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Attenuating the singularities of plurisubharmonic functions

by Christer O. Kiselman (Uppsala)

Resumo (Malfortigi la malregulejojn la plursubharmonaj funkcioj ). Ni studas la mal-
regulejojn de la plursubharmonaj funkcioj per metodoj de la konveksa analitiko. Teoremoj
pri analitikeco de rafinita nombro de Lelong estas pruvitaj.

Abstract. We study the singularities of plurisubharmonic functions using methods
from convexity theory. Analyticity theorems for a refined Lelong number are proved.

1. Introduction. The plurisubharmonic functions, which appear in
complex analysis first as logarithms of moduli of holomorphic functions and
as analogues of potentials, are useful for many constructions since they are
easier to manipulate than holomorphic functions—this is why Lelong [1985]
includes them among “les objets souples de l’analyse complexe.” The present
paper is written in this spirit: we show how to construct in a straightfor-
ward way new plurisubharmonic functions from old ones using standard
methods of convex analysis. These new functions can then be used to find
analytic varieties that are connected with the original function, or rather
with its singularities. We shall therefore first describe how one can measure
the singularity of a plurisubharmonic function: this is done using the Lelong
number and the integrability index.

The Lelong number measures how big (or “heavy”) the singularities of
a plurisubharmonic function are. It generalizes the notion of multiplicity of
a zero of a holomorphic function. To define it, we first form the measure
µ = (2π)−1∆f , where ∆ is the Laplacian in all 2n real variables Re zj ,
Im zj . Note that when f = log |h| is the logarithm of the absolute value of a
holomorphic function of one variable, then µ is a sum of point masses, one
at each zero of h and with weight equal to the multiplicity of the zero. The
Lelong number of f at a point x is by definition the (2n − 2)-dimensional
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density of the measure µ at x. More explicitly, it is the limit as r → 0 of the
mean density of µ in the ball of center x and radius r:

(1.1) νf (x) = lim
r→0

µ(x+ rB)
λ2n−2(rB ∩ Cn−1)

,

where λk denotes k-dimensional Lebesgue measure. Note that we compare
the mass of µ in the ball x + rB with the volume of the ball of the same
radius in Cn−1, i.e., of real dimension 2n− 2. This makes sense, because if
f = log |h| with h holomorphic, then µ is a mass distribution on the (2n−2)-
dimensional zero set of h. If n = 1, then λ2n−2(rB ∩ Cn−1) = λ0({0}) = 1,
and νf (x) is just the mass of µ at x.

A plurisubharmonic function f is often approximated by fj = max(−j, f)
or by smooth functions fj = f ∗ ψj obtained by convolution. However, in
these cases the functions fj never take the value −∞, so their Lelong num-
bers νfj (x) are zero everywhere; their singularities as measured by the Lelong
number do not approach those of f as j→+∞. Here we shall construct func-
tions fτ depending on a non-negative number τ such that f0 = f and fτ has
Lelong number νfτ (x) = (νf (x)−τ)+. It turns out that the family (fτ )τ can
be used in various constructions. The singularities of fτ are the same as those
of f but attenuated in a certain sense. More precisely, the important prop-
erty is that νfτ (x) > 0 if τ < νf (x), whereas the singularity is completely
killed, i.e., νfτ (x) = 0, if τ > νf (x). In this context it is convenient to de-
fine the Lelong number of a family of plurisubharmonic functions. We prove
analyticity theorems for the superlevel sets of such numbers; see Section 4.

If f is plurisubharmonic and t a positive number, the function exp(−f/t)
may or may not be integrable. The set of all t such that this function is lo-
cally integrable in the neighborhood of a certain point is an interval, and its
endpoint measures how singular f is. This is the reason behind the integra-
bility index ιf to be defined in Section 3 (see (3.3)). From the Hörmander–
Bombieri theorem we get analyticity theorems for the integrability index
(see (3.4)). There is a relation between the integrability index and the Le-
long number: ιf ≤ νf ≤ nιf , where n is the complex dimension of the space;
see Theorem 3.5. This relation cannot be improved (see Example 3.6), but
nevertheless it will suffice to yield analyticity theorems for the Lelong num-
ber. The reason for this is, roughly speaking, that if we subtract the same
quantity τ from two numbers like νf (x) and νf (x′) with νf (x′) > νf (x) > τ ,
then the quotient between νf (x′)−τ and νf (x)−τ can be large, for instance
larger than the dimension n. This is why analyticity theorems for sets of
plurisubharmonic functions are useful when it comes to proving analyticity
theorems for a single function.

We also consider a refined Lelong number, first presented at a seminar
in Tunis on March 6, 1986 (see Kiselman [1987]). This number, denoted by
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νf (x, y) and defined in Section 5, depends on a vector y and is a concave
function of that vector. The methods of convex analysis can therefore be
applied to study it. For any fixed y, it is a special case of Demailly’s gen-
eralized Lelong number [1987]. For related studies of Lelong numbers, see
Abrahamsson [1988] and Wang [1991].

2. Spherical means and spherical suprema. Let f and q be two
given plurisubharmonic functions in an open set ω in Cn; we write this as
f, q ∈ PSH(ω). We define an open set Ωq in Cn × C as

(2.1) Ωq = {(x, t) ∈ ω × C : q(x) + Re t < 0},
and we note immediately that Ωq is pseudoconvex if ω is pseudoconvex, for
the function (x, t) 7→ q(x) + Re t is plurisubharmonic in ω × C. We assume
that q(x) ≥ − log dω(x) for all x ∈ ω, denoting by dω(x) the Euclidean
distance from x to the complement of ω, and we note that then (x, t) ∈ Ωq
implies that the closed ball of center x and radius |et| is contained in ω. We
define two functions u and U in Ωq by putting

u(x, t) = uf (x, t) = uf,q(x, t) = –
∫

z∈S
f(x+ etz), (x, t) ∈ Ωq;(2.2)

U(x, t) = Uf (x, t) = Uf,q(x, t) = sup
z∈S

f(x+ etz), (x, t) ∈ Ωq.(2.3)

Here S is the Euclidean unit sphere, and the barred integral sign indicates
the mean value: in general,

–
∫
A

f =
∫
A

f
/∫
A

1 provided 0 <
∫
A

1 < +∞.

So uf (x, t) is the mean value of f over the sphere x + etS, and Uf (x, t) is
the supremum of f over the same sphere. Since we usually keep q fixed,
the dependence on that function need not always be shown. If ω 6= Cn, the
simplest choice of q is just q = − log dω. Then q>−∞ everywhere. However,
if ω = Cn, then it is usually not convenient to use q = − log dω = −∞,
because with this choice of q, the behavior of f at infinity would influence
the local properties of the functions we construct. In this case it is best just
to take q = 0.

Thanks to our assumption exp(−q(x)) ≤ dω(x), the functions uf,q and
Uf,q are well defined and do not take the value +∞ inΩq. Moreover, by stan-
dard results, uf,q, Uf,q ∈ PSH(Ωq). We define them to be +∞ outside Ωq.

Clearly, uf ≤ Uf , and we shall see that there are inequalities in the oppo-
site direction. We can note quickly that uaf+bg = auf+bug for non-negative
a, b, even for real a, b, which implies that the function uf depends linearly of
f in the linear space of all Borel measurable functions which are integrable on
spheres, thus in particular on the space δPSH(ω) of delta-plurisubharmonic
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functions, i.e., the vector space spanned by those plurisubharmonic functions
which are not identically −∞ in any component of ω. We shall see that this
implies that the Lelong number is a linear function on δPSH(ω). As for the
function Uf , we can only say that Uaf+bg ≤ aUf + bUg for a, b ≥ 0, which
implies that Uf is a convex function of f , and the Lelong number a concave
function of f . But when it comes to the maximum of two functions, we
have Umax(f,g) = max(Uf , Ug), which implies that νmax(f,g) = min(νf , νg),
whereas for the mean we can only say that umax(f,g) ≥ max(uf , ug), which
implies that νmax(f,g) ≤ min(νf , νg). It is therefore useful to know that the
Lelong number can be defined by either uf or Uf , because this enables us
to use the best properties of either one.

We can define the Lelong number as the slope at −∞ of the function
t 7→ u(x, t). As a consequence of the maximum principle, u(x, t) and U(x, t)
are increasing in t; by Hadamard’s three-circle theorem, they are convex
functions of t. Therefore their slopes at −∞ exist:

(2.4) νf (x) = lim
t→−∞

u(x, t)
t

and Nf (x) = lim
t→−∞

U(x, t)
t

both exist. This follows from the fact that the slopes

u(x, t)− u(x, t0)
t− t0

and
U(x, t)− U(x, t0)

t− t0
are increasing in t. The first limit νf (x) is the Lelong number of f at x, and
the definition we shall use in this paper. The definition (1.1) of the Lelong
number as the density of a measure is equivalent to (2.4) as can be proved
without difficulty using Stokes’ theorem; see Kiselman [1979].

Since uf ≤ Uf , we have νf (x) ≥ Nf (x). We shall now see that the two
numbers are equal. To this end we shall use Harnack’s inequality, which
takes the form

(2.5)
1 + |x|/r

(1− |x|/r)m−1
h(0) ≤ h(x) ≤ 1− |x|/r

(1 + |x|/r)m−1
h(0)

for harmonic functions which satisfy h ≤ 0 in the ball of radius r in Rm. If
f is subharmonic in a neighborhood of the closed ball esB in Cn, we can
consider its harmonic majorant h there, which satisfies f(x) ≤ h(x) and

h(0) = –
∫

z∈S
h(esz) = –

∫
z∈S

f(esz) = u(0, s).

Therefore

U(0, t) = sup
etS

f ≤ sup
etS

h ≤ 1− et−s

(1 + et−s)2n−1
u(0, s), t < s,

provided f ≤ 0 in esB. If we apply this inequality to the function f−U(0, s),
which is non-positive in esB by definition, we get, writing U(t) instead of
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U(0, t) for simplicity,

U(t)− U(s) ≤ 1− et−s

(1 + et−s)2n−1
(u(s)− U(s)),

or equivalently,

(2.6) U(t) ≤ (1− λt−s)U(s) + λt−su(s), t < s,

where λt is defined for t < 0 as

λt =
1− et

(1 + et)2n−1
.

We can now prove that the two limits in (2.4) are equal. As already noted,
νf (x) ≥ Nf (x). In the other direction we can take for instance s = t+ 1 in
(2.6) to obtain the estimate

U(t) ≤ (1− λ−1)U(t+ 1) + λ−1u(t+ 1),

whence
U(t)
t
≥ (1− λ−1)

U(t+ 1)
t

+ λ−1
u(t+ 1)

t
, t < 0.

Letting t tend to −∞ we see that Nf (x) ≥ νf (x).
For any given f, q ∈ PSH(ω) we define

(2.7) ϕτ (x) = inf
t

[uf (x, t)− τ Re t], x ∈ ω, τ ≥ 0.

In view of our convention that uf (x, t) = +∞ if (x, t) 6∈ Ωq, the infimum
operation acts effectively only over those t that satisfy Re t < −q(x). The
function τ 7→ −ϕτ (x) is the Fenchel transform of R 3 t 7→ uf (x, t). We
assume all the time that e−q(x) does not exceed the distance dω(x) from
x to the boundary of ω, so that uf is well defined. The function (x, t) 7→
uf (x, t)−τ Re t is plurisubharmonic in Ωq and independent of the imaginary
part of t. Therefore the minimum principle of Kiselman [1978] can be applied
and yields that ϕτ is plurisubharmonic in ω.

Example. Let us look at the simplest example: f(x) = log |x|, x ∈ Cn.
We choose q = 0 and form Uf (x, t) = log(et + |x|) for t < q(x) = 0. Then
ϕτ (x) = inft<0(Uf (x, t) − τt) can be calculated explicitly: it is ϕτ (x) =
(1 − τ) log |x| + Cτ for 0 ≤ τ < 1, where Cτ is a constant which depends
on the parameter τ , and ϕτ (x) = log(1 + |x|) for τ ≥ 1. Thus the Lelong
number of ϕτ at the origin is max(1− τ, 0) for all τ ≥ 0.

There is no apparent reason why the Lelong number of the plurisubhar-
monic function ϕτ at x should be a function of νf (x) and τ ; it could as well
depend in some other way on the behavior of f near x. However, it turns
out that the simple formula for the Lelong number of ϕτ in the example
holds quite generally:
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Theorem 2.1 (Kiselman [1979]). Let f, q ∈ PSH(ω) with q ≥ − log dω.
Define ϕτ by (2.2) and (2.7). Then ϕτ ∈ PSH(ω). If νq(x) = 0, then the
Lelong number of ϕτ is

(2.8) νϕτ (x) = max(νf (x)− τ, 0) = (νf (x)− τ)+, x ∈ ω, τ ≥ 0.

We can also use the function Uf instead of uf in the construction; the
proof is the same. If τ < 0, then of course νϕτ (x) = +∞.

We shall give a simplified proof of Theorem 2.1 under the slightly stronger
hypothesis that q(x) > −∞. This is quite enough for the applications we
have in mind. (As soon as ω 6= Cn, we must indeed have q > −∞ every-
where.)

Lemma 2.2. With f and ϕτ as in Theorem 2.1 we have

νϕτ (x) ≥ νf (x)− τ.
P r o o f. We first note that by the definition of ϕτ , we have for any t′,

(2.9) ϕτ (y) ≤ uf (y, t′)− t′τ.
We now take the mean value of both sides of (2.9) when y varies over the
sphere x+ etS, which gives

(2.10) uϕτ (x, t) = –
∫

z∈S
ϕτ (x+ zet) ≤ –

∫
z∈S

–
∫

w∈S
f(x+ zet + wet

′
)− t′τ

for all real numbers t, t′. Here the double integral defines a measure of total
mass 1 which is invariant under rotations around x and has its support in
the set

x+ etS + et
′
S = {x+ z : |et − et

′
| ≤ |z| ≤ et + et

′
}.

When we apply this measure to f , the result is a weighted mean of f , which,
since it is rotation invariant, is also a mean value of uf (x, s) for various
choices of s. The values of s that can occur are those which satisfy

|et − et
′
| ≤ es ≤ et + et

′
= et

′′
,

where the last equality serves to define the number t′′. Since uf (x, s) is
increasing in s, the mean value cannot exceed uf (x, t′′). Thus (2.10) yields

uϕτ (x, t) ≤ –
∫

z∈S
–
∫

w∈S
f(x+ zet + wet

′
)− t′τ ≤ uf (x, t′′)− t′τ.

(The corresponding formula for Uϕτ is even simpler to prove.) The only
interesting choice is t = t′, so that t′′ = t+ log 2. Thus

uϕτ (x, t)
t

≥ uf (x, t+ log 2)
t

− τ, t < 0,

and letting t tend to −∞ we get the desired conclusion.

Lemma 2.3. With f and ϕτ as in Theorem 2.1, take a number τ > νf (x).
Assume that q(x) > −∞. Then ϕτ (x) > −∞. In particular , νϕτ (x) = 0.
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P r o o f. Since νf (x) < τ < +∞, f is not equal to −∞ identically in a
neighborhood of x. The value ϕτ (x) is the infimum of the convex function
uf (x, t)− tτ of the real variable t when t varies in the interval ]−∞,−q(x)[.
This interval is by hypothesis bounded from the right. Moreover, by the
choice of τ , the function is strictly decreasing when t� 0. Thus its infimum
is finite.

P r o o f o f T h e o r e m 2.1, a s s u m i n g t h a t q(x) i s f i n i t e. The
proof consists of the following steps (cf. Kiselman [1992]). First we note
that ϕτ is a concave function of τ with ϕ0 = f . Therefore νϕτ (x) is a convex
function of τ taking the value νf (x) for τ = 0, for the Lelong number is, as
we have seen, a linear function of ϕ, the limit of uϕ(x, t)/t. Second we see
from Lemma 2.2 that νϕτ (x) ≥ νf (x)− τ . Third we know from Lemma 2.3
(if νf (x) is finite) that νϕτ (x) = 0 if τ > νf (x). The only convex function of
τ which has these properties is τ 7→ (νf (x)− τ)+.

3. The Hörmander–Bombieri theorem and the integrability in-
dex. The fundamental tool which will provide us with analytic sets is the
Hörmander–Bombieri theorem:

Theorem 3.1. Let ω be a pseudoconvex open set in Cn, and let ϕ ∈
PSH(ω). For every a ∈ ω such that e−ϕ ∈ L2

loc(a) there exists a holomorphic
function h ∈ O(ω) such that h(a) = 1 and

(3.1)
∫
ω

|h|2e−2ϕ(1 + |z|2)−3ndλ2n(z) < +∞.

Here L2
loc(a) denotes the set of all functions that are square integrable

in some neighborhood of the point a.
For the proof see Hörmander [1990, Theorem 4.4.4]. Denote by O(ω, ϕ)

the set of all holomorphic functions h in ω which satisfy condition (3.1) for
a given function ϕ. The intersection

(3.2) V (ϕ) =
⋂

h∈O(ω,ϕ)

h−1(0)

is an intersection of zero sets of holomorphic functions, and therefore itself
an analytic set. Define

I(ϕ) = {a ∈ ω : e−ϕ 6∈ L2
loc(a)}.

With this notation the theorem says that V (ϕ) ⊂ I(ϕ). It is, however,
obvious that I(ϕ) ⊂ V (ϕ).

In view of this theorem it is natural to measure the singularity of a
plurisubharmonic function ϕ at a point a by its integrability index ιϕ(a):

(3.3) ιϕ(a) = inf
t>0

[t : e−ϕ/t ∈ L2
loc(a)].
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Let Φ be an arbitrary subset of PSH(ω) and κ a functional on Φ in the
sense that there is given a function κϕ : ω → [0,+∞] for every ϕ ∈ Φ. We
introduce a notation for the superlevel sets of such functionals:

Eκc (ϕ) = {a ∈ ω : κϕ(a) ≥ c}, c ≥ 0.

The superlevel sets of the integrability index are analytic varieties. In fact,
by the definition of ι,

Eιc(ϕ) ⊂ I(ϕ/t) ⊂ Eιt(ϕ), 0 < t < c.

Using the Hörmander–Bombieri theorem we see that

Eιc(ϕ) ⊂ V (ϕ/t) ⊂ Eιt(ϕ), 0 < t < c.

We now note that by the definition of the superlevel set, the intersection of
all Eιt(ϕ) when t varies in the interval 0 < t < c is just Eιc(ϕ), so that

(3.4) Eιc(ϕ) =
⋂

0<t<c

V (ϕ/t), c ≥ 0.

Suppose that κ is a functional which is comparable to the integrability
index in the sense that the inequality

(3.5) sιϕ(x) ≤ κϕ(x) ≤ tιϕ(x), ϕ ∈ Φ, x ∈ ω,

holds for some positive constants s and t. Then there is of course a relation
between the superlevel sets of the two functionals:

(3.6) Eκtc(ϕ) ⊂ Eιc(ϕ) ⊂ Eκsc(ϕ), ϕ ∈ Φ.

If we know that Eκtc(ϕ) = Eκsc(ϕ), then Eκtc(ϕ) equals Eιc(ϕ) and so is an an-
alytic variety. Of course functions which admit such an interval of constancy
in their superlevel sets are very special. But we shall see in the next section
that for a set of plurisubharmonic functions such intervals of constancy can
appear quite naturally.

We now ask whether the Lelong number is comparable to the integrabil-
ity index in the sense of (3.5). The answer is well known, but will be quoted
here for convenience.

Theorem 3.2. If ϕ ∈ PSH(ω), where ω ⊂ Cn, and νϕ(a) ≥ n, then
e−ϕ 6∈ L2

loc(a). Thus Eνn(ϕ) ⊂ I(ϕ) ⊂ V (ϕ). In terms of the integrability
index we have νϕ(x) ≤ nιϕ(x).

P r o o f. This result is contained in Skoda [1972, Proposition 7.1], but
it is easy to give a proof using the function U = Uϕ defined by (2.3). If
νϕ(a) ≥ n, then the slope of t 7→ U(a, t) at −∞ is at least n, and we have

U(a, t) ≤ U(a, t0) + n(t− t0), t ≤ t0,
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for some t0. Rewriting this in terms of ϕ we see that

ϕ(z) ≤ ϕ(z0) + log
(
|z − a|n

|z0 − a|n

)
, |z − a| ≤ |z0 − a|,

for a suitable point z0 on the sphere |z − a| = et0 , or equivalently,

e−2ϕ(z) ≥ e−2ϕ(z0) |z0 − a|2n

|z − a|2n
,

where the right-hand side is a non-integrable function near a.

In the other direction we have:

Theorem 3.3. If ϕ ∈ PSH(ω) has a finite value at a point a ∈ ω, then
e−ϕ ∈ L2

loc(a).

For a proof of this result, see Hörmander [1990, Theorem 4.4.5]. The
theorem says that I(ϕ) is contained in the polar set P (ϕ) = ϕ−1(−∞) of ϕ,
i.e. I(ϕ) ⊂ P (ϕ).

Combining Theorems 3.1, 3.2 and 3.3 we see that

(3.7) Eνnc(ϕ) ⊂ V (ϕ/c) ⊂ P (ϕ), c > 0.

A stronger result in the same direction is

Theorem 3.4. If νϕ(a) < 1, then e−ϕ ∈ L2
loc(a). Thus I(ϕ) ⊂ Eν1 (ϕ).

Also, ιϕ(x) ≤ νϕ(x).

For the proof see Skoda [1972, Proposition 7.1].
Combining Theorems 3.1, 3.2 and 3.4 we get

Theorem 3.5. The Lelong number ν is comparable to the integrability
index ι in the sense of (3.5), more precisely ,

(3.8) ιϕ(x) ≤ νϕ(x) ≤ nιϕ(x), ϕ ∈ PSH(ω), x ∈ ω ⊂ Cn,

and

(3.9) Eνnc(ϕ) ⊂ V (ϕ/c) ⊂ Eνc (ϕ) ⊂ V (nϕ/c), ϕ ∈ PSH(ω), c > 0.

These inequalities are sharp.

This result is the basis for the analyticity theorems that we shall state.
However, the weaker result (3.7) is often sufficient.

That the comparison in (3.8) between the Lelong number and the inte-
grability index cannot be improved follows from simple examples:

Example 3.6. The function

f(z) = max(log |z1|a, log |z2|b), z ∈ C2,
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has integrability index ιf (0) = ab/(a + b) and Lelong number νf (0) =
min(a, b). Thus

νf (0)
ιf (0)

=
a+ b

max(a, b)
=

a−1 + b−1

max(a−1, b−1)
∈ ]1, 2].

A little more generally, if we take 1 ≤ k ≤ n and positive numbers a1, . . . , ak
and define

f(z) = max
1≤j≤k

(log |zj |aj ), z ∈ Cn,

then ιf (0) = (
∑
a−1
j )−1 (cf. Lemma 5.5 below) and νf (0) = min aj , so that

νf (0)
ιf (0)

=

∑
a−1
j

max a−1
j

∈ [1, n].

(These formulas hold if we define a−1
j = 0 for j = k+ 1, . . . , n.) Clearly, the

quotient νf/ιf can assume all values in the closed interval [1, n] (we allow
k = 1 and k = n). Thus (3.8) is sharp.

4. Analyticity theorems for sets of plurisubharmonic functions.
Let ω be an open set in Cn and Φ an arbitrary subset of PSH(ω). Let κ be a
functional on Φ which is comparable to the integrability index in the sense
that (3.5) holds for some positive constants s and t. Then from (3.6) and
(3.7) we get

(4.1)
⋂
ϕ∈Φ

Eκtc(ϕ) ⊂
⋂
ϕ∈Φ

Eιc(ϕ) ⊂
⋂
ϕ∈Φ

Eκsc(ϕ) ⊂
⋂
ϕ∈Φ

P (ϕ).

It is convenient to introduce a notation for these sets:

Eκc (Φ) =
⋂
ϕ∈Φ

Eκc (ϕ)

for any functional κ. If we define the value of the functional on the whole
set Φ as

κΦ(x) = inf
ϕ∈Φ

κϕ(x),

then Eκc (Φ) is just the superlevel set of κΦ. We can also define the polar set
of Φ as

P (Φ) =
⋂
ϕ∈Φ

P (ϕ).

With this notation we can write (4.1) as

(4.2) Eκtc(Φ) ⊂ Eιc(Φ) ⊂ Eκsc(Φ) ⊂ P (Φ).

Theorem 4.1. Let κ be a functional on a subset Φ of PSH(ω) which is
comparable to the integrability index in the sense that (3.5) holds for some
positive constants s and t. If the superlevel sets Eκc (Φ) are independent of
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c over an interval of sufficiently large logarithmic length, viz. if Eκsc(Φ) =
Eκtc(Φ), then Eκsc(Φ) is an analytic variety. A little more generally , if Y is
an analytic subset of ω and Y ∩ Eκsc(Φ) = Y ∩ Eκtc(Φ), then Y ∩ Eκsc(Φ) is
analytic.

P r o o f. Since the result is local, we can assume ω to be pseudoconvex.
The inclusions (4.2) then show that Eκsc(Φ) = Eιc(Φ), which is the set of
common zeros of a family of holomorphic functions in ω; see (3.4). Similarly,
Y ∩ Eκsc(Φ) = Y ∩ Eιc(Φ).

Theorem 4.2. Let ω, κ and Φ be as in Theorem 4.1, and assume in
addition that κ is positively homogeneous, i.e., ϕ ∈ Φ and t > 0 implies
tϕ ∈ Φ and κtϕ(a) = tκϕ(a). Let Y be an analytic subset of ω, and let
X ⊂ Y . Assume that

(4.3) inf
x∈X

κϕ(x) > 0 for all ϕ ∈ Φ,

and

(4.4) for each x∈Y rX there exists a function ϕ ∈ Φ such that κϕ(x)=0.

Then X is an analytic set.

P r o o f. Define ψ = ϕ/εϕ, where εϕ = infx∈X κϕ(x) > 0, and let Ψ be
the set of all functions ψ obtained in this way. Then κψ(x) ≥ 1 for every
ψ ∈ Ψ and every x ∈ X. Using the notation for superlevel sets we can write
this as

X ⊂ Eκ1 (Ψ) ⊂ Eκc (Ψ)
for all c with 0 ≤ c ≤ 1.

On the other hand, if x ∈ Y r X, then by (4.4) there is a ϕ ∈ Φ such
that κϕ(x) = 0. Thus ψ = ϕ/εϕ is in Ψ and κψ(x) = κϕ(x)/εϕ = 0. So
x 6∈ Eκc (ψ), c being any positive number. Thus

x 6∈ Eκc (Ψ) =
⋂
ψ∈Ψ

Eκc (ψ).

Therefore Eκc (Ψ) ∩ Y ⊂ X for every c > 0. Combining this with the first
part of the proof we see that Eκc (Ψ) ∩ Y = X for all c satisfying 0 < c ≤ 1.
Hence Eκc (Ψ) ∩ Y is constant for these c and Theorem 4.1 yields that X is
analytic.

A particular case of Theorem 4.2 is when we can associate with a given
function or current a family of plurisubharmonic functions on which our
functional takes values that we can control. The following result is of this
character. It also holds for functionals which have only a loose connection
to the integrability index or the Lelong number; more precisely, functionals
which are zero at the same time as the integrability index in a semiuniform
way:
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Theorem 4.3. Let Φ = {ϕα : α ∈ A} be a set of plurisubharmonic
functions in an open set ω, and let κ be a functional on Φ which is weakly
comparable to the integrability index in the sense that for every ε > 0 there
is a δ > 0 such that

ϕ ∈ Φ, ιϕ(x) < δ implies κϕ(x) < ε,

and
ϕ ∈ Φ, κϕ(x) = 0 implies ιϕ(x) = 0.

Suppose that the values κϕα(x) are given by κϕα(x) = G(H(x), α) for some
functions G : [0,+∞]×A→ [0,+∞] and H : ω→ [0,+∞]. Assume that c 7→
G(c, α) is increasing , and that there exists a number c0 such that G(c0, α)
> 0 for all α ∈ A. Finally , suppose that for every c < c0 there is an α ∈ A
such that G(c, α) = 0. Then the superlevel set {x : H(x) ≥ c0} is analytic.

P r o o f. We shall apply Theorem 4.2 to X = {x : H(x) ≥ c0}. First we
note that

inf
x∈X

κϕα(x) = inf
x∈X

G(H(x), α) ≥ G(c0, α) = εα > 0

for any α ∈ A. Hence ιϕα(x) ≥ δα > 0, which means that (4.3) holds for ι.
Next, if x 6∈ X, then c = H(x) < c0 and there is an α such that G(c, α) = 0.
We get

κϕα(x) = G(H(x), α) = G(c, α) = 0;
hence also ιϕα(x) = 0, so that (4.4) holds for ι. Thus Theorem 4.2, applied
to ι, shows that X is analytic.

This theorem contains the classical theorem of Siu [1974]. For if we let
κϕ(x) = νϕ(x), A = [0, c0[, G(c, α) = (c − α)+, H(x) = νf (x), and define
ϕα as

ϕα(x) = inf
t

[uf (x, t)− tα : (x, t) ∈ Ωq], x ∈ ω, α ∈ [0, c0[,

then by Theorem 2.1,

νϕα(x) = (νf (x)− α)+ = G(H(x), α).

The function G(c, α) = (c−α)+ satisfies the hypotheses of Theorem 4.3, so
it follows that the superlevel set {x : νf (x) ≥ c0} is an analytic variety. The
singularities of the ϕα are the same as those of f , but attenuated to some
degree as shown by the formula. This attenuation is the reason behind their
usefulness in proving Siu’s theorem and the explanation for the title of this
paper.

5. A refined Lelong number. In analogy with the mean value and
supremum over a sphere, we can define the mean value and supremum over
a polycircle. Given a function f ∈ PSH(ω), let
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(5.1) v(x, y) = vf (x, y) = –
∫

|zj |=|eyj |

f(x+ z)

= (2π)−n
2π∫
0

ds1 . . .
2π∫
0

dsn f(x1 + ey1+is1 , . . . , xn + eyn+isn);

(5.2) V (x, y) = Vf (x, y) = sup
|zj |=|eyj |

f(x+ z)

= sup
|zj |=1

f(x1 + z1e
y1 , . . . , xn + zne

yn).

Using well-known properties of plurisubharmonic functions we see that v
and V are plurisubharmonic functions of the variables (x, y) ∈ ω × Cn if
Re yj � 0. To be precise, they are plurisubharmonic in the open set

Ω0 = {(x, y) ∈ ω × Cn : x+ z ∈ ω for all z with |zj | ≤ |eyj |}.
If ω is pseudoconvex, then so is Ω0. Indeed, if dω now denotes the dis-
tance to Cn r ω measured by the norm ‖z‖∞ = maxj |zj |, then Ω0 is
the set of all (x, y) ∈ ω × Cn such that Re yj < log dω(x). We note that
(x, y) 7→ − log dω(x) + maxj Re yj is plurisubharmonic in ω×Cn, which im-
plies that Ω0, as the subset of ω × Cn where this function is negative, is
pseudoconvex.

We fix the domain of definition of v and V to be an open pseudoconvex
set Ω contained in ω × Cn such that

(5.3) (x, y) ∈ Ω, |zj | ≤ |eyj | implies x+ z ∈ ω
(this amounts to Ω ⊂ Ω0) and

(5.4) (x, y) ∈ Ω, Re y′j ≤ Re yj implies (x, y′) ∈ Ω.
Then we know that v, V ∈ PSH(Ω). We define them as +∞ outside Ω.
Moreover, y 7→ v(x, y), V (x, y) are convex and coordinatewise increasing.

Sometimes it is necessary to assume also

(5.5) For every x ∈ ω and every y ∈ Rn+ there is a number tx,y < +∞
such that (x, ty) ∈ Ω implies Re t < tx,y.

Here Rn+ is the set of all vectors y ∈ Rn with yj > 0 for every j. If ω is
bounded, (5.5) of course follows from (5.3).

Definition 5.1. Let f ∈ PSH(ω) and define v by (5.1). Then the
function

(5.6) Rn+ 3 y 7→ νf (x, y) = lim
t→−∞

v(x, ty)
t

, x ∈ ω,

will be called the refined Lelong number of f at the point x. In the closed
cone defined by yj ≥ 0 we define it by means of continuity: νf (x, y) =
limz→y,zj>0 νf (x, z), and we set νf (x, y) = −∞ if some yj is negative.
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It is clear that νf (x, y) is positively homogeneous in y: νf (x, ty) =
tνf (x, y) for all y ∈ Rn and all t > 0. Moreover, it is concave as a func-
tion of y ∈ Rn for fixed x. In fact, y 7→ νf (x, y) is the asymptotic function
of the concave function y 7→ −vf (x,−y) on Rn+. Its values are finite on Rn+
except when f is equal to −∞ in a whole neighborhood of x.

Example. If f(z) = maxj(log |zj |aj ) with positive numbers aj , then
v(0, y) = maxj(ajyj) for y ∈ Rn+, and the refined Lelong number at the
origin is νf (0, y) = minj(ajyj), y ∈ Rn+, a simple concave function of y.

Comparing v and V is analogous to comparing u and U . We use Har-
nack’s inequality (2.5) with m = 2 repeatedly to get

f(z) ≤
n∏
1

1− |zj |/rj
1 + |zj |/rj

–
∫

|yk|=rk

f(y),

provided f ≤ 0 is plurisubharmonic in a neighborhood of the polydisk with
radii r1, . . . , rn. This gives

V (x, z) ≤
n∏
1

1− ezj−yj
1 + ezj−yj

v(x, y), zj < yj ≤ log rj .

If now f is only plurisubharmonic, we can apply this inequality to the func-
tion f − V ( · , y) ≤ 0. In complete analogy with (2.6) we can write

V (x, z) ≤ (1− λz−y)V (x, y) + λz−yv(x, y), zj < yj ,

where now

λz =
n∏
1

1− ezj
1 + ezj

, zj < 0,

and it follows that the refined Lelong number can be defined using V as well
as v.

One motivation for this variant of the Lelong number is in the study
of blow-ups of plurisubharmonic functions. To give an idea of how blow-
ups work, let us look at a simple example. Consider the mapping T (x) =
(x1, x1x2) from C2 into C2. The pull-back under this mapping of the alge-
braic set

Y = {y ∈ C2 : y2 = 0} ∪ {y ∈ C2 : y2 = y2
1}

is

X = T−1(Y ) = {x ∈ C2 : x1 = 0} ∪ {x ∈ C2 : x2 = 0} ∪ {x ∈ C2 : x1 = x2}.
We see that in Y the two branches are tangent to each other at the origin,
whereas the irreducible branches of X intersect transversally.

Now use the mapping T to blow up a plurisubharmonic function at the
origin. The blow-up is g = T ∗f , g(x1, x2) = f(T (x)) = f(x1, x1x2), and it
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turns out that the usual Lelong number of g at the origin is equal to νf (0, y)
with y = (1, 2).

More generally, a blow-up transforms the refined Lelong number by a
linear transformation: if

g(x) = T ∗f(x) = f(T (x)) = f(xm11
1 xm12

2 . . . xm1n
n , . . . , xmn1

1 xmn2
2 . . . xmnnn )

with det(mjk) 6= 0, then

νg(0, y) = νf (0, z), where zj =
∑

mjkyk.

In fact,

Vg(0, y) = sup
|xj |=eyj

f(xm11
1 xm12

2 . . . xm1n
n , . . . , xmn1

1 xmn2
2 . . . xmnnn )

= sup
tj

f(ez1+it1 , . . . , ezn+itn) = Vf (0, z)

if we put

x
mj1
1 . . . xmjnn = exp

(∑
mjkyk + i

∑
mjksk

)
= exp(zj + itj).

Not only is |xmj11 . . . x
mjn
n | = exp zj , but also all arguments of xmj11 . . . x

mjn
n

occur independently if det(mjk) 6= 0.

Proposition 5.2. Let f ∈ PSH(ω), x ∈ ω, and put 1 = (1, 1, . . . , 1) ∈
Rn. Then νf (x,1) = νf (x).

P r o o f. The ball of radius et is contained in the polydisk with all radii
equal to et, which in turn is contained in the ball of radius et

√
n. Therefore

U(x, t) ≤ V (x, t, . . . , t) ≤ U
(
x, t+ 1

2 log n
)
.

Dividing by t and letting t tend to −∞ we get the result.

Proposition 5.3. If f ∈ PSH(ω), x is a point in ω, and y ∈ Rn+, then

(min yj)νf (x) ≤ νf (x, y) ≤ (max yj)νf (x).

P r o o f. As already noted, the function y 7→ V (x, y) is increasing in
each variable, so the result follows from the simple fact that the polydisk
with radii yj contains the polydisk with all radii equal to min yj and is
contained in the polydisk with all radii equal to max yj . By homogeneity
νf (x, (max yj)1) = (max yj)νf (x,1) and similarly for the minimum. Then
we use Proposition 5.2 to replace νf (x,1) by νf (x).

Proposition 5.4. Fix a ∈ Cn and let f be any plurisubharmonic func-
tion in a neighborhood of a. If there exists a y ∈ Rn with all yj ≥ 0 such
that νf (a, y) ≥

∑
yj , then e−f 6∈ L2

loc(a).
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P r o o f. Without loss of generality we can assume that a = 0, that f is
defined in a neighborhood of the unit polydisk and that V (0, 0) = 0. If there
is a y ∈ Rn+ such that νf (0, y) ≥ q

∑
yj for some positive number q, then

sup
|zk|≤exp(tyk)

f(z) = V (0, ty) = V (0, ty)− V (0, 0) ≤ qt
∑

yj , for all t ≤ 0,

which implies that

f(z) ≤
(

max
k

1
yk

log |zk|
)
q
∑

yj , |zj | ≤ 1,

or equivalently,

e−f(z) ≥ min
k
|zk|−qΣjyj/yk = min

k
|zk|−1/ck , |zj | ≤ 1,

on putting ck = yk/(q
∑
yj). Then

∑
ck = 1/q, and if q ≥ 1 it follows from

Lemma 5.5 below that e−f does not belong to L2
loc(0).

Now in general we only know that there is a y with yj ≥ 0 satisfying the
condition. Then by continuity there are vectors y′∈Rn+ satisfying νf (0, y′) ≥
q
∑
y′j with q arbitrarily close to 1. We can now let q tend to 1 and again

conclude that e−2f is not integrable; see the next lemma.

Lemma 5.5. Let c1, . . . , cn be positive numbers and define q = 1/
∑
ck.

The function
Cn 3 z 7→ min

k
|zk|−1/ck

is in L2
loc(0) if and only if q < 1. When q < 1, the square of its L2 norm

over the unit polydisk is πn/(1− q), which tends to +∞ as q ↗ 1.

P r o o f. A direct calculation.

The converse of Proposition 5.4 does not hold in general, as can be seen
from the simple example

f(z) = 3
2 log |z1 − z2|, z ∈ C2.

Here
νf (0, y) = 3

2 min yj ≤ 3
4 (y1 + y2), y ∈ R2.

But exp(−f) = |z1 − z2|−3/2 6∈ L2
loc(0).

However, for functions of (|z1|, . . . , |zn|) there is a converse:

Proposition 5.6. Let f be a plurisubharmonic function of (|z1|, . . . , |zn|)
in a neighborhood of the origin, and assume that there is a number q sat-
isfying 0 < q < 1 such that νf (0, y) ≤ q

∑
yj for all y ∈ Rn+. Then

e−f ∈ L2
loc(0).

For the proof we need a lemma on the behavior of the asymptotic func-
tion of a convex function.
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Lemma 5.7. Let f be plurisubharmonic in a neighborhood of the closed
unit polydisk. Suppose q is a positive number such that νf (0, y) ≤ q

∑
yj for

all y ∈ Rn+, and take any p > q. Then there exists a constant C such that
v(0, y) ≥ p

∑
yj − C for all y ∈ Rn with yj ≤ 0.

P r o o f. We may assume that v(0, 0) = 0; then v(0, y) ≤ 0 for all y with
yj ≤ 0. Let Γ denote the simplex

Γ =
{
y ∈ Rn : yj ≤ 0,

∑
yj = −1

}
.

Take a number s with p > s > q. The hypothesis that νf (0, y) ≤ q
∑
yj

implies that for every y ∈ Γ there is a constant Cy such that v(ty) ≥
−st−Cy; the question is whether Cy can be chosen independently of y ∈ Γ .
Choose finitely many points yk ∈ Γ such that for every y ∈ Γ there is a k
and a point z ∈ Γ such that

yk =
(

1− s

p

)
z +

s

p
y.

Then by the convexity of y 7→ v(0, y),

v(0, tyk) ≤
(

1− s

p

)
v(0, tz) +

s

p
v(0, ty) ≤ s

p
v(0, ty), t ≥ 0.

There is a constant C such that v(tyk) ≥ −st − C for all k and all t ≥ 0.
Hence

v(0, ty) ≥ p

s
v(0, tyk) ≥ −pt− C, t ≥ 0, y ∈ Γ,

which is just what we wanted to prove.

P r o o f o f P r o p o s i t i o n 5.6. It is enough to consider f satisfying the
conditions of Lemma 5.7. By the lemma there exists a number p < 1 and a
finite constant C such that v(0, y) ≥ p

∑
yj − C for all y with yj ≤ 0. This

means that f(z) ≥ p log |z1 . . . zn| − C and hence

e−2f(z) ≤ |z1 . . . zn|−2pe2C , |zj | ≤ 1.

The right hand side is integrable.

The results proved so far imply that we can determine the integrability
index from the refined Lelong number for functions of (|z1|, . . . , |zn|):
Theorem 5.8. Let f be a plurisubharmonic function defined in a neigh-

borhood of the origin in Cn, and let g be the function of (|z1|, . . . , |zn|)
whose mean values over any polycircle with center at the origin agree with
those of f (thus vg(x, y) = vf (x, y) and νg(0, y) = νf (0, y) for all y). Then
the integrability index of g is

ιg(0) = sup
[
νf (0, y) : yj > 0,

∑
yj = 1

]
≤ ιf (0).

P r o o f. Combine Propositions 5.4 and 5.6.
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6. Plurisubharmonic functions with attenuated singularities.
With Ω satisfying (5.3) and (5.4) we define

(6.1) fy,α(x) = inf
t

[V (x, ty)− αt], y ∈ Rn, α ∈ R, x ∈ ω.

(Note that V (x, ty) = +∞ if (x, ty) 6∈ Ω.) This function is plurisubharmonic
in view of the minimum principle (Kiselman [1978]) since (x, t) 7→ V (x, ty)−
αRe t is plurisubharmonic and independent of the imaginary part of t. We
note that the set {y : (x, y) ∈ Ω} is convex in view of (5.4), and that the
set {t ∈ R : (x, ty) ∈ Ω} is an interval. We shall study the Lelong number
of fy,α. The first result is a generalization of Lemma 2.2.

Lemma 6.1. Let a, b ∈ Rn+ and let s > 0. Define a ∧ b by (a ∧ b)j =
min(aj , bj). Then νfb,α(x, a) ≥ νf (x, a∧sb)−αs. In particular , νfa,α(x, a) ≥
νf (x, a)− α.

P r o o f. By the definition of fb,α we always have fb,α(x) ≤ V (x, sb)− sα
for any s ∈ R. We now take the supremum over the polycircle {x+z : |zj | =
exp aj}, with an arbitrary a ∈ Rn:

Vfb,α(x, a) = sup
|zj |=eaj

fb,α(x+ z) ≤ sup
|zj |=eaj

[V (x+ z, sb)− sα]

= sup
|zj |=eaj

sup
|wj |=esbj

[f(x+ z + w)− sα]

= sup
|zj |=eyj

[f(x+ z)− sα] = Vf (x, y)− sα,

where y ∈ Rn is defined by eyj = eaj + esbj . Thus

Vfb,α(x, a) ≤ Vf (x, y)− sα
for every a and every sb, with y determined from the first two vectors. We
now replace a by ta and s by ts with t < 0. Then

(6.2) Vfb,α(x, ta) ≤ Vf (x, ty(t))− tsα,
where now

yj(t) =
1
t

log(etaj + etsbj ),

and we can estimate yj(t) from above and below, writing c = a ∧ sb:

cj ≥ yj(t) ≥
1
t

log 2 + cj .

Dividing (6.2) by the negative number t and letting t tend to −∞ we get
the desired inequality, at least at each point of continuity of y 7→ νf (x, y). If
f equals minus infinity near x, all Lelong numbers are equal to +∞. If not,
Vf (x, ·) is a convex function which is real-valued, hence continuous, in the
open set yj > 0, and Vf (x, ty(t))/t tends to its asymptotic function νf (x, c)
as t→ −∞.
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Lemma 6.2. Assume Ω satisfies (5.3), (5.4) and (5.5). If α > νf (x, y),
then fy,α(x) > −∞; in particular , νfy,α(x, z) = 0 for all z ∈ Rn+.

P r o o f. The number fy,α(x) is the infimum of V (x, ty)−αt over all real
t such that (x, ty) ∈ Ω. The expression is a convex function of t which is
decreasing for t� 0. By (5.5), t < tx,y < +∞. Hence the infimum is finite.

Theorem 6.3. Let ω be open in Cn and let Ω be an open set in ω×Cn
satisfying (5.3), (5.4) and (5.5). Let f ∈ PSH(ω) and define fy,α by (6.1).
Then νfy,α(x, y) is determined by νf (x, y) and α:

(6.3) νfy,α(x, y) = (νf (x, y)− α)+, x ∈ ω, y ∈ Rn+, α ≥ 0.

P r o o f. The proof is analogous to that of Theorem 2.1. The function
α 7→ νϕα(x, y) is convex, takes the value νf (x, y) for α = 0, and has the
properties explained in Lemmas 6.1 and 6.2. This determines it uniquely.

7. Analyticity theorems for the refined Lelong number

Theorem 7.1 (Analyticity theorem). For any f ∈ PSH(ω), where ω is
open in Cn, any y ∈ Rn with yj > 0, and any real number c, the superlevel
set

Eνy,c(f) = {x ∈ ω : νf (x, y) ≥ c}
of the refined Lelong number is an analytic variety in ω.

This theorem was proved in April, 1986, and a proof was presented in
June, 1986, at the conference Geometric and Quantitative Complex Analysis
in Wuppertal. The theorem is stated without proof in Kiselman [1987]. A
proof was published in Kiselman [1992]. The theorem generalizes Siu’s the-
orem [1974] and is a special case of Demailly’s analyticity theorem [1987].

P r o o f o f T h e o r e m 7.1. The functional κϕ(x) = νϕ(x, y) is compa-
rable to the integrability index (Theorem 3.5 and Proposition 5.3) and is
positively homogeneous in ϕ, so we can apply Theorem 4.3, letting Φ de-
note the set of all functions fy,α with α ≥ 0 and using the information in
Theorem 6.3.

It is tempting to try to prove an analyticity theorem for numbers that
are defined by varying only some of the variables, thus defining

Vf,k(x, y1, . . . , yk) = sup
|zj |=eyj

f(x1 + z1, . . . , xk + zk, xk+1, . . . , xn)

and

νf,k(x, y1, . . . , yk) = lim
t→−∞

Vf,k(x, ty1, . . . , tyk)
t

, x ∈ ω, (y1, . . . , yk) ∈ Rk+.
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We could call νf,k a partial Lelong number, because it is the refined Lelong
number of a restriction of f to a k-dimensional subspace of Cn. Evidently,

Vf,k(x, y1, . . . , yk) ≤ Vf (x, y1, . . . , yn)

for all choices of yk+1, . . . , yn ∈ R, so that

νf,k(x, y1, . . . , yk) ≥ νf (x, y1, . . . , yn), x ∈ ω, y ∈ Rn+,
and

νf,k(x, y1, . . . , yk) ≥ lim νf (x, y1, . . . , yn), x ∈ ω, y ∈ Rk+,
where the limit is for yk+1, . . . , yn → +∞. It is natural to ask whether

(7.1) νf,k(x, y1, . . . , yk) = lim νf (x, y1, . . . , yn), x ∈ ω, y ∈ Rk+.
Clearly,

(7.2) Vf,k(x, y1, . . . , yk) = limVf (x, y1, . . . , yn),

where the limit is now taken as yk+1, . . . , yn tend to −∞, but this is not
enough to guarantee equality in (7.1). In general, there is no analyticity
theorem for these partial Lelong numbers; see Wang [1991, Examples 4.2
and 4.3]. Under certain hypotheses, however, an analyticity theorem does
hold; see Wang [1991, Theorems 4.10 and 4.11]. We shall now consider a very
simple case of this kind, which moreover is of some geometric significance.
We let L(Cm,Cn) denote the space of all linear mappings from Cm into Cn.

Theorem 7.2. Let f ∈ PSH(ω). Define

(7.3) V ′f (x, h, z, y) = sup
|x′|=ey0
|z′
j |=e

yj

f(x+ x′ + h(z + z′))

for (x, h, z, y) ∈ ω × L(Cm,Cn)× Cm × R1+m and

ν′f (x, h, z, y) = lim
t→−∞

V ′f (x, h, z, ty)
t

for (x, h, z, y) ∈ ω × L(Cm,Cn)× Cm × R1+m
+ . Then the superlevel set

Eν
′

y,c(f) = {(x, h, z) ∈ ω × L(Cm,Cn)× Cm : ν′f (x, h, z, y) ≥ c}
is an analytic subvariety of ω × L(Cm,Cn)× Cm.

P r o o f. For f ∈ PSH(ω) the function F (x, h, z) = f(x+h(z)) is plurisub-
harmonic in

Ω = {(x, h, z) ∈ ω × L(Cm,Cn)× Cm : x+ h(z) ∈ ω}.
The refined Lelong number of this function is then well defined: we first take
the supremum over a polycylinder

(7.4) VF (X,Y ) = VF ((x, h, z), Y ) = sup[F (X +X ′) : |X ′j | = eYj ]
= sup[f(x+ x′ + (h+ h′)(z + z′)) : |x′| = ey0 , |h′jk| = eyjk , |z′k| = eyk ]
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for

X = (x, h, z) ∈ Ω, Y = (y0, (yjk), (yk)) ∈ R1+mn+m,

and then define the refined Lelong number as

νF (X,Y ) = lim
t→−∞

VF (X, tY )
t

, X ∈ Ω, Y ∈ R1+mn+m
+ .

Here X = (x, h, z) is a point in Ω, and Y = (y0, (yjk), (yk)) denotes a
direction in R×Rmn ×Rm. The yjk variables are those that correspond to
the variation in h; the linear mapping h′ is given by h′(z)j =

∑
h′jkzk and

we let the h′jk vary under the constraints |h′jk| = eyjk . We shall see that if
the yjk are large compared with y0, then

(7.5) νF ((x, h, z), Y ) = ν′f (x, h, z, y).

Admitting this for a moment, we see that Eν
′

y,c(f) = EνY,c(F ) if the vector y=
(y0, y1, . . . , ym) ∈ R1+m is completed in a suitable way to Y . By Theorem
7.1 the set EνY,c(F ) is analytic, which proves the theorem. The passage to
the limit in (7.1) is therefore particularly simple: the value is constant for
all large values of those variables that tend to plus infinity. In Wang [1991,
Section 5] it is shown that there are other cases where the limit (7.1) gives an
analyticity theorem for the partial Lelong number. It is, however, necessary
to use polydisks with very small radii in some directions to get the result,
which shows that the idea of using polydisks rather than balls is essential.

To prove (7.5) we shall compare the supremum in (7.3) with that in
(7.4): in the first the mapping h is fixed, in the second it varies. Obvi-
ously, VF ((x, h, z), Y ) ≥ V ′f (x, h, z, y) for all choices of (yjk), which gives
νF ((x, h, z), Y ) ≤ ν′f (x, h, z, y).

On the other hand, if we write

F (X +X ′) = f(x+ x′ + (h+ h′)(z + z′)) = f(x+ x′′ + h(z + z′))

with x′′ = x′+h′(z+z′), then in the definition of VF ((x, h, z), tY ) (cf. (7.4))
we have

|x′′| ≤ ety0 +
∑

etyjk(|zk|+ etyk) = ety0(t),

where the last equality is a definition of y0(t). We get

VF ((x, h, z), tY ) ≤ V ′f (x, h, z, ty0(t), ty1, . . . , tym)

and

y0(t) =
1
t

log
(
ety0 +

∑
etyjk(|zk|+ etyk)

)
→ y0 as t→ −∞,
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provided 0 < y0 < yjk and yk > 0 for all j and k, yielding

νF ((x, h, z), Y ) = lim
t→−∞

VF ((x, h, z), tY )
t

≥ lim
t→−∞

V ′f (x, h, z, ty0(t), ty1, . . . , tym)
t

= ν′f (x, h, z, y).

Given positive numbers y0 and y1, . . . , ym it is therefore enough to choose
yjk such that yjk > y0 > 0. This means that the change in the variable h
is absorbed by the change in the variable x, and we can conclude that (7.5)
holds if yjk > y0 > 0 and yk > 0.

Theorem 7.3. Define for f ∈ PSH(ω),

(7.6) V ′′f (x, h, y) = sup
|zj |≤eyj

f(x+ h(z))

for (x, h, y) ∈ ω ×GL(n,C)× Rn and

ν′′f (x, h, y) = lim
t→−∞

V ′′f (x, h, ty)
t

for (x, h) ∈ ω ×GL(n,C) and y ∈ Rn+. Then every superlevel set

Eν
′′

y,c(f) = {(x, h) ∈ ω ×GL(n,C) : ν′′f (x, h, y) ≥ c}

of ν′′f (x, h, y) is an analytic subset of ω ×GL(n,C).

P r o o f. We compare the supremum in (7.3) with that in (7.6). In the
first, x varies, in the second x is fixed. Since h is now invertible, the
variation in x can be absorbed by the variation in z, so that V ′f (x, h, 0, y)
can be compared with V ′′f (x, h, y) as in the previous proof. Explicitly, we
first note that we have V ′′f (x, h, y1, . . . , yn) ≤ V ′f (x, h, 0, y0, . . . , yn) for all
real y0, y1, . . . , yn, which gives ν′′f (x, h, y) ≥ ν′f (x, h, 0, y0, y) for all y ∈
Rn+, y0 ∈ R+. For the other direction we look at the supremum defining
V ′f (x, h, 0, ty0, . . . , tyn) (cf. (7.3)); we can write

x+ x′ + h(z′) = x+ h(h−1(x′) + z′) = x+ h(z′′),

where

|z′′j | = |h−1(x′)j + z′j | ≤ ‖h−1‖ety0 + etyj = etyj(t),

if we define

yj(t) =
1
t

log(‖h−1‖ety0 + etyj ).

If y0 > yj , then yj(t) tends to yj as t→ −∞. Therefore

V ′f (x, h, 0, ty0, . . . , tyn) ≤ V ′′f (x, h, ty1(t), . . . , tyn(t)),

which in turn implies
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ν′f (x, h, 0, y0, . . . , yn) ≥ ν′′f (x, h, y1, . . . , yn),
yj > 0, y0 > max(y1, . . . , yn).

Given any y ∈ Rn+ we choose y0 > max yj and then have Eν
′′

y,c(f) =
Eν

′

(y0,y),c(f). By Theorem 7.2 this is an analytic set.

Finally we shall study another kind of attenuation of the singularities.
We define

(7.7) gη(x) = inf
y

[V (x, y)− Re η · y : (x, y) ∈ Ω], x ∈ ω, η ∈ Rn,

where η · y = η1y1 + . . .+ ηnyn.

Question. What is the refined Lelong number νgη (x, y) of gη? Is there
a formula like (6.3)?

We shall collect a few results concerning the functions gη which are not
enough to answer this question, but which nevertheless suffice to prove an
analyticity theorem using them.

Lemma 7.4. Let f ∈ PSH(ω) and define gη by (7.7). Then

νgη (x, a) ≥ νf (x, a ∧ b)− η · b, η ∈ Rn, x ∈ ω, a, b ∈ Rn;
νgη (x, a) ≥ sup

b
(νf (x, a ∧ b)− η · b), η ∈ Rn, x ∈ ω, a ∈ Rn.

P r o o f. We always have gη ≤ fb,α if η · b = α. Using Lemma 6.1 we see
that

νgη (x, a) ≥ νfb,α(x, a) ≥ νf (x, a ∧ b)− α = νf (x, a ∧ b)− η · b.
Lemma 7.5. Assume that Ω satisfies (5.3) and (5.4). Let f ∈ PSH(ω)

and define gη by (7.7). Take a point x ∈ ω. If a ∈ Rn+ and νf (x, a) < c,
then there exists a vector η ∈ Rn such that η · a < c and gη(x) > −∞. In
particular , νgη (x, z) = 0 for all z ∈ Rn+.

P r o o f. If νf (x, a) < c, there exists an affine minorant of V on the
straight line defined by a: if we take a number t0 with −t0 large enough,
there is a number b such that νf (x, a) ≤ b < c and

−∞ < V (x, t0a) + b(t− t0) ≤ V (x, ta)

for every t ∈ R. By the Hahn–Banach theorem, we can find an affine mino-
rant in the whole space extending this one, which means that we can find
η ∈ Rn such that η · a = b < c and

V (x, t0a) + η · (y − t0a) ≤ V (x, y)

for every y ∈ Rn. Consequently,

−∞ < C = V (x, t0a)− η · (t0a) ≤ V (x, y)− η · y
and −∞ < C ≤ infy(V (x, y)− η · y) = gη(x).
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Theorem 7.6. Let ω be an open set in Cn and Ω an open set in ω×Cn
satisfying (5.3) and (5.4). Let gη be given by (7.7). Then Gx,z(η)=νgη (x, z)
is a convex function of η ∈ Rn, and its Fenchel transform

G̃x,z(y) = sup
η

[η · y −Gx,z(η)] = sup
η

[η · y − νgη (x, z)], y ∈ Rn,

satisfies

(7.8) −νf (x, y) ≤ G̃x,z(−y) ≤ −νf (x, y ∧ z), y, z ∈ Rn+.

In particular , G̃x,z(−y) = −νf (x, y) when y ≤ z. The function (y, z) 7→
G̃x,z(−y) is convex in Rn × Rn.

P r o o f. From Lemma 7.4 we see that −νgη (x, z) ≤ −νf (x, y ∧ z) + η · y,
which immediately gives the inequality to the right in (7.8).

If νf (x, y) < c, then by Lemma 7.5 there is an η ∈ Rn such that η · y < c

and νgη (x, z) = 0 for all z∈Rn. Hence by definition G̃x,z(−y) ≥ −c. Letting
c tend to νf (x, y), we get the inequality to the left in (7.8). This proves the
theorem.

Can Theorem 4.3 be applied to prove Theorem 7.1 using instead the
gη? We do not know enough about the Lelong numbers of gη to do that—
Theorem 4.3 requires an exact formula for the values of the functional. But
the more flexible Theorem 4.2 will suffice. To see this, let Φ be the set of all
functions gη with η · y < c, where we define gη by (7.7). We first check the
hypothesis (4.3) of Theorem 4.2. Lemma 7.4 yields

κgη (x) = νgη (x, y) ≥ νf (x, y)− η · y ≥ c− η · y > 0

for any point x ∈ X = Eνy,c(f). Thus (4.3) holds. Next, if νf (x, y) < c, then
there is an η such that η · y < c, thus gη ∈ Φ, and κgη (x) = 0 (Lemma 7.5).
This means that also (4.4) holds, and we can conclude again, now using
Theorem 4.2, that X = Eνy,c(f) is analytic.
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