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Hyperbolically convex functions

by Wancang Ma and David Minda (Cincinnati, Ohio)

Abstract. We investigate univalent holomorphic functions f defined on the unit disk
D such that f(D) is a hyperbolically convex subset of D; there are a number of analogies
with the classical theory of (euclidean) convex univalent functions. A subregion Ω of D
is called hyperbolically convex (relative to hyperbolic geometry on D) if for all points
a, b in Ω the arc of the hyperbolic geodesic in D connecting a and b (the arc of the
circle joining a and b which is orthogonal to the unit circle) lies in Ω. We give several
analytic characterizations of hyperbolically convex functions. These analytic results lead to
a number of sharp consequences, including covering, growth and distortion theorems and
the precise upper bound on |f ′′(0)| for normalized (f(0) = 0 and f ′(0) > 0) hyperbolically
convex functions. In addition, we find the radius of hyperbolic convexity for normalized
univalent functions mapping D into itself. Finally, we suggest an alternate definition of
“hyperbolic linear invariance” for locally univalent functions f : D → D that parallels
earlier definitions of euclidean and spherical linear invariance.

1. Introduction. Our principal goal is to develop the theory of hy-
perbolically convex functions on the unit disk D. A holomorphic, univalent
function f defined on D is called hyperbolically convex if the image region
f(D) is a hyperbolically convex subset of D. This is a subclass of the set of all
univalent functions mapping D into itself. The classical theory of euclidean
convex univalent functions defined on the unit disk is well developed; for
example, see [1] or [3]. The theory of spherically convex univalent functions
has received less attention, but some basic results are known; see [5], [8]
and [11].

For α > 0 let Kh(α) denote the family of all holomorphic functions
f : D → D such that f is univalent, f(0) = 0, f ′(0) = α, and f(D) is a
hyperbolically convex region in D. Schwarz’ Lemma implies that α ≤ 1 and
α = 1 only when f is the identity. We first determine the Koebe region⋂
{f(D) : f ∈ Kh(α)} for the family Kh(α). Then we obtain a number of
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characterizations of hyperbolically convex functions, including a connection
with euclidean starlike functions. The connection with euclidean starlike
functions is based upon the observation that a hyperbolically convex region
containing the origin is starlike with respect to the origin. A computational
technique is used to derive the sharp upper bound on |f ′′(0)| over the family
Kh(α). This leads to sharp growth and distortion theorems for Kh(α).

For α > 0, let SB(α) denote the family of holomorphic, univalent func-
tions f defined on D which satisfy f(0) = 0, f ′(0) = α and f(D) ⊂ D. Of
course, α ∈ (0, 1] and Kh(α) is a subfamily of SB(α). It is natural to deter-
mine the radius of hyperbolic convexity for the family SB(α). In fact, we are
able to find the radius of hyperbolic k-convexity for SB(α) for all k ∈ [0, 4];
the value for k = 0 corresponds to the radius of hyperbolic convexity.

Euclidean (spherical) convexity plays a fundamental role in euclidean
(spherical) linear invariance ([6], [8]). This suggests that hyperbolic convex-
ity should play a similar role relative to an appropriate notion of hyperbolic
linear invariance. Our theory of hyperbolically convex functions enables us
to show that there is a corresponding notion of hyperbolic linear invariance
which exhibits strong similarities with both euclidean and spherical linear
invariance. A related, but different, notion of hyperbolic linear invariance
was given in [7]. This earlier definition of hyperbolic linear invariance was
motivated by the desire to generalize certain aspects of the classical theory
of bounded univalent functions in the same way the definition of euclidean
linear invariance by Pommerenke [14] extended a number of results from
univalent function theory.

2. Preliminaries. The hyperbolic metric on the unit disk D = {z :
|z| < 1} is given by λD(z)|dz| = |dz|/(1−|z|2). This metric is normalized to
have Gaussian curvature −4. Let Ω be a hyperbolic region in the complex
plane C; that is, C \ Ω contains at least two points. The hyperbolic metric
λΩ(z)|dz| on Ω is determined from λΩ(ϕ(z))|ϕ′(z)| = λD(z), where ϕ is any
holomorphic covering projection of D onto Ω. This definition is independent
of the choice of the holomorphic covering projection. When Ω is simply
connected, a holomorphic covering projection of D onto Ω is a conformal
mapping. The hyperbolic metric on any hyperbolic region Ω has Gaussian
curvature −4; this means that

κ(z, λΩ) = −∆ log λΩ(z)
λ2
Ω(z)

= −4.

The hyperbolic distance between a, b ∈ Ω is defined by

dΩ(a, b) = inf
∫
δ

λΩ(z) |dz|,
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where the infimum is taken over all rectifiable paths δ in Ω joining a and b.
A path γ connecting a and b is called a hyperbolic geodesic if

dΩ(a, b) =
∫
γ

λΩ(z) |dz|.

Hyperbolic geodesics always exist, but need not be unique unless Ω is simply
connected. The hyperbolic disk with center a and hyperbolic radius % is
DΩ(a, %) = {z ∈ Ω : dΩ(a, z) < %}. For the unit disk D,

dD(a, b) =
1
2

log
1 +

∣∣∣∣ a− b1− ab

∣∣∣∣
1−

∣∣∣∣ a− b1− ab

∣∣∣∣ = artanh
∣∣∣∣ a− b1− ab

∣∣∣∣.
The hyperbolic distance on D is invariant under Aut(D), the group of con-
formal automorphisms of D. The unique hyperbolic geodesic in D connecting
a and b is the arc γ of the circle through a and b that is orthogonal to the
unit circle.

We define two differential operators for holomorphic functions f : D→ D.
Set

Dh1f(z) =
(1− |z|2)f ′(z)

1− |f(z)|2
and

Dh2f(z) =
(1− |z|2)2f ′′(z)

1− |f(z)|2
+

2(1− |z|2)2f(z)f ′(z)2

(1− |f(z)|2)2
− 2z(1− |z|2)f ′(z)

1− |f(z)|2
.

The use of these two differential operators simplifies many formulas. For
more information about these two operators, see [7]. In particular, we note
the invariance property |Dhj(R ◦ f ◦ S)| = |Dhjf | ◦ S (j = 1, 2) which
holds for all R,S ∈ Aut(D). Also, if f(0) = 0, then Dh1f(0) = f ′(0) and
Dh2f(0) = f ′′(0).

We shall make use of the notion of the (signed) hyperbolic curvature of
a path; this is the geodesic curvature of a path relative to the hyperbolic
metric. Suppose γ : z = z(t), t ∈ I, where I is an interval on the real line, is a
C2 curve in a hyperbolic region Ω with nonvanishing tangent. The (signed)
hyperbolic curvature κΩ(z, γ) of γ at z = z(t) is

κΩ(z, γ)λΩ(z) = κe(z, γ)− ∂ log λΩ(z)
∂n

(1)

= κe(z, γ) + 2 Im
{
∂ log λΩ(z)

∂z
· z
′(t)
|z′(t)|

}
,

where κe(z, γ) is the euclidean curvature of γ at z and n = n(z) is the unit
normal at z which makes an angle +π/2 with the tangent vector to γ at z.
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In particular, if Ω = D, then

κD(z, γ) = (1− |z|2)κe(z, γ) + 2 Im
{
z(t)z′(t)
|z′(t)|

}
.

The hyperbolic curvature κD(0, γ) relative to D and the euclidean curvature
κe(0, γ) coincide at the origin. Hyperbolic curvature on D is invariant un-
der Aut(D); that is, κD(S(z), S ◦ γ) = κD(z, γ) for any S ∈ Aut(D). In D
the arcs of constant hyperbolic curvature are subarcs of (euclidean) circular
arcs; hyperbolic geodesics have hyperbolic curvature zero. For a locally uni-
valent function f : D→ D there is a simple formula relating the hyperbolic
curvature of the paths γ : z = z(t) and f ◦ γ [7]:

(2) κD(f(z), f ◦ γ)|Dh1f(z)| = κD(z, γ) + Im
{
Dh2f(z)
Dh1f(z)

· z
′(t)
|z′(t)|

}
.

We briefly recall the notion of hyperbolic k-convexity; see [2] and [9]
for additional information. A region Ω ⊂ D is called hyperbolically k-convex
(k > 0) relative to hyperbolic geometry on D if for any pair of distinct points
a, b ∈ Ω the two shortest arcs of constant hyperbolic curvature k connecting
a and b lie in Ω. A region Ω is hyperbolically convex if for all a, b ∈ Ω the
hyperbolic geodesic connecting a and b lies in Ω. Note that if Ω is hyper-
bolically convex and 0 ∈ Ω, then Ω is starlike with respect to the origin
since hyperbolic geodesics in D through the origin are euclidean line seg-
ments. A hyperbolically convex region may be regarded as a hyperbolically
0-convex region. The concept of hyperbolic k-convexity is invariant under
Aut(D). A univalent function f mapping D into itself is called hyperbolically
k-convex if the image region f(D) is hyperbolically k-convex. Hyperbolically
k-convex functions were studied in [5] and [9].

It is known (see [2] and [9]) that Ω ⊂ D is hyperbolically k-convex if
∂Ω is a Jordan curve of class C2 and κD(z, ∂Ω) ≥ k for all z ∈ ∂Ω. On the
other hand, for k = 2 and 4, Flinn and Osgood [2] showed that if Ω ⊂ D
is hyperbolically k-convex with C2 boundary then κD(z, ∂Ω) ≥ k for all
z ∈ ∂Ω. We now extend this result to all k ≥ 0.

Theorem 1. Let Ω ⊂ D be a hyperbolically k-convex region with C2

boundary. Then κD(z, ∂Ω) ≥ k for all z ∈ ∂Ω ∩ D.

P r o o f. Since both hyperbolic curvature and hyperbolic k-convexity are
invariant under the group Aut(D), it is enough to show that κD(0, ∂Ω) ≥ k
if 0 ∈ ∂Ω.

First, we consider the case k > 0. Assume that κD(0, ∂Ω) < k. Then
κe(0, ∂Ω)=κD(0, ∂Ω)<k. Let L be the circular arc tangent to ∂Ω at 0 with
euclidean curvature k such that Ω∩{z : |z| < ε} lies inside L for sufficiently
small ε > 0. Let ∆ be the region in D outside L. Since κe(0, γ) < k, there
are two points a and b in D lying in different components of Ω ∩ ∆. One
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of the curves connecting a and b with constant hyperbolic curvature k lies
entirely in ∆, so it cannot lie entirely in Ω. This contradicts the hyperbolic
k-convexity of Ω, so we must have κD(0, ∂Ω) ≥ k.

When k = 0, we replace L by the straight line tangent to ∂Ω at 0 and
use a similar argument to that employed above.

3. Characterizations of hyperbolically convex functions. In [5]
a transformation method was used to obtain a number of sharp growth
and distortion theorems for hyperbolically k-convex functions when k ≥ 2.
For 0 ≤ k < 2, this transformation method does not seem applicable and
the corresponding problems for hyperbolically k-convex functions when k ∈
[0, 2) remain open. In this section, we use a different approach to investigate
hyperbolically convex functions.

We present an example of a hyperbolically convex function which plays
an important role in the class Kh(α).

Example 1. For 0 < α ≤ 1, let γ be the hyperbolic geodesic in D which
is symmetric about the real axis and passes through −α/(1 +

√
1− α2).

The geodesic γ determines two hyperbolic half-planes; let Ω be the one that
contains the origin. Elementary computation shows that

gα(w) =
w(1 + αw)
α+ w

maps Ω conformally onto D with gα(0) = 0 and g′α(0) = 1/α. If kα = g−1
α ,

then kα maps D conformally onto the hyperbolic half-planeΩ with kα(0) = 0
and k′α(0) = α, so kα ∈ Kh(α). The function kα has the explicit expression

kα(z) =
2αz

1− z +
√

1 + 2(2α2 − 1)z + z2

and the power series expansion

kα(z) = αz + α(1− α2)z2 + α(1− α2)(1− 2α2)z3 + . . .

Now we give a different proof of the covering theorem for hyperbolically
convex functions, which was obtained earlier by Mejia and Minda [9]. More
precisely, they obtained the covering theorem for hyperbolically k-convex
functions for all k ≥ 0. For 0 ≤ k < 2 they determined the radius of the
disk covered by all normalized hyperbolically k-convex functions as the root
of a complicated equation. Here we show that the covering theorem for the
case k = 0 is explicit and simple, which will be used to give a preliminary
upper bound on the second coefficient of hyperbolically convex functions. A
similar proof also works when 0 < k < 2.
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Theorem 2. Let f ∈ Kh(α). Then either f(D) contains the closed disk{
w : |w| ≤ α

1 +
√

1− α2

}
or else f is a rotation of kα, that is, f(z) = eiθkα(e−iθz) for some real θ.

P r o o f. Let c be a point in D \ f(D) which is closest to the origin. Then

F (z) =
f(z)− c
1− cf(z)

is also hyperbolically convex and 0 6∈ F (D). So F (D) must lie in some
half-disk of D which has a diameter L′ as part of its boundary. Let Ω be
the hyperbolic half-plane containing the origin and bounded by the image
L = T (L′) of L′ under the conformal automorphism T (z) = (z+c)/(1+cz).
Then f(D) ⊂ Ω. Note that c ∈ L ⊂ D \ f(D) and c is a closest point to the
origin in D \ f(D), so L must be symmetric with respect to the straight line
passing through 0 and c. We may assume c < 0 by rotating f if necessary;
then L is symmetric with respect to the real axis. Consider the function kβ
of Example 1, where β is determined from

β

1 +
√

1− β2
= −c.

Define g by f(z) = kβ(g(z)); then g is holomorphic and univalent in D with
g(0) = 0 and g(D) ⊂ D . In other words, f is subordinate to kβ ; this implies
that α ≤ β. Therefore,

|c| = β

1 +
√

1− β2
≥ α

1 +
√

1− α2
.

If |c| = α/
(
1 +
√

1− α2
)
, then α = β, g′(0) = 1, g(z) = z and so f = kα.

This completes the proof.

Lemma 1. Suppose Ω ⊂D is hyperbolically convex in D. Then for c ∈
Ω ∩ D and % > 0, Ω ∩DD(c, %) is hyperbolically convex in Ω.

P r o o f. Since the hyperbolic distance and hyperbolic convexity are both
invariant under Aut(D), we may assume that c = 0. Now we prove that
the set Ω ∩ DD(0, %) = Ω ∩ {z : |z| < tanh(%)} is hyperbolically convex in
Ω. For each z ∈ Ω, the half-open line segment (0, z] lies in Ω because Ω
is hyperbolically convex. Consequently, Ω is starlike with respect to 0. By
Proposition 2 of [10], we see that Ω ∩ {z : |z| < tanh(%)} is hyperbolically
convex in Ω.

Theorem 3. Suppose f is holomorphic and locally univalent in D with
f(D) ⊂ D. Then the following are equivalent.

(i) f is hyperbolically convex.
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(ii) For z ∈ D, ∣∣∣∣ Dh2f(z)
2Dh1f(z)

∣∣∣∣ < 1.

(iii) For z ∈ D,

Re
{
zf ′′(z)
f ′(z)

+ 1 +
2zf(z)f ′(z)
1− |f(z)|2

}
> 0.

P r o o f. (i)⇒(ii). Because hyperbolic convexity and the quantity
|Dh2f(z)/(2Dh1f(z))| are both invariant under Aut(D), we need only es-
tablish the implication in the case when z = 0 and f(0) = 0. In this case we
need to demonstrate that ∣∣∣∣ f ′′(0)

2f ′(0)

∣∣∣∣ < 1.

Let Ω = f(D) and β > 0 be the radius of the largest open euclidean disk
centered at 0 that is contained in f(D). Then λΩ(f(z))|f ′(z)| = 1/(1−|z|2)
and formula (1) yield

λΩ(0)κΩ(0, γ) = κe(0, γ)− Im
{
f ′′(0)
f ′(0)2

· w
′(0)

|w′(0)|

}
for a smooth curve γ : w = w(t) with w(0) = 0. As {w : |w| ≤ β} ⊂ Ω,
Lemma 1 implies that Ω ∩DD(βeiθ, artanh(β)) is hyperbolically convex in
Ω for all real θ. Note that

DD(βeiθ, artanh(β)) =
{
w :
∣∣∣∣ w − βeiθ

1− βe−iθw

∣∣∣∣ < β

}
is a euclidean disk with radius β/(1 + β2) and has the origin as a boundary
point. Let γθ : w = w(t), with w(0) = 0, be a parametrization of the part
of the boundary of this disk that lies in Ω. Then κe(0, γθ) = β + 1/β. From
Theorem 1 we deduce that κΩ(0, γθ) ≥ 0 for all real θ. We may now conclude
that ∣∣∣∣ f ′′(0)

f ′(0)2

∣∣∣∣ ≤ β +
1
β
.

Set α = |f ′(0)|. If f is not a rotation of the function kα given in Exam-
ple 1, then we know from Theorem 2 that 1 > β > α/(1 +

√
1− α2 ) . This

yields ∣∣∣∣ f ′′(0)
2f ′(0)

∣∣∣∣ ≤ α

2

(
β +

1
β

)
< 1.

On the other hand, if f is a rotation of kα, then∣∣∣∣ f ′′(0)
2f ′(0)

∣∣∣∣ = 1− α2 < 1.

This shows that (i)⇒(ii).
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(ii)⇒(iii). Condition (ii) means that∣∣∣∣ (1− |z|2)f ′′(z)
f ′(z)

+
2(1− |z|2)f(z)f ′(z)

1− |f(z)|2
− 2z

∣∣∣∣ < 2,

or ∣∣∣∣zf ′′(z)f ′(z)
+ 1 +

2zf(z)f ′(z)
1− |f(z)|2

− 1 + |z|2

1− |z|2

∣∣∣∣ < 2|z|
1− |z|2

.

This yields

Re
{
zf ′′(z)
f ′(z)

+ 1 +
2zf(z)f ′(z)
1− |f(z)|2

}
>

1− |z|
1 + |z|

> 0.

(iii)⇒(i). We start by showing that the image under f of every circle
centered at the origin has positive hyperbolic curvature. For 0 < r < 1,
consider the euclidean disk D(0, r), with center 0 and radius r and its pos-
itively oriented boundary γ : z(t) = reit, 0 ≤ t ≤ 2π. We know [7] that
κD(z, γ) = r + r−1 > 2 and from formula (2) we get

κD(f(z), f ◦ γ)|Dh1f(z)|

= κD(z, γ) + Im
{
Dh2f(z)
Dh1f(z)

· iz
r

}
= κD(z, γ) + Re

{
Dh2f(z)
Dh1f(z)

· z
r

}

=
1
r

[
r2 + 1 + Re

{
(1− |z|2)zf ′′(z)

f ′(z)
+

2(1− |z|2)zf(z)f ′(z)
1− |f(z)|2

− 2|z|2
}]

=
1
r

[
r2 + 1 + (1− r2) Re

{
zf ′′(z)
f ′(z)

+ 1 +
2zf(z)f ′(z)
1− |f(z)|2

− 1 + |z|2

1− |z|2

}]
.

By making use of (iii) we see that κD(f(z), f ◦ γ) > 0.
Next we show that f is univalent in D. We may assume that f(0) =

0. If not, replace f by the function F (z) = (f(z) − f(0))/(1 − f(0)f(z))
which also has the property that F ◦ γ has positive hyperbolic curvature
for 0 < r < 1 since hyperbolic curvature is invariant under Aut(D). Let
R = sup{r : f is univalent in D(0, r)}. Note that R > 0 because f is locally
univalent. If R = 1, we are done. Suppose 0 < R < 1. Then f(D(0, R)) is
hyperbolically convex because f is univalent inD(0, R) and ∂f(D(0, R)) has
positive hyperbolic curvature. In particular, f is starlike with respect to the
origin in D(0, R). This implies that f(∂D(0, R)) is an analytic curve which is
starlike with respect to the origin. Therefore, f is injective on ∂D(0, R). But
if f is injective on the compact set D(0, R), then f must remain injective on
a slightly larger disk, which contradicts the definition of R. Consequently,
we must have R = 1.

Thus, f is univalent in D and f(D(0, r)) is hyperbolically convex for
0 < r < 1. Let {rn} be an increasing sequence of positive numbers tending
to 1. Because an increasing union of hyperbolically convex sets is again
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hyperbolically convex, the set f(D) =
⋃
{f(D(0, rn)) : n = 1, 2, 3, . . .} is

hyperbolically convex.

Corollary. Let f be holomorphic and univalent in D with f(D) ⊂ D.
Then f is hyperbolically convex if and only if f maps every subdisk of D onto
a hyperbolically convex region. In particular , for 0 < r < 1 the function
f(rz) is hyperbolically convex.

P r o o f. In the proof of (iii)⇒(i) we showed that f(D(0, r)) is hyperbol-
ically convex whenever f is hyperbolically convex. By making use of the
invariance of hyperbolic convexity under Aut(D), we may easily extend this
result to any subdisk of D.

R e m a r k. This corollary is the hyperbolic analog of a theorem of Study
for euclidean convex functions [15]. There is a similar result for spherically
convex functions [8].

We next discuss another characterization for hyperbolically convex func-
tions which relates to euclidean starlikeness.

Theorem 4. Suppose f is holomorphic and locally univalent in D with
f(D) ⊂ D. Then the following are equivalent.

(i) f is hyperbolically convex.
(ii) For each a ∈ D the function

Fa(z) =
f

(
z + a

1 + az

)
− f(a)

1− f(a)f
(
z + a

1 + az

)
is starlike with respect to the origin in D.

(iii) For (z, a) ∈ D× D,

Re
{

(z − a)(1− az)f ′(z)
(f(z)− f(a))(1− f(a)f(z))

}
> 0.

P r o o f. (i)⇒(ii). If f is hyperbolically convex, then so is Fa for each
a ∈ D and Fa(0) = 0. Because a hyperbolically convex region in D which
contains the origin is starlike with respect to the origin, the function Fa is
starlike with respect to the origin.

(ii)⇒(i). Suppose Fa is starlike with respect to the origin for each a ∈ D.
Fix a, b ∈ D. Then the segment

[0, Fa((b− a)/(1− ab))] = [0, (f(b)− f(a))/(1− f(a)f(b))]
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lies in Fa(D). Note that

f(z) =
Fa

(
z − a
1− az

)
+ f(a)

1 + f(a)Fa

(
z − a
1− az

) .

Therefore, the conformal automorphism T (w) = (w+f(a))/(1+f(a)w) of D
maps Fa(D) onto f(D). Because T also maps [0, Fa((b−a)/(1−ab))] onto the
hyperbolic geodesic connecting f(a) and f(b), it follows that the hyperbolic
geodesic joining f(a) and f(b) lies in f(D). Thus, f is hyperbolically convex.

(ii)⇔(iii). Since the function Fa satisfies Fa(0) = 0, it is starlike with
respect to the origin if and only if for z ∈ D

Re
{
zF ′a(z)
Fa(z)

}
> 0.

For w = (z + a)/(1 + az) we have

zF ′a(z)
Fa(z)

=
(1− |f(a)|2)(w − a)(1− aw)f ′(w)
(1− |a|2)(f(w)− f(a))(1− f(a)w)

.

Upon replacing w by z, we obtain the desired inequality.

4. Growth and distortion theorems for hyperbolically convex
functions. Although the inequality |Dh2f(z)/(2Dh1f(z))| < 1 (z ∈ D) of
Theorem 3 characterizes hyperbolically convex functions, it is not a sharp
inequality. We now establish the sharp version of Theorem 3(ii) by using a
technique of Wirths [16].

Theorem 5. Let f be hyperbolically convex in D. Then, for z ∈ D,
|Dh2f(z)/(2Dh1f(z))| ≤ 1− |Dh1f(z)|2.

P r o o f. By considering f(rz) and letting r tend to 1 if necessary, we
may assume that f is holomorphic and univalent on D with |f(z)| ≤ R < 1
(z ∈ D). Define

Hf (z) =
|Dh1f(z)|2

1− |Dh2f(z)/(2Dh1f(z))|
.

The desired inequality is the same as Hf (z) ≤ 1. Under our assumptions,
Hf (z) tends to 0 as |z| tends to 1. If the inequality Hf (z) ≤ 1 were not
valid, then there would exist a ∈ D such that Hf (a) > 1 and Hf (z) ≤ Hf (a)
in a neighborhood of a. Without loss of generality we may assume a = 0.
Otherwise, we compose f with an appropriate conformal automorphism of D
and use the invariance properties of hyperbolic convexity and the operators
Dh1 and Dh2.
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Let

f(z) = a1z + a2z
2 + a3z

3 + . . . = a1[z +A2z
2 +A3z

3 + . . .].

We are assuming that Hf (z) ≤ Hf (0) in a neighborhood of 0 and

Hf (0) =
|a1|2

1− |A2|
> 1.

The inequality Hf (z) ≤ Hf (0) is equivalent to

Mf (z) ≡ |a1|2 − |a1|2|Dh2f(z)/(2Dh1f(z))| − (1− |A2|)|Dh1f(z)|2 ≥ 0.

Direct computation gives

Mf (z) = Re{R1z}+ Re{R2z
2}+R3|z|2 +O(|z|3),

where

R1 = −|a1|2
A2

|A2|

(
3A3A2

A2
− 6|A2|2 + |a1|2 − 1 + 4|A2|

)
and

4|A2|
|a1|2

R3 =
∣∣∣∣3A3A2

A2
− 2|A2|2 + |a1|2 − 1

∣∣∣∣2 − 2|3A3 − 2A2
2|2

− 8|a1|2|A2|2 + 4|A2|2 − 2(1− |a1|2)2 − 16|A2|3(1− |A2|)
+ 8(1− |a1|2)|A2|(1− |A2|).

(To aid the reader in verifying the preceding expressions for R1 and R3,
we give a number of intermediate formulas in an appendix.) The fact that
Mf (z) ≥ 0 in a neighborhood of 0 yields R1 = 0 and R3 ≥ 0. Thus

3A3A2

A2
− 6|A2|2 + |a1|2 − 1 + 4|A2| = 0,

from which we see that∣∣∣∣3A3A2

A2
− 2|A2|2 + |a1|2 − 1

∣∣∣∣2 = 16|A2|2(1− |A2|)2

and
|3A3 − 2A2

2|2 = (4|A2|2 − 4|A2|+ 1− |a1|2)2.
Furthermore, we have

4|A2|
|a1|2

R3 = −4(|A2| − 1 + |a1|2)(−4|A2|2 + 5|A2| − 1 + |a1|2).

Since Hf (0) > 1, |A2|−1+|a1|2 > 0. From Theorem 3 we see that |A2|<1. It
is easy to check that −4|A2|2+5|A2|−1+|a1|2 > 0 when 1−|a1|2 < |A2| < 1.
But this contradicts R3 ≥ 0. So we must have Hf (z) ≤ 1 for all z ∈ D.

Corollary. If f ∈ Kh(α), then |f ′′(0)| ≤ 2α(1 − α2). Equality holds
for kα and its rotations.
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R e m a r k. For f univalent in D with f(D) ⊂ D, f(0) = 0 and f ′(0) =
α > 0, Pick [13] established the sharp bound |f ′′(0)| ≤ 4α(1 − α); see [2]
for a simple proof. The preceding corollary is an improvement of this result
for hyperbolically convex functions. The analogous bound for spherically
convex functions is given in [11].

Theorem 6. Suppose f is hyperbolically convex in D and f 6∈ Aut(D).
Then for any path γ in D from a to b,

|Dh1f(a)|√
1− |Dh1f(a)|2

exp[−2 lengthh(γ)]

≤ |Dh1f(b)|√
1− |Dh1f(b)|2

≤ |Dh1f(a)|√
1− |Dh1f(a)|2

exp[2 lengthh(γ)],

where lengthh(γ) is the hyperbolic length of the path γ.

P r o o f. It suffices to establish the upper bound because the lower bound
then follows by interchanging the roles of a and b. Let γ : z = z(s), 0 ≤ s ≤
L = lengthh(γ), be a parametrization of γ by hyperbolic arc length. This
implies that

z′(s) = [1− z(s)z(s)]eiθ(s).
Direct calculation then results in (see [7])

(d/ds)|Dh1f(z)|
|Dh1f(z)|

=
d

ds
log |Dh1f(z)| = Re

{
Dh2f(z)
Dh1f(z)

eiθ(s)
}
≤
∣∣∣∣Dh2f(z)
Dh1f(z)

∣∣∣∣.
Theorem 5 gives

(d/ds)|Dh1f(z)|
|Dh1f(z)|(1− |Dh1f(z)|2)

≤ 2,

since f 6∈ Aut(D). By integrating this differential inequality over the interval
[0, L], we obtain

log
|Dh1f(b)|

√
1− |Dh1f(a)|2

|Dh1f(a)|
√

1− |Dh1f(b)|2
≤ 2L.

This gives the upper bound in the theorem.

Corollary. For f ∈ Kh(α), we have the sharp bounds

α(1− |z|)√
(1 + |z|)2 − 4α2|z|

= Dh1kα(−|z|) ≤ |Dh1f(z)| ≤ Dh1kα(|z|)

=
α(1 + |z|)√

(1− |z|)2 + 4α2|z|
.

P r o o f. These inequalities are trivial for α = 1. If α ∈ (0, 1), then f
is not a conformal automorphism of D. To establish the inequalities in this
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case, let a = 0, b = z and γ be the hyperbolic geodesic from 0 to z in the
theorem. Since Dh1f(0) = α, the theorem becomes

α√
1− α2

· 1− |z|
1 + |z|

≤ |Dh1f(z)|√
1− |Dh1f(z)|2

≤ α√
1− α2

· 1 + |z|
1− |z|

.

Because t/
√

1− t2 is an increasing function on (0, 1), the desired inequalities
follow from solving the above inequalities for |Dh1f(z)|. All that remains is
to calculate Dh1kα(x) for −1 < x < 1, which can be done directly using the
expression for kα.

Theorem 7. Let f ∈ Kh(α). Then we have sharp estimates

−kα(−|z|) ≤ |f(z)| ≤ kα(|z|).

P r o o f. To prove the upper bound, fix any a ∈ D, set γ = [0, a] and
Γ = f ◦ γ. Then from the Corollary to Theorem 6,

dD(0, f(a)) ≤
∫
Γ

|dw|
1− |w|2

=
∫
γ

|f ′(z)||dz|
1− |f(z)|2

=
∫
γ

|Dh1f(z)| |dz|
1− |z|2

≤
∫
γ

Dh1kα(|z|) |dz|
1− |z|2

=
|z|∫
0

Dh1kα(t)
dt

1− t2

=
|z|∫
0

k′α(t) dt
1− kα(t)2

= dD(0, kα(|z|)).

This is equivalent to the upper bound.
In order to establish the lower bound, fix r = |z|, 0 < r < 1, and assume

f(a) is the nearest point to the origin on f({z : |z| = r}). Set Γ = [0, f(a)]
and γ = f−1 ◦ Γ . By using the Corollary to Theorem 6, we have

dD(0, f(a)) =
∫
Γ

|dw|
1− |w|2

=
∫
γ

|f ′(z)||dz|
1− |f(z)|2

=
∫
γ

|Dh1f(z)| |dz|
1− |z|2

≥
∫
γ

Dh1kα(−|z|) d|z|
1− |z|2

=
|z|∫
0

Dh1kα(−t) dt

1− (−t)2

=
|z|∫
0

k′α(−t) dt
1− kα(−t)2

= dD(0,−kα(−|z|)).

The inequalities dD(0, f(z)) ≥ dD(0, f(a)) ≥ dD(0,−k(−|z|)) then imply the
desired lower bound.

5. The radius of hyperbolic convexity. For the class SB(α) we shall
determine the sharp radius of hyperbolic convexity. In fact, it is no more
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difficult to determine the sharp radius of hyperbolic k-convexity for k ∈
[0, 4], so we do this.

Example 2. The function

Kα(z) =
4αz[√

(1− z)2 + 4αz + 1− z
]2

belongs to SB(α) and satisfies the functional relationship(
1 +Kα(z)
1−Kα(z)

)2

− 1 = α

[(
1 + z

1− z

)2

− 1
]
.

The image Kα(D) is the unit disk with the segment(
−1,

−α
2− α+ 2

√
1− α

]
removed. The function Kα is extremal for several problems over the class
SB(α). For example, if F ∈ SB(α), then

|F ′′(0)| ≤ 4α(1− α) = 4|F ′(0)|(1− |F ′(0)|)
with equality if and only if F is a rotation of Kα [13]. This is formulated in
invariant terms as

(3) |Dh2f(z)| ≤ 4|Dh1f(z)|(1− |Dh1f(z)|)
for any univalent function f mapping D into itself. Direct calculation using
the functional equation for Kα yields

Dh2Kα(x) = 4Dh1Kα(x)(1−Dh1Kα(x))

for x ∈ (−1, 1). Another sharp result is that for F ∈ SB(α),

(4)
α(1− |z|)2

(1 + |z|)2 − 4α|z|
≤ |Dh1F (z)| ≤ α(1 + |z|)2

(1− |z|)2 + 4α|z|
with equality if and only if F is a rotation of Kα ([7], [13]).

Theorem 8. For k ∈ [0, 4] the radius of hyperbolic k-convexity for the
family SB(α) is the unique root r(α, k) in the interval (0, 1] of the polynomial

pα,k(r) = r4 − (2 + αk)r3 + (8α+ 2αk − 6)r2 − (2 + αk)r + 1.

The root r(α, k) is an increasing function of α which satisfies the sharp
bounds

2−
√

3 ≤ r(α, k) ≤
{

1 if 0 ≤ k ≤ 2,[
k −
√
k2 − 4

]
/2 if 2 ≤ k ≤ 4.

In particular , r(α, 4) is the constant 2−
√

3, independent of α.

P r o o f. Note that if γ : z(t) = reit is the positively oriented circle
of radius r ∈ (0, 1), then κD(z, γ) = r + r−1. By formula (2) we wish to
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determine the maximal r such that

κD(z, γ) + Im
{
Dh2F (z)
Dh1F (z)

· z
′(t)
|z′(t)|

}
≥ k|Dh1F (z)|, z ∈ γ.

This inequality holds if

r2 + 1
r
−
∣∣∣∣Dh2F (z)
Dh1F (z)

∣∣∣∣ ≥ k|Dh1F (z)|, z ∈ γ.

By making use of inequality (3), this will hold if

r2 + 1
r
− 4 + (4− k)|Dh1F (z)| ≥ 0, z ∈ γ.

Because k ∈ [0, 4], the lower bound in inequality (4) implies that the desired
inequality will hold if

(5)
r2 + 1
r
− 4 +

(4− k)α(1− r)2

(1 + r)2 − 4αr
≥ 0.

The function (r2 + 1)/r − 4 decreases strictly from ∞ to −2 on [0, 1] while
the function α(1−r)2/[(1+r)2−4αr] decreases strictly from α to 0 on [0, 1].
Therefore the graphs of (r2 + 1)/r− 4 and (k− 4)α(1− r)2/[(1 + r)2− 4αr]
cross at a unique point in (0, 1]. The numerator of the rational function
given by the left-hand side of inequality (5) is pα,k(r).

Now we establish the sharpness. For the function Kα and the path γ :
z(t) = reit, 0 ≤ t ≤ 2π, the choice t = −π in formula (2) results in

κD(Kα(−r),Kα ◦ γ)|Dh1Kα(−r)|

= κD(−r, γ) + Im
{
Dh2Kα(−r)
Dh1Kα(−r)

(−i)
}

=
1 + r2

r
− Dh2Kα(−r)
Dh1Kα(−r)

=
1 + r2

r
− [4(1−Dh1Kα(−r))]

=
1 + r2

r
− 4 + (4− k)Dh1Kα(−r) + kDh1Kα(−r)

=
r2 + 1
r
− 4 +

(4− k)α(1− r)2

(1 + r)2 − 4αr
+ kDh1Kα(−r).

The choice r = r(α, k) produces κD(Kα(−r),Kα ◦γ) = k, while κD(Kα(−r),
Kα ◦ γ) < k for r(α, k) < r < 1.

From inequality (5) and the discussion immediately following it, we con-
clude that for each fixed k ∈ [0, 4], the value of r(α, k) is a continuous,
increasing function of α on the interval (0, 1]; in fact, we can view r(α, k) as
continuous on the interval [0, 1]. Note that

p0,k(r) = r4 − 2r3 − 6r2 − 2r + 1 = (r + 1)2(r2 − 4r + 1).
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This reveals that r(0, k) = 2 −
√

3. Consequently, r(α, k) ≥ 2 −
√

3 for
α ∈ (0, 1]. Next,

p1,k(r) = r4 − (2 + k)r3 + (2 + 2k)r2 − (2 + k)r+ 1 = (r− 1)2(r2 − kr+ 1).

This shows that r(1, k) = 1 for 0 ≤ k ≤ 2, while r(1, k) =
[
k −
√
k2 − 4

]
/2

for 2 ≤ k ≤ 4. For k = 4 we now conclude that r(α, 4) = 2 −
√

3 for all
α ∈ (0, 1].

6. An alternate definition of hyperbolic linear invariance. Pom-
merenke [14] formally started the study of (euclidean) linearly invariant
families of holomorphic functions. Pommerenke’s definition of linear invari-
ance was given a purely geometric interpretation in [6]. In [7] the authors
proposed a definition of hyperbolic linear invariance for locally univalent
functions f : D → D and in [8] they defined spherical linear invariance for
locally univalent meromorphic functions f : D → P, where P denotes the
Riemann sphere. The definitions of euclidean and spherical linear invariance
are quite similar, while the definition of hyperbolic linear invariance in [7] is
different. One reason for the difference is that the definition of hyperbolic
linear invariance proposed in [7] was motivated by the desire to generalize
parts of the theory of bounded univalent function theory in the same way
that Pommerenke’s definition of (euclidean) linear invariance extended as-
pects of the theory of univalent functions. We now offer a second definition
for the hyperbolic linearly invariant order of a locally univalent function
f : D → D. This new definition directly parallels those of euclidean and
spherical linear invariance; it is now a viable alternative because we have
developed the theory of hyperbolically convex functions. But this new def-
inition does not seem to extend parts of the classical theory of bounded
univalent functions in the way that the former definition did.

For a locally univalent function f : D→ D, set

α̃h(f) = sup
{∣∣∣∣ Dh2f(z)

2Dh1f(z)

∣∣∣∣ : z ∈ D
}
.

We shall see that this new definition of hyperbolic linear invariance leads
to a number of results analogous to those for euclidean and spherical linear
invariance. In fact, the proofs of the analogous results are so similar that we
typically omit all details. In [7] we defined the hyperbolic linearly invariant
order by

αh(f) = sup
{∣∣∣∣ Dh2f(z)

2Dh1f(z)(1− |Dh1f(z)|)

∣∣∣∣ : z ∈ D
}
.

Clearly, α̃h(f) ≤ αh(f). For α ≥ 1, let F̃(α) denote the family of all f with
α̃h(f) ≤ α. Pick’s sharp upper bound on |f ′′(0)| for f ∈ SB(α) implies that
F̃(2) contains all univalent functions f that map D into itself.
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We introduce other quantities related to hyperbolic linear invariance.
Define %h(f), the hyperbolic radius of uniform local hyperbolic convexity,
for a locally univalent function f : D→ D by

sup{% : f is univalent in DD(a, %) and
f(DD(a, %)) is hyperbolically convex for all a ∈ D}.

We say that f is uniformly locally hyperbolically convex if %h(f) > 0. Let
Ch(%) be the family of uniformly locally hyperbolically convex functions
with %h(f) ≥ %. Define kh(f) by

inf{k ≥ 2 : f(Ω) is hyperbolically convex
for each hyperbolically k-convex Ω ⊂ D}.

Later we will see why we can restrict k ≥ 2 with no essential loss of gener-
ality.

In the case of euclidean (spherical) linear invariance it is known that the
euclidean (spherical) linearly invariant order is at least one and equals one if
and only if the function is univalent and euclidean (spherically) convex. The
analogous result does not hold for the definition of the hyperbolic linearly
invariant order α̃h(f) proposed above.

Example 3. For a conformal automorphism T of D we will show that
α̃h(T ) = 0. If T ∈ Aut(D), then |Dh1T | = 1, so it suffices to show Dh2T = 0.
Fix a ∈ D. Let

R(z) =
z + a

1 + az
and S(w) =

w − T (a)
1− T (a)w

.

Then F = S ◦ T ◦ R ∈ Aut(D) and fixes the origin, so F (z) = λz for some
unimodular constant λ. Hence, Dh2T (a) = F ′′(0) = 0.

However, the next result shows that the proposed hyperbolic linearly
invariant order α̃h(f) almost behaves as in the euclidean and spherical cases.

Theorem 9. Suppose f : D→ D is locally univalent. If α̃h(f) < 1, then
f ∈ Aut(D). For f 6∈ Aut(D), α̃h(f) ≥ 1 with equality if f is hyperbolically
convex.

P r o o f. Let α = α̃h(f). We begin by showing that for z ∈ D,

(6)
|f ′(0)|

1− |f(0)|2
· (1− |z|)α−1

(1 + |z|)α+1
≤ |f ′(z)|

1− |f(z)|2
.

Let z = z(s), 0 ≤ s ≤ L, be a parametrization of the radial segment γ = [0, z]
by hyperbolic arc length. Then as in the proof of Theorem 6 we obtain

(d/ds)|Dh1f(z)|
|Dh1f(z)|

= Re
{
d

ds
logDh1f(z)

}
= Re

{
Dh2f(z)
Dh1f(z)

eiθ(s)
}
≥ −2α.
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By integrating this inequality with respect to s over γ, we get

log
|Dh1f(z)|
|Dh1f(0)|

≥ −2αdD(0, z) = −α log
(

1 + |z|
1− |z|

)
,

which is equivalent to inequality (6).
If α < 1, then from inequality (6) it follows that

lim
|z|→1

|f ′(z)|
1− |f(z)|2

=∞.

Now, λR(z)|dz| = R|dz|/(R2−|z|2) is the hyperbolic metric on D(0, R) and
so has Gaussian curvature −4. Also, µ(z)|dz| = |f ′(z)||dz|/(1− |f(z)|2) has
Gaussian curvature −4 on D since it is the pull-back of the hyperbolic metric
λD(z)|dz| via the locally univalent function f . For R > 1, we have

lim
|z|→1

λR(z)
µ(z)

= 0.

From [4, Theorem 2.1] we conclude that λR(z) ≤ µ(z) for z ∈ D. By letting
R decrease to 1, for z ∈ D we obtain

1
1− |z|2

≤ |f ′(z)|
1− |f(z)|2

.

The invariant form of Schwarz’ Lemma yields the reverse inequality. There-
fore, equality holds throughout D and f ∈ Aut(D) by the case of equality in
the invariant form of Schwarz’ Lemma.

For f 6∈ Aut(D), it now follows that α̃h(f) ≥ 1. From Theorem 3 we
obtain α̃h(f) ≤ 1 if f is hyperbolically convex. Thus, α̃h(f) = 1 if f is
hyperbolically convex.

R e m a r k. From Theorem 9 and formula (2), we can show that there are
no locally univalent functions f : D → D except conformal automorphisms
of D that map every hyperbolically k-convex subset (0 ≤ k < 2) of D onto a
hyperbolically convex region. See [6, Lemma] for the completely analogous
proof in the euclidean case.

Theorem 10. Suppose f : D → D is locally univalent and f 6∈ Aut(D).
Then %h(f) = % if and only if α̃h(f) = coth(2%). In particular , Ch(%) =
F̃(coth(2%)).

P r o o f. A geometric proof completely parallel to that of [6, Theorem 3]
is easily constructed. Note that the condition α̃h(f) ≥ 1 is needed in the
proof.

Corollary. If f : D→ D is locally univalent and α̃h(f) = 1, then f is
hyperbolically convex.
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Theorem 11. Suppose f : D → D is locally univalent. Then kh(f) =
2α̃h(f).

P r o o f. A geometric proof parallel to [8, Theorem 9] is readily given.

7. Open problems. For the family Kh(α) it would be interesting to
obtain the sharp upper bound on |f (n)(0)| for n ≥ 3 and on the Schwarzian
derivative. For α=1/

√
2 we note that k1/

√
2 cannot be the extremal function

for the sharp upper bound on |f (3)(0)| because k(3)

1/
√

2
(0) = 0. What are

sharp upper and lower bounds on |f ′(z)| for the family Kh(α)? Also, what
are sharp growth, distortion and covering theorems for the family F̃(α)?

Appendix. The following six expressions are useful in computing R1

and R3:

(1−|z|2)
f ′′(z)
2f ′(z)

= A2+(3A3−2A2
2)z+(6A4−9A3A2+4A3

2)z2−A2|z|2+O(z3).

(1− |z|2)f(z)f ′(z)
1− |f(z)|2

= |a1|2z + |a1|2A2z
2 + 2|a1|2A2|z|2 +O(z3).

Dh2f(z)
2Dh1f(z)

= A2 + (3A3 − 2A2
2)z + (|a1|2 − 1)z + (6A4 − 9A2A3 + 4A3

2)z2

+ |a1|2A2z
2 +A2(2|a1|2 − 1)|z|2 +O(z3).∣∣∣∣ Dh2f(z)

2Dh1f(z)

∣∣∣∣ = |A2|+
1
|A2|

Re{(3A3A2 − 2|A2|2A2 + |a1|2A2 −A2)z}

+ Re
{

1
|A2|

[6A4A2 − 9A3|A2|2 + 4|A2|2A2
2

+ |a1|2A2
2 + (|a1|2 − 1)(3A3 − 2A2

2)]z2

}
− Re

{
1

4|A2|3
[3A3A2 − 2|A2|2A2 + |a1|2A2 −A2]2z2

}
+

1
2|A2|

[4|a1|2A2
2 − 2|A2|2 + |3A3 − 2A2

2|2 − (1− |a1|2)2]|z|2

− 1
4|A2|3

|3A3A2 − 2|A2|2A2 + |a1|2A2 −A2|2|z|2 +O(z3).

Dh1f(z) = a1[1 + 2A2z + 3A3z
2 − (1− |a1|2)|z|2] +O(z3).

|Dh1f(z)|2 = |a1|2[1 + 4 Re{A2z}+ 6 Re{A3z
2}

+ (4|A1|2 − 2(1− |a1|2))|z|2] +O(z3).
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