > 0,

(a+ |-+ G(r,) < Ca™Pa+ |- )2+ (vr) " PM(vr/a)(a+ |- )~

1’. Proofs. The Fourier transform of a summable function v : R® — W
(in the case of K = C) is the function u = Fu : R" — W given by

() = (2m) 2 [ e u(x) da,
R’I’L
where 2§ = (z | €) := >_;_; 21&. Throughout Sections 1’, 2/, 3’ the follow-
ing abbreviations are used:
(L") = the Lebesgue monotone convergence theorem,

(L) = the Lebesgue dominated convergence theorem.

(1'.1) Proof of (1.2). It is known that § = ¢ for ¢ = e~ (/2
(e S(R™,C)). Let hy stand for the homothety with scale A € R\ {0}. Then
of course (p o hy)" = |A|7"@ o hy/y. Therefore

€7a|.| = o h\/% = (2&)7n/2(\/ 2&)”{50 h\/ﬁ = (2&)771/2(@0 hm)/\.

Hence

2 _ _2
e~ oll” F bl = (4ab) —n/2

i) * (9o hyiam)

(v

A
(4ab) "/2(< V1/(2a) )(SOOhW))
(4ab) "/2(90

O

A
(a+b)/(2ab))

—n/2 -~
(4ab) <\/ > poh (@) (ath)

= (2(a+ b)) "/Ze (o (DI,
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where
(1.2) uFv:=(2m) "2 uxv. =

(1".3) LEMMA. Assume that K = C and an even Borel measurable func-
tion f: R — W satisfies fol r|f(r)|dr < oo and [ 72| f(r)|dr < co. Then
£+ ) € LR, W) and

(1".4) (FA-D)"©

for all £ € R3\ {0}.

i

Proof. The function f(]-]) is summable, since

1 00 1 oo
= [ 1iablde= [ 2re)dr< [rif@ldr+ [ 250 dr
R3 0 0 1
Applying the formula
(1'.5) fe*i(”‘o ¢ = f cos(v[()d{-llwsﬁ)r’,
So Sa

where v € R3\ {0} and d( is the surface element on the sphere Sz, we obtain

FU-DNE) = @02 [0 [ €O dac f(r) dr

0 S
1 9 1/2 oo
:’f‘<77> f (sinr|&])rf(r)dr.
0

The function r — (sinr|£|)r f(r) is even and r — (cosr[&|)r f(r) is odd. So

1 <2>” 2 T(sinr]{\)rf(r)dr:1<2>1/2; J (el str)ar

wls) s
= — = [itsinrlelrf ) = =~ [ ()
€ ) NG, Ner:
= L[t p(s) -2 = L (idg 1N,
GE.

Ver €

and this is precisely the assertion of the lemma. m

(1.6) Proof of Theorem (1.6). We can choose admissible norms
in Wi, Wy and W such that |viva| < |v1]|ve| for any (vq,v2) € Wp x Wh.
Assuming some regularity conditions, we will easily prove (1.7). We will then
reduce the assumptions gradually till we gain Theorem (1.6).
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Step 1. Assume that
(i) K =C,
(ii) {wy # 0} U {wsy # 0} is bounded,
(iii) wy is bounded,
(iv) Jg la(r)? dr < oo.

It is clear that the functions f1(r) := —wq(r)/r and fo(r) := wy(r)/r are
even. By (1’.4), we have
1

(frl- )" (€) = H(idR ()

for all £ € R3\ {0} and k = 1,2. We can rewrite this as

AU-DNE) = —zwi (€D, f2(l-D"(E) = |2|(w2)A(’f|) = —wy (€])-

_r
[3
Hence, by (1’.2), we compute:

@7 (D= f20- D)€ = A(-DE - f0-D(E)

where f(r) := (1/r)(w; * wy)(r). Note that f is even and fol r|f(r)] dr < oo,
J5 2 f(r)] dr < oo since wy * wa € Co(R,W). Applying Lemma (1'.3) to
(1'.7) we obtain, for all £ € R?\ {0},

(D F £ - D)ME) = (£ - D) ()

Equality of the transforms of summable functions implies equality of these
functions almost everywhere, so

(1".8) AQ-DFLA-D=f(-) in L'®R,W).

Certainly f(]-|) is continuous on R3 \ {0}. The left-hand side of (1’.8) has
the same property, because fi(| -|) € L*(R*, Wy), k = 1,2 (the condition
(iv) guarantees this for k = 2). Therefore (f1(|-|) * f2(|-]))(z) = f(|z|), for
r € R3\ {0}, i.e.

x
(1.9) (w1 * wa)(|z[) = ’27T(f1(!'|)*f2(!'|))(1‘)-
The function wy * wq is odd, thus (1.9) also holds for = 0. Finally,
(1'.10) formula (1.7) holds for any = € R3.

At this moment we interrupt Proof (1’.6). It is continued at (1'.16).
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(1".11) LEMMA (scalar version of Remark (2.1)). If k : )0, 00] — [0, 00] is
a Borel measurable function, then for all x € R3\ {0},

1 R %
(ﬁ(\ . ])*47r|>(a:) = m 6[7” K(r)dr + ;fl r&(r)dr.

Proof. We apply Step 1 of Proof (1'.6). In view of (L ) one can assume
that s is a bounded function with bounded support. We choose an even
nonnegative function ¥ € D(R) such that ¥(0) = 1 and 1 is decreasing
on Ry. Let v € N\ {0}. The functions

wi(r) = —re(|r]),  wau(r) =y(r/v)-|r|
satisfy the conditions (i)—(iv) of Step 1. As a consequence of (1'.10) we get,
for all z € R3,

(l’_12) (wl *U)Q,u)(’%‘) _ ’;;l(_ U)1|(.‘ ‘ |) N w27r'(|| . |)>($)

We compute the limit as v — oo of the left-hand side of (1’.12) using (L 7):

(1".13) (w1 *xwe,)(r) = f (—s)m(]3)¢<|T ; il > |r — s|ds

R

— fTH(T)(T+7)dT_ f55(5)|7”_5|d8
o 0

=2 fTQ/-i(T)dT+27“ le-i(T) dr.
0

T

Next, we compute the limit of the right-hand side of (1.12):

(2 oo
(0 (oL ) )

—. %Jl(u) + Iw).
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The sequence (J1(v))92; is bounded; from (L) it follows that
lim, o0 J2(v) = (k(] - |) * K1)(z). Hence for all x € R3,

(1/_14) lim <_ ’wl‘(’ ’ ‘) « w2,‘u<"- ’))(x) — (H(| . |) *Kl)(l‘)
We compare the limits of both sides of (1'.12), taking into account (1'.13)
and (1'.14). =

(1'.15) COROLLARY. For any v € R3,
1 f a |1 if v <1,
dr 0 ¢ — vl T\ | A o > 1.

Proof. First, we give a proof based on methods of the classical theory
of the Laplace equation. If |v| > 1, then the function (z + |z — v|™!) is
harmonic in the ball {|z| < 1}; therefore, by the Gauss theorem,

Lopd 1)1
) ol Tl BT

=0

With the aid of (L") one can prove that this formula extends to the case
of |v| =1 (see the analogous reasoning below). It remains to consider the
case of [v| < 1. Let 0 < © < 1. The function

dg

eR
¢ — vl

1
CZ@SQBU’—)MSI
2

is constant, because the Fuclidean measure on S5 is invariant with respect
to any linear isometry of R?. The function

u(v) == ! f de

is a solution of the Dirichlet problem
Au=0 in{lz| <O}, cCu.

From the maximum principle it follows that © = const = ¢. In particular,
c=u0)=1m

In order to show the usefulness of Theorem (1.6) we will present another
proof, based just on Lemma (1’.11). One can assume that v#£0. Fix (€ Ss.
Let 0 < R < oo and put

r=2 forr <R,

10 >
rr 0,00l TH{O for r > R.
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From Lemma (1’.11) it follows that
1 1 o0
_ 2
(kD * o ) @) = [ Pratr)dr [ ()

0
_{R for R<1,
~ l14+InR for R>1.

Thus the function 0 < R — (kg(| - |) * (1/(47| - ])))({o) is of class C!, and

moreover,

P 1 1 for R<1,
g(R) = df{(ﬁRﬂ HE 47_‘_’|)(<0) = {1/R for R > 1.

On the other hand,

1 1 dx
(“R“")*m»)(@):m J WG =

lz]<R
R R
1 d¢
= | — | ———=dr=: | f(r)dr.
5[475‘2[ o — ¢ Of )
If K ¢ Ry \ {1} is a compact set, then the function
1
KxS>r{——€R
220 16T

is bounded, as a continuous function with compact domain. Therefore with
the aid of (L) it is easy to verify the continuity of f on Ry \ {1}. We know
that fORf(r) dr < oo for all R > 0. If Ry € Ry \ {1}, then Ry is a point of
continuity of f, thus

= g(Ro).

d R
1) = g [ soyar]
0 =Ro

We proved that f = g on R \{1}. It remains to compute f(1). The function
11,00[ > 7+ |¢o—7(| is increasing, since (d/dr)|(o—r¢|? > 0 whenever r > 1.
We choose a decreasing sequence 1 < r, — 1. The sequence (1/|¢p — r,¢|)
is increasing, so using (L), we compute

d¢ B
1o — ¢ -

1 d 1
9(1)H9(7“u):f(7“y):hf‘<0_idﬁhf
52 v SQ

So, finally, f = g on Ry. It remains to put {y := v/|v| and to calculate
f(1/Jv]). Therefore, Remark (2.1) implies Corollary (1'.15). =

(1'.15)* DI1GRESSION. Conversely, from Corollary (1'.15) one can easily
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derive Remark (2.1). Namely,

<4771|| s (] - ,))(x) — 67“0 (417r S{ |C—dr<—1x|> ~rk(r)dr.

(1'.16) Continuation of Proof (1'.6). Step 2. Let us take the
additional assumptions (i), (ii), (iii) from Step 1. We choose an approximate
identity (h, )52, on R composed of even test functions. The smooth function
wa, = hy, * wy is even, Wy, (= h, *wy) has bounded support. According
to Step 1, for all z € R3,

27r |- | |- |
Then ws, tends uniformly to ws, since wsy is uniformly continuous. From

this and (L),

(1'.18) wy * Wwa, — Wi * wy pointwise as v — oo.

Next, we compute the limit of the right-hand side of (1'.17):

(wlq 1), ] r>><x> . willz =) ) dy

- |- o = yllyl

- f f w‘lm‘/“; "D ¢ iy, (1) i

With the aid of Corollary (1'.15) we estimate

(1/19) f "wl xT —TC| | dC < { Hw1HLoo if |JJ’ < T,

N lwillpes - (r/]z]) if 2| = 7.
In particular, the function

wi(|z = r¢])

0,003 7+ d¢ e W-
oz J =g em
is bounded on the (bounded) subset |J, {2, # 0}. At the same time,
o, = hy x e — 1y in LY(R, Wa), since fR [wa(r)| dr < co. Hence
f f w |x Td d¢ - o, (r)dr — f f w1 m rcl) d¢ - o (r)dr
afr =gl Iz
U)1(| b .
= f m - (lyl) dy
5 ylly

_ <w1|(.\ " D, u')2|('! " |)>($).
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Taking this result and (1’.18) into consideration, we compare the limits of
both sides of (1'.17) and we obtain (1’.10) by the additional assumptions

(i), (i), (iii).
Step 3. We additionally assume that
(1'.20)  {wy # 0} is bounded, w; is bounded and K = C.

We choose ¢ € D(R) such that ¢(0) = 1 and for v € N\ {0} we set
wa,, (1) :=(|r|/v) - wa(r). According to Step 2, for all z € R3,

(1".21) (wy * wy u)(|$|) ‘;T’ <_ wl‘(.’ ’ ‘) « UJQ((‘ D)(x)

From (L) it follows that
(1'.22) Wy * Wa, — Wi * Wp pointwise  as v — o0o.

Let x € R3. Then
wlu-r)*u'a,y(r-) 1w ,<ry\>.w2<ry\>d
<|-| | f |x—y| W) T
wi(|z —yl) (Iyl) Cw2(ly])
*f -y \v) Iy

=: ;Jl(v) + Jo(v).

We estimate

i (lz =yl a0 lwe(ly))]
[T ()] < [ip:—m e i
a T w (e = )l r<||
= |[9|| o - f f d¢ - |wa(r)| dr,

Ce/r=¢

where M := sup,, .0 |t|. From this and the inequality (1'.19) it follows

that the sequence (J1(v)) is bounded. Also by (1'.19) one can apply (L) to
the calculation of lim, . J2(v), namely

M+|x| .
n)= [ w(r>sf il 0e) g () ar

g v lz/r — (|
_)Mjﬂ“ f il |x rcl) d¢ - o (r)dr

afr =l

_ (w1|('! " I) § wz‘('l |~ \))@,)_
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Putting all together gives

i (2D, Bl D)y (LD, 0D
Taking this fact and (1’.22) into account, we compare the limits of the both
sides of (1’.21) and we get (1’.10) by the additional assumptions (1’.20).

Step 4. Now we only assume that K = C. Fix zy € R3 such that

wiy (] - wa (| -

D1, Dy < o

By (1.5) there exists a sequence of simple Borel measurable functions w; ,, :
Ry — Wy, v =1,2,..., with bounded supports such that {w;, — wi|r,
pointwise as ¥ — oo} and |wy . (r)| < |wi(r)| for all » € Ry and all v. For
every v the function

(fun| * [wa)(Jzol) < o0 and (

) w1, () if r >0,
Wiyt RS { —wy(—r) ifr<0

is Borel measurable, simple, odd and has bounded support. Moreover, w; ,
— wy pointwise as v — oo and |wy ,(r)| < |wy(r)| for all r € R and all v.
According to Step 3, for all v € N,

2) (o eun)(al) = 5o (= 2D D ),
2m - -
Applying (L) we pass to the limit on both sides of (1’.23) and we get
(1/_24) (wl % w2)(|x0|) — @ ( - ’LUI(’ . |) * ’LUQ(’ . ‘))(xo)
2 |- | -
Step 5. It remains to deal with the case of K = R. We recall the

complexification method. W?2 is a complex linear space with the following
multiplication of a scalar and a vector:

a-(V,0") = (v — v’ av” + agv’),
where o € C, a7 := Rea and ay := Ima. The locally convex space W?
(= W x W with the product topology) has a bound7ed neighbourhood of
zero, therefore it is a C-normed space. One can choose an admissible C-norm
in W2 such that

V(L0 € W (0] < 0]+ ).

Likewise we fit C-norms in W2, W2 (corresponding to the topologies). The
map
(1.25) W x W3 5 ((v1,07), (v3,05)) = (vivh — vf'vy,vivy +vi'vy) € W2

is continuous and C-bilinear. Consider the canonical injection [ : W 3 v+
(v,0) € W2 and the analogously defined injections Iy : Wi — W2, I : Wy —
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W22 It is clear that [1 0wy is odd and Borel measurable, I5 o wo is even and
absolutely continuous, (I o wg)’ = Iy 0 1. Fix 29 € R3 such that

(el < oo ana (D D L
(o el (ool < oo ana (P20 DD ) < o
Then

(|lx o wn | * |l2 0 wa|)(|xo|) < 0o and

(ow)( DI _ 120wV (DI, \_
< B ] ><”<

and by Step 4,

(1'.26) (11 owy) * (I2 0 wa))(|zol)
2T ! : \ ’ : ‘
where the convolutions on both sides of (1'.26) are defined with the aid of

the “multiplication” (1’.25). We rearrange the equality (1’.26), using the
identity [y (v1)l2(v2) = I(v1v2) and linearity of the integral to obtain

wm*mem:(ﬁﬂ(—“ﬂﬂ*%ﬁ”ymﬁ,

which proves (1’.24). The proof of Theorem (1.6) is complete. m

2’. Proofs

(2".1) Proof of Remark (2.1). See Lemma (1’.11) (and reduction to
the scalar version in (2'.5)) or Digression (1'.15)*. =m

(2".2) Proof of Remark (2.3). By (L) one can assume that x is
bounded and has bounded support. In Theorem (1.6) we substitute

1 2
wl(r) = _T’%(‘T’): w2(r) - —E 67(0/2)7“ . n
(2'.3) LEMMA (scalar version of Lemma (2.4)). If x : |0, 00[ — [0, 00] is

a Borel measurable function, then for all x € R\ {0},

(24 1 <1|2 fh(] - |))(g;) 1 ﬁ(ln””*'w)ﬁ(m dr.

T\a+]- ] a+ (r—|z])2

Proof. In view of (L) one can assume that ~ is a bounded function
with bounded support. We put wy(r) = —r&(|r|), wa(r) = & In(a + r?) and

apply Theorem (1.6). m
(2.5) Proof of Lemma (2.4). By (1.5) one can assume the separa-
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bility of W. The left-hand side of (2.5) exists, since

! 71 * |k ridg r(r)| dr < oo
(#.8) <a+|-|2 st ) ffa+|x g IRl dr < oo

The right-hand side of (2.5) also exists, because by (2'.6) and Lemma (2'.3),

Jr(m O g = (b)) <

S\ Jal) at] ]

Suppose that Lemma (2.4) is true for W = R. Then in the general case, for
all [ € L(W,R),

(3 (g s00)@) = 2 (s @en- D)@

and hence

@0 et D) = 5 [ () ) o

because, by the separability of W and by the Hahn-Banach theorem, the
linear continuous real functions separate points in W. Therefore one can
take W = R, and apply Lemma (2".3) to the functions x* := max{0, s},
Kk~ :=max{0,—K}. m

(2".8) LEMMA (scalar version of Corollary (2.6)). If k : ]0,00] — [0, 0]
is a Borel measurable function, then for all x € R3,

) 1 ;*K . ) — < r2k(r) dr
(2.9) 47r<<a+r-|2>2 ( '))” S e e e

0

Proof. In view of (L) one can assume that « is a bounded function
with bounded support. It is easy to verify (2'.9) for x = 0, and for x # 0 it
may be immediately obtained by differentiation of (2'.4) with respect to a.
It is worth while, however, to investigate the proof of (2'.9) based directly
on Theorem (1.6). Namely, for wy(r) = —r&(|r]), wa(r) = —1/(2(a + r?))
the formula (1.7) takes the form

(2.10) (H(,.|)*(12> _ f CrR(fr))dr

a+|-1?) Joat(r—lz))?

which, after a change of variables, is equivalent to (2".9). m
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(2'.11) Proof of Corollary (2.6). In view of Lemma (2'.8), it is a
slight modification of the argument (2'.5). m

(2'.12) Proof of (2.10). Both sides of (2.10) are continuous on R3,
thus it suffices to show their equality on R\ {0}. From (2'.10) it follows
that for all z € R\ {0},

/ 1 . 1 N _T rdr
(2'.13) <a2+\-!2 (b2+!~\2)2>( ) 2] H{ (a2 +1r2)(b2 + (r — |z])?)

‘x| Fggnoo<ff dz + ff(z)dz— ff(z)dz),
I'n I'n
where I'g : [0,7] 3 ¢ — Re® € C and

f(z) =

(a® +22)(b* + (2 — |z])?)
(z —ia)(z +1ia)(z — |z| —ib)(z — |z| +ib)

For sufficiently large R we have

R
f f(z)dz + f [(2)dz = 2mi(resiq f + ves|z)4i f),
-R I'r

where
res;, f = :
el T Er i) = el = ) — o]+ i) |,
1
= 2(i(a—0) — [#))(i(a +b) — [2])’
r i [ = :
Sl L i) e ia) (2 — o]+ i0) |y
o] + ib

~ 2ib(i(a — b) — |z])(i(a + b) + |z])”

After a rearrangement we obtain

|| 1

(2/.14) [ f)dz+ [ f(z)dz= SR et
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(2'.15) Proof of (2.9). Let z € R®*\ {0}. Applying (2.10) we compute:

d 1 1 1 1
il = —2b
ilawre were) @ 2 )@
_ 272
 (a+b)2+ |2
d 272 ; a+b
= —| — — arctan )
db\ |z |z
Consequently, there exists C' € R such that for all b > 0,
1 1 2m? a+b
2'.16 * z) = C — — arctan .
@10 ()@ O £
Passing to the limit on both sides of (2’.16) as b — oo, we get
212 7
C=—- —.
| 2

It remains to apply the formula Vr > 0 : arctanr + arctan(1/r) =7/2. =

(2.17) Proof of (2.11). We differentiate both sides of (2.10) with
respect to a. m

(2'.18) Proof of (2.12). We write (2.11) in the form
1 1 72 a+b 1

@ @R 0w (s 0P PR
and differentiate it with respect to a. After a rearrangement we obtain
1 1
@+ PP @+ PP
2 1 1 (a+b)? 1
" @ (a0’ +[-P)? <4a+ b (a+b)2+|'l2>'
We differentiate both sides of (2'.19) again with respect to a. m

(2'.19)

(2'.20) Proof of (2.13). In Theorem (1.6) we substitute

{wi(r) = —re(|r]), wa(r) = $(r? — 0*) - Xo(r)}  or, in the other case,

{wi(r) = —rs(lr]), wa(r) = 3(1rf° = 0%) - X, (r)}. =
(2°.21) Proof of Remark (2.14). In Theorem (1.6) we substitute
1

wi(r) = =rr(lr]),  wa(r) = 5= (" Xe(r) + [ (1 = o (7)) m
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3’. Proofs

(3.1) Proof of Remark (3.1). First, consider the case of v < 0.
Using the triangle inequality |y| < |x| + |y — x|, we estimate

A+ D7 =H)= [ A+p)f@—y)dy
lz—y|<e
<+l +" [ flz—y)dy
le—yl<e
= (el + o1
: ) — Lt fe] + 0\
@2 QD7 < (ST e

The right-hand side of (3'.2) is majorized by the right-hand side of (3.2),
since
d1l+r+op
dr 1+4r
It remains to consider the case of v > 0. If |z| < p, then at once (1+|z|)Y((1+
)77 )(@) < (140)7| fllzr, because (1+]-[) ™7 f < Lief = || f]|Lr. Assume
that |z| > o. Again with the aid of the triangle inequality we estimate

(A1 D7 D@ = [ A+l - y)dy

lz—y|<e

<S(+lzl-0 [ fla—y)dy

lz—y|<e
=1+ [zl =) " fllz,

<0 onR;.

that is,
- 1+ || )”
3.3 L4+ |z)7 (L4 -])77 * <l — - 1.
(3".3) (L 2T+ D77 f)(z) < (1+‘$|_Q £l
The right-hand side of (3'.3) is majorized by the right-hand side of (3.2),

since

d 1+ .
—— <0 .
drl4+r—po~ in [g, 00l

(3'.4) Proof of Lemma (3.3). Define

M = s;lﬂg)s(l +DMA+] DA+ )Y ()

and let 29 € R3. Then
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(L4 Jzol) (L[ 1) 77 % (L4 |- )7 (o)
1+ |zl \” _
i ( | °|> (14 |zo — )™ dx

1+ |z
|| <|zol
1+ |z )" .Y
1 — d
+ f <1+|$| (14 |zo — x|) " dx
|z]>|zo]

< f L+ ol /\(1—1—]33 —z|) N dx
< 5[] 0

lz|<|zol

+ [ (tlmo—a) Mde <M+ [ (1+]y)) N dy.

|z[>]zo] R?

Therefore for every v € [0,A] the left-hand side of (3.4) is majorized by
M + ||H||z1, where H := (1+]-])~*. Thus it suffices to prove that M < oc.
Let Hy:=x1(|-|)- H, Hoo := H — Hy. Then

(3".5) H#H = (HoxH)+(HooHo)+(Hoo* Hoo) < 2(HxHo)+f(|-[)*f(|]);
where f stands for the function (2.15) for p = 1. By Remark (3.1),

sup (1 + [2])7(H * Ho)(z) < 2N H|1,
zeR

therefore, taking into account (3'.5), it suffices to show that

(3".6) Sélé)s(lJrlwl)A(f(l'D*f(!'l))(l‘) < 00.

If f(|-]) € L3(R3) then f(|-|) * f(| - ]) € L®(R3). Thus we only need to
prove that

(3".7) lim [z[A(f(]-]) = £(]-1)(2) < o0.

Tr— 00

Let z € R?, |z| > 2. We substitute x = f in (2.16) and estimate

2041+ £0- @)
1 |z|+1 1 |z|—1 00
= [ rl—Adr+m( [+ [ )|7“—|CCH2_’\Tf(\7'])dr
le|—1 -0 Jal+1
1 |z|+1 2] 1—X 1 0 |z|—1 -
< J(5) w1+ Jeaw
x|—1 — 0o 0 el
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2 A 0o
_<m> + — ( fr (r + |z)>~* dr
1

|z|—1 )
+ f Az — )2 N dr + frl_A(rf|1:])2_)‘dr>
1 |z]+1
2 * 1 2 11— 2—A
<(o) + (= [P0+l
<|:v\> |z lf
|| -1 oo
+ [ M al =2 e [ el A~ e ar)
1 |z|+1
5\ g jol/2 el
- <> +—<()\—2) [ = [ e dedr
|z || ! e
|z|—1 o0
+ [ M 2] = )P dr o f(r—|;c|>Hdr)
|z]/2 |z|4+1

9 A 1 |w\/21 )\\mlJrr ‘1” 1—X
< | — A—2 r <> dt dr
(2) rm(o-2 ) 15

1

-~ ( ) (sl =r Aol [ 7

|1/2 1

A A zl/2 A lzl/2 Y
2 2 1/ 2 B ]
== —l—()\—Q)() 2= XN dp + = ( ) s> M ds +
(1) a) ) ) A3

1

2\ 2 1/2\" % -

< <|az\> +()\_2)<x|> f 22N dpr + = <| ’> fsQAds—i-‘;'_?)
1
_ A-2 A1 1 B

Hence

)\2_ ? sup [z|Mf(|- ) * £(|-)(@) <R,
T Ja>2

which, in particular, implies (3'.7). m

(3'.8) Proof of Theorem (3.5). Let (z,) € (R®)N with z, — oo
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(i.e. |x,| — 00 as v — o0). We decompose

7 (5 w) (x) — f Ply) dy- “’°°< . )

2|
- R[ o(y) ((HIZ’—m)W -~ 1> (1+ |2y —y))w(@, —y) dy

+ [ o) (1 +lz, —y) = |2 —y[Mw(z, —y) dy

R3
T, —
+ [ el (I:L"u —y|"w(zy —y) — woo ( iz, = 'Z,))dy
RO\ {z,} :
T, — T,
+ [ o) (woo <y> — Woo ())dy
. |y =y |z |
R*\{z, }

=L (v) + Ia(v) + I3(v) + 14(v).
We will prove that for all k € {1,2,3,4},
(3".9) lim Ij(v) = 0.

In view of Lemma (3.3), for I' >3 and 0 < a < I,
Cr(a) = Sulgs(l )@+ [ DT (4] )T (@) < oo
z€
(The letter I" in the present proof has nothing to do with the Euler function

from Example (1.3).) We choose admissible norms in Wy, Wy, W such that
|v1va| < |vi| - |va] for (vy,ve) € Wi x Wa. The assumption (3.6) yields

C = Séﬁ?s{(l + 2 Me(@)], (14 [=])"|w(z)]} < oo.

First, we will show that (3.9) holds for k€{2,3,4}. After the rearrangement

14|z, —yl
L) = [e@) [ " dtw, —y)dy,
R® |z, =yl
we estimate
14|z, —yl

(3.10) |L@)|<~AC? [Q+[y)™ [ O 7hdt 1+ |z, —y) 7 dy.
RS Izu_yl
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If v > 1, then f‘iﬂ_m;fyl 7" tdt < (1+ |z, —y|)?~! and hence

(L) S ACH L+ [ ) % (L] )7 (@) Sy (L4 [2]) 71 - Ca(1) — 0
as v — oo. If v < 1 and y # x,, then

l+‘wu_y|
[ ot < e, -yt < (4 o — yl) o — gl

‘xu_yl

and by Remark (2.1),

() <AC? [ (1+ [y -yl dy
RS
O (1)) ()
47| - | v

1 7 rZdr T rdr
< A~y C? —_— 0 )
< An~C <]xl,| Of(l—i-’r)/\+ f(1+r)A>_) as v — 00

| |

I5(v) can be expressed as an integral over the whole space:

(3.11) L) = [ ez, -y wl@, —y) - v(y)) dy,
RS
where
, ) . 0 for y = x,,
(812) v RSy {ww«xy —y)/ley —yl) fory # z,.

According to the assumption (3.7),
Yy € R®: lim (|z, —y[Tw(z, —y) — v, (y)) = 0.
V—00

The integrand in (3’.11) is majorized by |p(y)|- (C+maxces, |weo(¢)]), thus

by (L), lim, . I3(r) = 0.
Keeping the notation (3'.12),we have

Lw) = [ e (y) - weolw,/|z.])) dy.
RS

It is clear that

sup vy (y) — Woo (v /|2y ])| < 2 - max jwee (C)],
y€ER3 CESy
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therefore, in view of (L), it suffices to show that

(3".13) Vli_}n;()(v,,(y) — Weo Ty /|Ty])) =0, Vye R

For a given y € R3 there is vy € N such that y # z,, for v > vy. Let ¢ > 0.
The function ws, is uniformly continuous, thus for some § > 0,

Gl — (] <0 = [wee(Cl) —weo ()] < e
We have

Ty Yy

(3.14) lim -
|z, | |z, |

V—00

)

since 1 — |y|/|z,| < |xv/|z| — y/|zu|| < 14 |y|/|z.|. Simultaneously

‘(IV y>‘<|y|_>0 as v — 00,
|z |

|z, | ey
therefore
l'u_y_xy 2:2<1_<1_<$V y>>/ I‘,,_ Yy )_}0
[z, — y| |z, | |z | |7] |z, | |z, |
as v — 00
In particular,
T, — z, |?
vy >y Vv >y S =Y _ v < 62,
|z, —yl |z
So
Yv >y U,,(y)—woo(xy>‘:’woo<xy_y>—woo<mu >'<5.
|z, | [z, — Y |z, |

In this way we proved (3'.13), and thereby (3'.9) for k = 4.

It remains to prove (3'.9) for k = 1. We choose a “buffer” I' €
Jmax{3,v, A — 1}, A[, we define

Bu = {y € R3 : |Z‘V| >1+ |~'L‘1/ _y’}v
0 for y € B,

.3 Y
by'R By'_) 1—<‘$U’ > foryERS\Bya
—
and we estimate

(3.15) L) <C? [ 1+ )
]R3




26 K. Holly

—c? [+ Iy\)‘A<1 - <1+|'§Z|—m>w>dy

R3\ B,
e \"
o Josw () )
+ Bf( +1y)) TR Pepp y
SCQ f bu(y) )\dy_|_02 f (1_’_|y‘)—)\<< |$V‘ >F_1>dy'
s (YD) 5 1+ |z, -y

By (L) the integral over R3 on the right-hand side of (3'.15) tends to zero,
because ||b, || L~ < 1 and, by (3'.14), for y € R3,

|z !
b, <fl-(—F
<]t (=

It remains to show that also

—0 asv— oo.

(3.16)  the integral over B, on the right-hand side of (3'.15) tends to zero
as v — 00.

We have

(3'17) ol <oy —yl+ Yl < A+ |z —y) + 1+ Jy])
= |z, — (14 |z, —y]) <14yl

Defining r,(y) = |x,|/(1 + |z, — y|) for y € B, and bearing in mind
(3'.17) we estimate

r
(3/.18) (IM) 1
L+ [z, —y]
T (y)
=r,(y —1= [ D" dt < (r,(y) = 1)- Iry(y)" "
1

= Llay "1 1+ |z = y) ™ (2] = L+ | = y])
< Llay [T7H 1+ 2y — y) 7T (L + Jy)).
We can now finish the proof of (3'.16):
-2 |z | "
Jaxi (=) 1)

< [+l )" A+ o = y) T+ Jy]) dy
Bu
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< Tlay " [ (A1) A+ |z —y) " dy
R3
<SP+ |z ) HA+ )™ (|- )7 (@)
< P+ [2, )T (1 + [z )2 Cr(h - 1)
=ICrN—1D)14+|z,))! ™ =0 asv— oo
The proof of Theorem (3.5) is complete. m

4’. Proofs
(4’.1) LEMMA. For all r € R,
s 1
4’2 _°
@2) P T e
a+ (r+s)? r r?
43 sup 0 g [ ]
-3 selg a+s? = va va
+ %) 2
4' 4 su (a =14+ —.
(4'.4) Seﬁ (a+ (s=7)?)(a+ (s+71)?) 4a
Proof. (4'.2) follows from
d s a— s2

dsa+s2  (a+s2)2
(4'.3) results from (4’.2), because

a+ (r+s)? r s |7] 1
——— =1 2. <1 — 42— .
a+ s? +T<a+52+ a+32>_ 1L|T|<0LjL 2\/a

Finally, we prove (4’.4):
(a+ s?)? _ (a+s%) . o(s)
(a+(s=r)2)(a+(s+7)?)  (a+s2)2+r+2ar2 —2r2s2 g

It follows that g(R) = f(R,), where
(a+1t)?

t) := .
1 (@a+1t)% +r*+2ar? — 2r2t

Therefore it is sufficient to find sup,~, f(¢). Just note that f’(r? + 3a) = 0,
f > 0 on the left of 72 + 3a, f’ < 0 on the right of r? 4+ 3a. =

(4’.5) Proof of Lemma (4.1). Fix ¢t > 0 and # € R3. In (2.7) we

substitute
1 r 2
- e (-5( ) )
() = (2t) " ep (- 5 (2

and we estimate, using (4'.4),




28 K. Holly
m)~3/2 Dk /= | (@
@)« G ) )
1

= 202 (sl] 1 g 1y )@

<727>1/2 OT (a+(r— \$|2) g(gﬁ: (r+ |z])?)
1/2 oo 2
(i) J a+\:c|)> (”@)dr
(i)lmoj?( ) (2025 ( 2uts)dsm_L|2)2
)

x 1
2 —s%/2 4 —s /2
-2 (f 2 f ) s

(4'.6) Proof of Lemma (4.2). Fix 7 > 0 and z € R3. F(r,) is a
radius function; namely, F(1,y) = (2v7)~%/?k(|y|), where

k(r) = r for r < 2vur,
' 0 forr>+2vT.

We differentiate the equality (obtained with the aid of (2.7))

L] Py Fr, () = @or) 2 [ n(r) dr
i | ) @ D)o+ + 7))

twice with respect to a and we get

@7 ((a+]- )7« F(r,))(@)
R

_2£ I/T 3 d2 L r
B R B ) e v T R

For z1, 20 € Ry we compute

(@'8) d 1 :2'3 (a+Z1+z2)—|—zl+zg+z1zz
' da? (a+ z1)(a + 29) (a+21)3(a+ 22)3

In particular, if, for a fixed r > 0, 21 := (r — |z|)?, 22 := (r + |z|)? then

(@.9) 21+ 2 =207 4202, 28 423 =2t 4 2|t + 1202 ),

2120 = 14— 2r%|z|? + |2|*.
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After substituting (4’.9) in (4'.8) we estimate
d? 1
da? (a + (r —[2])?)(a+ (r + |z])?)
3(a+ 1%+ |x]?)? + 4r?|z|?
(o (=22 (a+ (r + [2])?)?
_ 2
~(a+ (r=[z)?)3(a+ (r + [2])?)
3(a+ 1%+ |z)?)? + 4r2|x|?
(a4 r2 4 |z|?)? + 4r2|z|? + 4r|z|(a + r2 + |z|?)
< 2
~ (a+ (r—2z)?)3(a+ (r + [2])?)
If, additionally, r < v/2v7 then after applying (4'.3) and (4’.4) we have
d? 1
da? (a + (r —[a])?)(a+ (r + |z])?)

< GT R < +a(i|+xlf|)2>2<<a (] _(f«%'@sz T r>2>>3
24 2 9\ 3
= <a+?x\2>4 <1+¢T&+ <f> ) (”L)

<L 1+ 2V77'+2£ ’ 1+£ ’
(a4 |z|?)4 a a 2a )

Using (4'.11) we estimate the right-hand side of (4’.7) to get
((a+ ][ F(r,)(x)

5 9 2 3
< <2w>—1/27r(1 Y ”) <1+ ”) (a -+ [2?) 4.
a a 2a
We put

(4.12) M(o) = 272x(1 + \/20 + 20)*(1 + 10)". m

(4'13) Proof of Lemma (4.3). Fix 7 > 0 and € R®. Then G(7,-)
= k(|- |), where

(4'.10)

(4.11)

H(T) — 0 if r < \/ﬂ,
r~4 ifr > \2ur.
We differentiate the equality (obtained from (2.7))
T r2k(r) dr

1 =2, (. N z) =
E((G_H.\ ) G(7,))(z) bf (a+ (r—|z[)?)(a+ (r+|z|)?)
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twice with respect to a and next, using (4'.10) and (4’.4), we estimate

@14)  ((a+]- )™ *G(7,))(@)

2 7 d? 1
=T f r2 dr

3 da? (a + (r —[])?)(a + (r + [2[)?)
00 -2 212
< 47 f r ‘ (a+ |z|?) i
(a+|zP?)? 2 (a+(r—|z)?)?* (a+(lz| = 7)*)(a+ (lz] +7)?)
V2vT
47 ( T r—2dr 1 7 dr
(] LT )
= 212 —1zN2)2 "1 —1+N2)2
@ PP\ ) G = JoPE T ) (ot (-
We differentiate the formula
f (a+ (r—|z))®) " dr = a=Y?arctan((r — |z]) - a=1/?)
with respect to a and we get
- [ r— |zl r—|z|
N-2 5 3/2
f(a+(r—\x|)) dr—i-a /<arctan 7 +\/5-m .
Hence, after applying (4’.2), we obtain
T dr
4’15
S rre Rk
V2vT

a2 (;T + arctan o] = v2vr +a'/?. o] = v2vr )

™

32T T L T S VIR 72
a (+2+\/&2\/5) 4(7T+)a .

N = N

<
- 2

With the aid of the formula
f r=2dr
a+ (r—|z[)?

1 || | a+(r—|m|)2+1+a—|w\2 1 arcta r— |z
= — n - T n
a+ |z]2 \a+ |z r2 r o a+|z|? Va Vva
we compute

iy r—2dr _ _
W16) | gy = @) et )
V2vr

+(a+|1:]2)_2<x|1na+(m|_\/ﬁ)2 _ ol (” W))

— t
2uT Va 2 +arctan Va

We differentiate (4’.16) with respect to a, and next, using the inequalities
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Ins < s'/2 for s > 0 (because e > 2), (4'.2) and (4'.3), we estimate
r r=2dr

Wi | ar e

V2vT (
2 1 lz|*> —a (7 |z| —V2uT
= . . — + arctan ————
va (a+z?)?2 |z|24+a\2 Va
a=3/? 1 T |z| —V2uT
T a+ |z|? <2+arcan Va >
1 1 |z|> — a |z| —V2uT
20 a+|z* [zP+a a+ (x| —V207)2
(2ur)~1/2 2|z| a+ (|z| — V2vr)?
In
(a+[z[2)? ~ (a+]|z*)?
|z 1
(a+1z?)? a+ (Jz| — vV2vr)?
2 1 a=?? 1

< 2 .- 1. L2
- a? [ 2 aw

vt

1

1 of? —
2 a+|z|?
(2

|z|2 + a

|z| — v2uT
a+ (|z] — V2uT)?
PG LN 2 < 1 >1/2
(a+[z[*)?  (a+[zP)? Ja+ [z \a+|z]?
— /2 2\ 1/2
_<a+(|:c\ V2uT) ) 40

2ur

P 52 4 11 1 N (2ur)~1/2

. LI

— 2 2a a 2ya  (a+|z|?)?

2 < 1 )1/2<a+(]a:—\/2yr)2>1/2

S TR
(a+ |z]?)? QuT a+ |z|?

+

(10w +1) - a=5/2

—1/2 wr 2w\ Y2 9\ 9
+(21/T) 1+2(1+ T“F 0 (a+|x]) .

Combining (4'.17) and (4’.15) allows us to conclude the estimate (4’.14):

((a+1-P)™" G(r,))(@) < T - (427 +5)-a2(a + [al*) 72

vt 2uTt 1/2
+(vr)"Y2. 27r\/§<1 + 2(1 + 4/ — ) >(a + |z)?) 2.

=
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We put
(4/.18) C= %-(42w+5),
(4/.19) M(0) = 2nv2(1 + 2(1 4 /20 +20)"/?). =
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