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Abstract. We consider an implicit fractional step procedure for the time discretization of
the non-stationary Stokes equations in smoothly bounded domains of R3. We prove optimal
convergence properties uniformly in time in a scale of Sobolev spaces, under a certain regularity
of the solution. We develop a representation for the solution of the discretized equations in the
form of potentials and the uniquely determined solution of some system of boundary integral
equations. For the numerical computation of the potentials and the solution of the boundary
integral equations a boundary element method of collocation type is carried out.

1. Introduction and notation. Let T > 0 be given and G ⊂ R3 be a
bounded domain with a sufficiently smooth compact boundary S. In (0, T ) × G
we consider the non-stationary Stokes equations

(1.1)
Dtv − ν∆v +∇p = F , div v = 0 ,

v|S = 0 , v|t=0 = v0 .

These equations describe the linearized motion of a viscous incompressible fluid:
the vector v = (v1(t, x), v2(t, x), v3(t, x)) represents the velocity field and the
scalar p = p(t, x) the kinematic pressure function of the fluid at time t ∈ (0, T )
and at position x ∈ G. The constant ν > 0 is the kinematic viscosity, and the
external force density F together with the initial velocity v0 are the given data.
The condition div v = 0 means the incompressibility of the fluid, and v = 0
on the boundary S expresses the no-slip condition, i.e. the fluid adheres to the
boundary.
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It is the aim of the present paper to develop a method for the numerical
solution of (1.1). This method consists of three steps. In the first step, finite dif-
ferences in time are used in order to transform (1.1) into certain boundary value
problems. In the second step, these boundary value problems are studied with
methods of potential theory. This leads to a representation of their solutions con-
sisting of volume and surface potentials, whose densities have to be determined
from a system of boundary integral equations. Thirdly, for the discretization of
the boundary integral equations and the numerical computation of the potentials
a boundary element method of collocation type and suitable quadrature methods
are used.

Let us consider the following semidiscrete first order approximation scheme
for the Stokes equations (1.1): Setting

h = T/N > 0 , tk = k · h (k = 0, 1, . . . , N) ,

we approximate the solution v, p of (1.1) at time tk by the solution vk, pk (k =
1, 2, . . . , N) of the following equations in G:

(1.2)
(vk − vk−1)h−1 − ν∆vk +∇pk = h−1

kh∫
(k−1)h

F (t) dt ,

div vk = 0 , v0 = v0 , vk|S = 0 .

Here F and v0 are the given data. Thus for every k = 1, 2, 3, . . . , N we have to
determine in G the solution vk, qk of the boundary value problem

(1.3)
(λ−∆)vk +∇qk = Fλ,k−1 (λ = (νh)−1 > 0) ,

div vk = 0 , vk|S = 0

where qk = pk/ν and

(1.4) Fλ,k−1(x) = λ
(
vk−1(x) +

kh∫
(k−1)h

F (t, x) dt
)
.

Using methods of potential theory, we find a representation of the solution vk, qk

in the form

(1.5) (vk(x), qk(x)) = (VλFλ,k−1)(x) + (DλΨ)(x) , x ∈ G .
Here VλFλ,k−1 is a hydrodynamic volume potential with density Fλ,k−1, and DλΨ
is a double layer potential, whose unknown source density Ψ has to be determined
from the boundary integral equations

(1.6) −(V ∗λ F
λ,k−1)(x) = 1

2Ψ(x) + (D∗λΨ)(x)− (PNΨ)(x) , x ∈ S .
Here the superscript ∗ refers to the velocity part of the above potentials, (D∗λΨ) is
the direct value of the hydrodynamic double layer potential for the velocity, and
PNΨ is a one-dimensional perturbation operator, which ensures that the solution
Ψ is unique in the space of continuous vector fields on S (compare [1]). For the
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spatial discretization of (1.6) we use a boundary element method of collocation
type as described in [6, 17].

At this point, let us introduce our notations. Throughout the paper, G ⊂ R3 is
a bounded domain having a compact boundary S of class C2. In the following, all
functions are real valued. As usual, C∞0 (G) denotes the space of smooth functions
defined in G with compact support, and L2(G) is the Lebesgue (Hilbert) space
equipped with the scalar product and norm

〈f, g〉 =
∫
G

f(x)g(x) dx , ‖f‖ = 〈f, f〉1/2 ,

respectively. For functions f, g ∈ L2(G) we need the following well-known rela-
tions:

(1.7)

〈f − g, f + g〉 = ‖f‖2 − ‖g‖2 ,
〈f − g, 2f〉 = ‖f‖2 − ‖g‖2 + ‖f − g‖2 ,

2〈f, g〉 ≤ 2‖f‖ ‖g‖ ≤ ‖f‖2 + ‖g‖2 .

The Sobolev (Hilbert) space Hm(G) (m ∈ N = {0, 1, 2, . . .}) is the space of
functions f such that Dαf ∈ L2(G) for all α = (α1, α2, α3) ∈ N3 with |α| =
α1 + α2 + α3 ≤ m. Its norm is denoted by

‖f‖m = ‖f‖Hm(G) =
( ∑
|α|≤m

‖Dαf‖2
)1/2

, Dα = Dα1
1 Dα2

2 Dα3
3 ,

where Dk = d/dxk (k = 1, 2, 3) is the distributional derivative. The completion
of C∞0 (G) with respect to ‖ · ‖m is denoted by

Hm
0 (G) (H0

0 (G) = H0(G) = L2(G)) .

If f ∈ H1
0 (G), in particular, we have Poincaré’s inequality

(1.8) ‖f‖2 ≤ CG‖∇f‖2 ,

where the constant λ1 = C−1
G is the smallest eigenvalue of the Laplace operator

−∆ in G with zero boundary condition [10, p. 11].
The spaces C∞0 (G)3, L2(G)3, Hm(G)3, . . . are the corresponding spaces of vec-

tor fields u = (u1, u2, u3). Here the norm and scalar product are denoted as in
the scalar case, i.e. for example

〈u, v〉 =
3∑
k=1

〈uk, vk〉 , ‖u‖ = 〈u, u〉1/2 =
( ∫
G

|u(x)|2 dx
)1/2

,

where |u(x)| = (u1(x)2 + u2(x)2 + u3(x)2)1/2 is the Euclidian norm of u(x) ∈ R3.
The completions of

C∞0,σ(G)3 = {u ∈ C∞0 (G)3 | div u = 0}
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with respect to the norms ‖ · ‖ and ‖ · ‖1 are important spaces for the treatment
of the Stokes equations. They are denoted by

H(G)3 , V(G)3 ,

respectively. In H1
0 (G)3 and V(G)3 we also use

〈∇u,∇v〉 =
3∑

k,j=1

〈Dkuj , Dkvj〉 , ‖∇u‖ = 〈∇u,∇u〉1/2

as scalar product and norm [16, p. 5]. Moreover, we need the B-valued spaces
Cm(J,B) and Hm(a, b, B), m ∈ N, where J ⊂ R is a compact interval, where
a, b ∈ R (a < b), and where B is any of the spaces above. In case of C0( , ) we
simply write C( , ), and we use H,V,Hm, . . . instead of H(G), V (G), Hm(G), . . .
if the domain of definition is clear from the context. Finally, let

(1.9) P : L2(G)3 → H(G)3

denote the orthogonal projection (see [16, p. 15]). Then we have

L2(G)3 = H(G)3 ⊕ {v ∈ L2(G)3 | v = ∇p for some p ∈ H1(G)} ,

which means

(1.10) 〈u,∇p〉 = 0 for all u ∈ V(G)3 and p ∈ H1(G) .

2. Discretization of time. Because the projection P from (1.9) commutes
with the strong time derivative Dt, from the Stokes equations (1.1) we obtain the
following evolution equations for the function t→ v(t) ∈ H(G)3:

(2.1) Dtv(t)− νP∆v(t) = PF (t) (t ∈ (0, T )) , v(0) = v0 .

In this case, the condition div v = 0 and the boundary condition v = 0 on S are
satisfied in the sense that we require v(t) ∈ V(G)3 for all t ∈ (0, T ).

Concerning the solvability of the evolution equations (2.1), it is known (see
[10, p. 89]) that for

(2.2) v0 ∈ H2(G)3 ∩ V(G)3 , F ∈ H1(0, T,H(G)3) ,

there is a unique solution v of (2.1) in G such that

(2.3)
v ∈ C([0, T ], H2(G)3 ∩ V(G)3) ,

Dtv ∈ C([0, T ],H(G)3) ∩ L2(0, T,H1(G)3) ,

and that there is some constant K depending only on G, ν, F , v0 and not on
t ∈ [0, T ] such that for all t ∈ [0, T ]

(2.4)
t∫

0

‖∇Dσv(σ)‖2 dσ ≤ K , ‖v(t)‖2 ≤ K , ‖Dtv(t)‖ ≤ K .
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Let us now consider the discretized equations (1.2) under the weaker assump-
tions

(2.5) v0 ∈ H(G)3 , F ∈ L2(0, T,H(G)3) .

Using P as above and noting that F = PF we obtain in G (h = T/N > 0),

(2.6) (vk − vk−1)− hνP∆vk =
kh∫

(k−1)h

F (t) dt , v0 = v0 .

It is known that under the above assumptions (2.5) there is a unique solution

(2.7) vk ∈ H2(G)3 ∩ V(G)3 (k = 1, 2, . . . , N)

of (2.6): If we define the Stokes operator A to be Friedrichs’ extension of −P∆
in H(G)3, then its domain of definition D(A) is H2(G)3 ∩ V(G)3 ([2], see also
[5, p. 270]). Because λ = (νh)−1 > 0 belongs to the resolvent set of −A, the
equations

vk = (λ+A)−1Fλ,k−1 , Fλ,k−1 ∈ H(G)3

(see (1.4)) are (successively for k = 1, 2, . . . , N) uniquely solvable with vk ∈
H2(G)3 ∩ V(G)3, as asserted.

To prove the convergence of the discretized equations (2.6) to the evolution
equations (2.1) and to estimate the discretization error, we use the Lax–Richtmyer
approach “stability + consistency → convergence”, originally developed in [11].
Let us define

(Πhv)(tk) = v(tk)− v(tk−1)− νhP∆v(tk) ,

(Πh{vj})(tk) = vk − vk−1 − νhP∆vk .

Then the defect

(2.8) ek = vk − v(tk)

satisfies the identity

(2.9) ek − ek−1 − νhP∆ek = (Πh{vj})(tk)− (Πhv)(tk) = Rk ,

which is used to obtain estimates of ek in terms of the right hand side Rk

(≈ Stability). Then the behaviour of

Rk =
kh∫

(k−1)h

(Dtv(t)− νP∆v(t)) dt− {(v(tk)− v(tk−1))− hνP∆v(tk)}(2.10)

=
kh∫

(k−1)h

− νP∆(v(t)− v(tk)) dt = −νP∆Ek

as h tends to zero (≈ Consistency) follows from the regularity properties of the
exact solution of the Stokes equations (2.1).
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Theorem. Let T > 0, N ∈ N, and G ⊂ R3 be a bounded domain with a
smooth boundary S of class C2. Assuming (2.2), let v and vk (k = 1, 2, . . . , N)
denote the solution of (2.1) and (2.6), respectively. Then the discretization error
ek (see (2.8)) satisfies the following estimates:

‖ek‖2 +
k∑
j=1

(hν‖∇ej‖2 + ‖ej − ej−1‖2) ≤ Kh2 ,

‖∇ek‖2 +
k∑
j=1

(2(hν)−1‖ej − ej−1‖2 + 1
2‖∇(ej − ej−1)‖2) ≤ Kh .

Here the constant K depends only on G, ν, and the data. Moreover , we even have
convergence with respect to the H2-norm:

max{‖ek‖2 | k = 1, 2, . . . , N} = o(1) as h→ 0 or N →∞ .

P r o o f. From (2.9) and (2.10) we obtain for the defect ek the identity

(2.11) (ek − ek−1)− hνP∆ek = −νP∆Ek .
Multiplying (2.11) scalarly in L2 by 2ek and using (1.7), we obtain

‖ek‖2 − ‖ek−1‖2 + ‖ek − ek−1‖2 + 2hν‖∇ek‖2 = 2ν〈∇Ek,∇ek〉
≤ 2 · (hν)1/2‖∇ek‖ · (h−1ν)1/2‖∇Ek‖

≤ hν‖∇ek‖2 + h−1ν‖∇Ek‖2 = S1 + S2 .

Because of

S2 = h−1ν
∥∥∥ kh∫

(k−1)h

kh∫
t

Dσ∇v(σ) dσ dt
∥∥∥2

≤ ν
kh∫

(k−1)h

∥∥∥ kh∫
(k−1)h

|Dσ∇v(σ)| dσ
∥∥∥2

dt

≤ νh
∥∥∥ kh∫

(k−1)h

|∇v(σ)| dσ
∥∥∥2

≤ νh2
kh∫

(k−1)h

‖Dσ∇v(σ)‖2 dσ ,

we find

(2.12) ‖ek‖2 − ‖ek−1‖2 + ‖ek − ek−1‖2 + hν‖∇ek‖2

≤ νh2
kh∫

(k−1)h

‖Dσ∇v(σ)‖2 dσ

for all k = 1, 2, . . . , N . Thus, using ‖e0‖2 = 0 and (2.4), the first estimate is
proved.

Next let us multiply (2.11) scalarly in L2 by 2(ek − ek−1). We obtain

2‖ek − ek−1‖2 + 2hν〈∇ek,∇(ek − ek−1)〉
= 2‖ek − ek−1‖2 + hν(‖∇ek‖2 − ‖∇ek−1‖2 + ‖∇(ek − ek−1)‖2)
= 2ν〈∇Ek,∇(ek − ek−1)〉
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≤ 2 · (hν/2)1/2‖∇(ek − ek−1)‖ · (2h−1ν)1/2‖∇Ek‖
≤ (hν/2)‖∇(ek − ek−1)‖2 + 2h−1ν‖∇Ek‖2 = S3 + 2S2 .

Using the above estimate for S2 again, we have

2‖ek − ek−1‖2 + hν(‖∇ek‖2 − ‖∇ek−1‖2) + (hν/2)‖∇(ek − ek−1)‖2

≤ 2νh2
kh∫

(k−1)h

‖Dσ∇v(σ)‖2 dσ ,

hence

‖∇ek‖2 − ‖∇ek−1‖2 + 2(hν)−1‖ek − ek−1‖2 + 1
2‖∇(ek − ek−1)‖2

≤ 2h
kh∫

(k−1)h

‖Dσ∇v(σ)‖2 dσ ,

which implies the second estimate.
Next we want to prove convergence with respect to the H2-norm. From (2.11)

we conclude
P∆ek = (hν)−1(ek − ek−1) + h−1P∆Ek ,

which implies

(2.13) ‖P∆ek‖2 ≤ 2(hν)−2‖ek − ek−1‖2 + 2h−2‖P∆Ek‖2 .
By (2.3) we find the following estimate for the second term:

2h−2‖P∆Ek‖2 ≤ 2h−2
∥∥∥ kh∫

(k−1)h

P∆(v(t)− v(tk)) dt
∥∥∥2

≤ 2 max
σ,τ∈[0,T ]
|σ−τ |≤h

‖P∆(v(σ)− v(τ))‖2 = o(1) as h→ 0 .

It remains to show that also the first term of (2.13) tends to zero. Using

T k = (ek − ek−1)/h (k = 1, 2, . . . , N)

for abbreviation, form (2.11) we obtain the identity

T k − T k−1 − hνP∆T k

= − h−1νP∆
{ kh∫

(k−1)h

(v(t)− v(tk)) dt−
(k−1)h∫

(k−2)h

(v(t)− v(tk−1)) dt
}

= − h−1νP∆Gk ,

where Gk is defined by the above term in braces. Scalar multiplication in L2 by
2T k yields as above

(2.14) ‖T k‖2 − ‖T k−1‖2 + ‖T k − T k−1‖2 + 2hν‖∇T k‖2

≤ hν‖∇T k‖2 + h−3ν‖∇Gk‖2 ,
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hence

‖T k‖2 − ‖T k−1‖2 + ‖T k − T k−1‖2 + hν‖∇T k‖2 ≤ h−3ν‖∇Gk‖2 .

Because

Gk = −
kh∫

(k−1)h

kh∫
t

(Dσv(σ)−Dσv(σ − h)) dσ dt ,

we find the estimate

‖∇Gk‖2 ≤ h3
kh∫

(k−1)h

‖Dσ∇(v(σ)− v(σ − h))‖2 dσ .

Thus from (2.14) we obtain

‖T k‖2 − ‖T k−1‖2 + ‖T k − T k−1‖2 + hν‖∇T k‖2

≤ ν
kh∫

(k−1)h

‖Dt∇(v(t)− v(t− h))‖2 dt ,

and

(2.15) ‖T k‖2 +
k∑
j=2

(‖T j − T j−1‖2 + νh‖∇T j‖2)

≤ ‖T 1‖2 + ν
T∫
h

‖Dt∇(v(t)− v(t− h))‖2 dt = o(1) as h→ 0 ,

because the integral vanishes as h→ 0, and because by (2.12) (note ‖e0‖ = 0),

‖T 1‖2 = ‖(e1 − e0)h−1‖2 ≤ ν
h∫

0

‖Dt∇v(t)‖2 dt = o(1) .

Thus (2.15) implies that also the first term of (2.13) tends to zero as h → 0,
hence ‖P∆ek‖2 = o(1) as h → 0, and the asserted convergence with respect
to the H2-norm follows by means of Cattabriga’s estimate [2]. This proves the
theorem.

3. Potential theory. Because every time step tk = kh (k = 1, 2, . . . , N ∈
N; h = T/N > 0) requires the solution of the boundary value problem (1.3), we
consider for fixed h, k, and λ = (hν)−1 > 0 in G the system

(3.1) (λ−∆)u+∇q = F (λ > 0) , div u = 0 , u|S = 0 .

Let us define the formal differential operator of (3.1) by

Sλ :
(
u

q

)
→ Sλ

u

q
=
(

(λ−∆)u+∇q
∇ · u

)
,
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and let

S′λ :
(
u

q

)
→ S′λ

u

q
=
(

(λ−∆)u−∇q
−∇ · u

)
denote its formally adjoint operator. To construct an explicit solution u, q of
(3.1) with methods of potential theory, we first need the singular fundamental
tensor Eλ = (Eλjk)j,k=1,...,4, i.e. a solution of SλEλ = δI4 in the space of tempered
distributions. Here δ is Dirac’s distribution in R3, I4 the 4× 4 unity matrix, and
SλEλ = (SEλ1 , SE

λ
2 , SE

λ
3 , SE

λ
4 ) with columns Eλk = (Eλjk)j=1,...,4 for k = 1, . . . , 4.

To compute E = Eλ we use Fourier transformation. Setting

E∗jk(α) = (FEjk)(α) = cπ
∫

R3

exp(−iα · x)Ejk(x) dx

with cπ = (2π)−3/2 we obtain for every k = 1, . . . , 4 the vector identity (in the
distributional sense)((|α|2E∗jk + λE∗jk + iαjE

∗
4k)j=1,2,3

i
∑3
j=1 αjE

∗
jk

)
(α) = cπ(δjk)j=1,...,4 .

Here δjk denotes the Kronecker symbol. From these identities the Fourier trans-
form E∗ of E can be easily determined: For j, k = 1, 2, 3 we have

E∗jk(α) = δjkcπ(|α|2 + λ)−1 − αjαkcπ|α|−2(|α|2 + λ)−1 ,

E∗4k(α) = E∗k4(α) = −iαkcπ|α|−2 ,

E∗44(α) = cπ(1 + λ|α|−2) .

To compute E from E∗ by inverse Fourier transformation, let

Ejk(x) = (F−1E∗jk)(x) = cπ
∫

R3

exp(iα · x)E∗jk(α) dα .

Then we obtain for j, k = 1, 2, 3,

Ejk = δjkF
−1(cπ/(|α|2 + λ)) +D2

jkF
−1(cπ|α|−2(|α|2 + λ)−1) ,

E4k = Ek4 = DkF
−1(cπ/|α|2) , E44 = F−1cπ + λF−1(cπ/|α|2) ,

with

(F−1cπ)(x) = δ(x) , (F−1(cπ/|α|2))(x) = (4π|x|)−1 ,

(F−1(cπ/(|α|2 + λ)))(x) = (4π|x|)−1 exp(−
√
λ|x|) ,

(F−1(cπ|α|−2(|α|2 + λ)−1))(x) = (4πλ|x|)−1(1− exp(−
√
λ|x|)) .

Note that the right hand sides of the last three equations are fundamental solu-
tions of the operators −∆, −∆ + λ, and (−∆ + λ)(−∆), respectively [12]. Now
some elementary calculations yield (compare also [13, p. 206]) that the funda-
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mental tensor Eλ = (Eλjk(x))j,k=1,...,4 has the following form:

(3.2)

Eλjk(x) =
1

4π

{
δjk
|x|

e1(−
√
λ|x|) +

xjxk
|x|3

e2(−
√
λ|x|)

}
(k, j 6= 4) ,

e1(ε) =
∞∑
n=0

(n+ 1)2

(n+ 2)!
εn = exp(ε)(1− ε−1 + ε−2)− ε−2 ,

e2(ε) =
∞∑
n=0

1− n2

(n+ 2)!
εn = exp(ε)(−1 + 3ε−1 − 3ε−2) + 3ε−2 ,

Eλ4k(x) = Eλk4(x) =
xk

4π|x|3
(k 6= 4) , Eλ44(x) = δ(x) +

λ

4π|x|
.

Using the exponential representation of the functions e1, e2 we immediately ob-
tain the behaviour of Eλ(x) for x → 0 and x → ∞. Setting r = |x| we have for
j, k 6= 4:

(3.3)

Eλjk(x) = O(r−1) as r → 0 ,

Eλjk(x) = O(r−3) as r →∞ (λ > 0) ,

Eλ4k(x) = O(r−2) as r → 0 or r →∞ .

Note that Eλjk (λ > 0) decays stronger than E0
jk (j, k 6= 4) as r →∞.

Now using the right hand side F from (3.1) and the fundamental tensor Eλ,
we can construct the hydrodynamical volume potential

(3.4) (U(x), Q(x)) =
∫
G

〈(
F (y)

0

)
, Eλ(x− y)

〉
dy ,

which satisfies the equations Sλ UQ =
(
F
0

)
in G due to its construction. Here and

in the sequel, for ξ ∈ Rn and matrices A = (Aji) ∈ Rn × Rm (n,m ∈ N) we use

〈ξ, A〉 =
( n∑
j=1

ξjAj1, . . . ,

n∑
j=1

ξjAjm

)
,

obtaining a row with m components.
In order to represent the solution of (Sλ) by means of potentials we need

the hydrodynamical Green’s formulae. They are given in terms of the formal
differential operators

Sλ :
(
u

q

)
→ Sλ

u

q
, S′λ :

(
u

q

)
→ S′λ

u

q

from above, and their corresponding adjoint stress tensors, which are defined by

T :
(
u

q

)
→ T

u

q
= (−∇u− (∇u)T + qI3) ,

T ′ :
(
u

q

)
→ T ′

u

q
= (−∇u− (∇u)T − qI3) .
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Here (∇u)T is the transposed matrix of ∇u = (Diuk)k,i=1,2,3 and I3 the 3 × 3
unit matrix.

Let us assume that u, v ∈ C2(G)3 ∩ C1(G)3 are divergence-free vector fields,
that q, p ∈ C1(G) ∩ C0(G), and that Sλ uq , S

′
λ
v
p ∈ L

1(G)3 (λ > 0). Then we have
Green’s first identity

(3.5)
∫
G

〈
Sλ

u

q
,

(
v

p

)〉
dy

=
∫
S

〈
T
u

q
N, v

〉
doy +

∫
G

〈λu, v〉 dy +
∫
G

1
2 〈∇u+ (∇u)T,∇v + (∇v)T〉 dy ,

and Green’s second identity

(3.6)
∫
G

{〈
Sλ

u

q
,

(
v

p

)〉
−
〈(

u

q

)
, S′λ

v

p

〉}
dy

=
∫
S

{〈
T
u

q
N, v

〉
−
〈
u, T ′

v

p
N

〉}
doy .

Here we use 〈ξ, η〉 =
∑n
k=1 ξkηk for ξ, η ∈ Rn and 〈A,B〉 =

∑n
i,k=1AikBik for

matrices A,B ∈ Rn × Rn (n ∈ N). The vector N = N(y) ∈ R3 denotes the
exterior normal at y ∈ S and T u

qN indicates the usual matrix vector product.

Now applying Green’s second identity with a solution u ∈ C2(G)3 ∩ C1(G)3,
q ∈ C1(G) ∩ C0(G) of Sλ uq =

(
F
0

)
, and with v, p being the columns of the

fundamental tensor Eλ, by cutting off the singularity in x ∈ G we obtain the
following representation (compare [14, p. 335]) of u and q in x ∈ G (N denotes
the exterior normal to the C2-boundary S):

(3.7)
∫
G

〈(
F (y)

0

)
, Eλ(x− y)

〉
dy − (u(x), q(x))

=
∫
S

〈
T
u

q
(y)N(y), E(r)

λ (x− y)
〉
doy

−
∫
S

〈u(y), T ′yEλ(x− y)N(y)〉 doy .

Here E(r)
λ is the 3× 4 matrix obtained from Eλ by eliminating the last row, and

the product in the last boundary integral equation is defined as follows: Treating
the 4 columns of Eλ with T ′ yields four 3× 3 matrices, which, multiplied by N ,
give four columns with 3 components, hence a 3 × 4 matrix. The subscript y in
T ′y means differentiation with respect to y.

The representation formula (3.7) suggests introducing hydrodynamical bound-
ary layer potentials for general vector source densities Ψ = (Ψ1, Ψ2, Ψ3) ∈ C(S)3.
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For x ∈ R3 \ S we define the single layer potential

(EλΨ)(x) =
∫
S

〈Ψ(y), E(r)
λ (x− y)〉 doy

and the double layer potential

(DλΨ)(x) =
∫
S

〈Ψ(y), T ′yEλ(x− y)N(y)〉 doy .

Because Eλ = ET
λ , the single layer potential can be represented by

(3.8) (EλΨ)(x) =
∫
S

E
(c)
λ (x− y)Ψ(y) doy .

Here the 4×3 matrix E(c)
λ is obtained from Eλ by eliminating the last column and

E
(c)
λ Ψ indicates the usual matrix vector product. If no confusion is possible, row

representation and column representation will be identified. In order to develop
a similar representation for the double layer potential we proceed as follows. Due
to DyiE

λ
jk(x− y) = −DxiE

λ
jk(x− y) (i, j = 1, 2, 3; k = 1, . . . , 4) and recalling the

definition of T and T ′ we have T ′yE
λ
k (x− y) = −TxEλk (x− y) where Eλk denotes

the kth column of Eλ (k = 1, . . . , 4). Defining the 3 × 4 matrix (Dλ(x, y))T =
−TxEλ(x− y)N(y), we first obtain the row vector

(DλΨ)(x) =
∫
S

〈Ψ(y), (Dλ(x, y))T〉 doy

and then the column

(3.9) (DλΨ)(x) =
∫
S

Dλ(x, y)Ψ(y) doy ,

where the 4× 3 matrix Dλ(x, y) is defined by

Dλ(x, y) = (−TxEλ(x− y)N(y))T = ((−TxEλk (x− y))ijNj(y))ki .

Both the single layer potential (3.8) and the double layer potential (3.9) are
analytic functions in R3 \ S and satisfy there the homogeneous differential equa-
tions

Sλ
u

q
=
(

0
0

)
.

By elementary calculations we find (compare [13, p. 210]) that the 4×3 kernel
matrix Dλ = (Dλ

ki(x, y))k=1,...,4;i=1,2,3 of the double layer potential DλΨ has the
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following form: Setting r = x− y and N = N(y) we have

(3.10)

Dλ
ki(x, y) = − 1

4π

{
rkNi
|r|3

d1(−
√
λ|r|)

−
(
Nkri
|r|3

+ δki
r ·N
|r|3

)
d2(−

√
λ|r|)

+
rkrir ·N
|r|5

(3− 3d1(−
√
λ|r|) + 2d2(−

√
λ|r|))

}
,

d1(ε) =
∞∑
n=2

2(n2 − 1)
(n+ 2)!

εn = exp(ε)(2− 6ε−1 + 6ε−2)− 6ε−2 + 1 ,

d2(ε) =
∞∑
n=2

n(n2 − 1)
(n+ 2)!

εn = exp(ε)(ε− 3 + 6ε−1 − 6ε−2) + 6ε−2 ,

Dλ
4i(x, y) = − 1

4π

{
6
rir ·N
|r|5

+
λNi
|r|
− 2

Ni
|r|3

}
−Niδ(r) .

The series representation above yields d1(0) = d2(0) = 0, hence as λ → 0 we
obtain from (3.6) the well known (see [10, p. 55], [14, p. 336]) double layer kernel
matrix for the Stokes equations (S0):

(3.11)
D0
ki(x, y) = − 3

4π
rkrir ·N
|r|5

(k, i = 1, 2, 3) ,

D0
4i(x, y) = − 1

2π

(
3r ·Nri
|r|5

− Ni
|r|3

)
−Niδ(r) (i = 1, 2, 3) .

It follows easily that the last summand in d1 comes from the pressure q. This
term determines the decay for % = |r| = |x − y| → 0 and % → ∞. Hence for
k, i 6= 4 we have (λ > 0)

(3.12)

Dλ
ki(x, y) = O(%−2) as %→ 0 or %→∞ (λ > 0) ,

Dλ
4,i(x, y) = O(%−3) as %→ 0 ,

Dλ
4i(x, y) = O(%−1) as %→∞ .

In the following we consider the normal stresses of the single layer potential
EλΨ , which are defined in a neighbourhood U ⊆ R3 of S for x ∈ U \ S and
Ψ ∈ C(S)3 by

(H∗λΨ)(x) =
∫
S

Tx(E(c)
λ (x− y)Ψ(y))N(x̃) doy .

Here the superscript ∗ indicates a column vector with 3 components, and N(x̃)
denotes the outward unit normal at x̃ ∈ S, where x̃ is the unique projection of
x ∈ U \ S on S. Note that S ∈ C2 allows the construction of parallel surfaces
[15, §200], which implies the existence of such a neighbourhood U . If we use the
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representation

(3.13) (H∗λΨ)(x) =
∫
S

Hλ(x, y)Ψ(y) doy

with some 3× 3 matrix Hλ(x, y), then for x, y ∈ S we have

Hλ(x, y) = D
(r)
λ (y, x)T

with D(r)
λ obtained by eliminating the last row of the 4×3 matrix Dλ given above.

The next statements concern the continuity properties of the potentials, if
x ∈ R3 \ S approaches a point z ∈ S. For x ∈ R3 \ S let

(E∗λΨ)(x) =
∫
S

E
(r,c)
λ (x− y)Ψ(y) doy ,(3.14)

(D∗λΨ)(x) =
∫
S

D
(r)
λ (x, y)Ψ(y) doy(3.15)

denote the single layer and the double layer potential corresponding to the velocity
part of the potentials, respectively. Here E(r,c)

λ is the 3× 3 matrix obtained from
Eλ by eliminating the last row (≈ r) and the last column (≈ c). We first consider
some potentials with special densities.

It is well known (see [10, p. 56], [14, p. 337]) that for the case λ = 0 we have

(3.16) (D∗0β)(x) =
∫
S

D0(x, y)β doy =


β, x ∈ G,
1
2β, x ∈ S,
0, x ∈ R3 \G,

where D0 is the 3 × 3 matrix defined in (3.11) and β ∈ R3 is a constant column
vector. For λ > 0, however,

(3.17) (D∗λβ)(x) + λ
∫
G

E
(r,c)
λ (x− y)β dy =


β, x ∈ G,
1
2β, x ∈ S,
0, x ∈ R3 \G.

Moreover, if N denotes the outward unit normal field on S, then for the single
layer potential EλN (λ > 0) with density N we have

(3.18) (EλN)(x) =
∫
S

E
(c)
λ (x− y)N(y) doy =


−
(
0
1

)
, x ∈ G,

− 1
2

(
0
1

)
, x ∈ S,(

0
0

)
, x ∈ R3 \G,

which follows from Green’s second identity, and implies (E∗λN)(x) = 0 for all
x ∈ R3.

Next let us study the continuity properties of potentials with general contin-
uous source densities. Setting

wi(z) = lim
x→z∈S
x∈G

w(x) , we(z) = lim
x→z∈S
x∈R3\G

w(x)
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we obtain on the boundary S the important relations

(E∗λΨ)i = E∗λΨ = (E∗λΨ)e ,(3.19)
(D∗λΨ)i −D∗λΨ = 1

2Ψ = D∗λΨ − (D∗λΨ)e ,(3.20)
(H∗λΨ)e −H∗λΨ = 1

2Ψ = H∗λΨ − (H∗λΨ)i ,(3.21)

where E∗λΨ , D∗λΨ , and H∗λΨ are defined by (3.14), (3.15), and (3.13), respectively.
Now let Gc = R3 \G be the complementing exterior domain having the same

boundary S as G. We consider the following boundary value problem: For a given
boundary value b ∈ C(S)3 find u ∈ C2(G)3∩C(G)3, q ∈ C1(G)∩C(G) satisfying

(3.22) Sλ
u

q
=
(

0
0

)
in G , u = b on S .

We refer to this problem as to the interior hydrodynamic Dirichlet problem. Be-
sides (3.22) we also consider the exterior hydrodynamic Neumann problem

(3.23) Sλ
u

q
=
(

0
0

)
in Gc , T

u

q
N = b on S ,

which is adjoint to (3.22). Using Green’s first identity we can easily prove that
regular solutions u, q of the exterior Neumann problem are uniquely determined
provided that we require

(3.24) u(x) = O(r−2) , ∇u(x) = O(r−1) , q(x) = O(r−1)

as r = |x| → ∞ (λ > 0), a condition which takes into account the special decay
properties of the potentials (compare (3.3) and (3.12)).

Concerning the interior Dirichlet problem, u is uniquely determined, while q
is uniquely determined up to an additive constant only.

In the following we prove the existence of a solution u, q of the interior Dirichlet
problem using the method of boundary integral equations. Let b ∈ C(S)3 be given
with

(3.25)
∫
S

b ·N do = 0 .

Choosing at x ∈ G the ansatz
(
u
q

)
(x) = (DλΨ)(x) as double layer potential, due to

the jump relations we obtain on S the weakly singular (S is of class C2) boundary
integral equations

(3.26) b = 1
2Ψ + (D∗λΨ) on S ,

which is a Fredholm system of the second kind on C(S)3. To solve it we have to
consider the corresponding homogeneous adjoint system

(3.27) 0 = 1
2Φ+ (H∗λΦ) on S .

It follows from (3.18) that the normal vector N ∈ C(S)3 is a solution of (3.27):
Due to (H∗λN)(x) = (T (EλN))(x)N(x̃) = −N(x̃) if x ∈ G (for x̃ see above (3.13))
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and (H∗λN)(x) = 0 if x ∈ Gc, from (3.21) we obtain

0 = 1
2N + (H∗λN) on S .

Moreover, if Φ ∈ C(S)3 is any solution of (3.27), then we have Φ = βN with
some constant β ∈ R. To see this, consider the single layer potential

(
u
q

)
= EλΦ

defined in (3.8). It decays as required in (3.24), and it solves the exterior Neumann
problem (3.23) with zero boundary data due to (3.21) and (3.27). Thus we have
EλΦ =

(
0
0

)
in Gc from the uniqueness statement, and E∗λΦ = 0 on S using (3.19).

This again implies that EλΦ also solves the interior Dirichlet problem with zero
boundary data, and the corresponding uniqueness statement yields EλΦ =

(
0
α

)
in G, with some constant α∈R. Because H∗λΦ = 0 in Gc and H∗λΦ = αN in G, the
assertion follows by (3.21). Now using well known facts of Fredholm’s theory on
integral equations of the second kind in spaces of continuous functions it follows
that the condition (3.25) is necessary and sufficient for the existence of a solution
Ψ ∈ C(S)3 of (3.26).

Because (3.27) has a unique nontrivial solution Φ = N , the homogeneous
version of (3.26) has a nontrivial solution, too. For numerical purposes, however,
it is desirable to deal with uniquely solvable systems. Following [1], this can be
achieved as follows: Instead of (3.26) consider the system of boundary integral
equations

(3.28) b = 1
2Ψ + (D∗λΨ)− (PNΨ) on S

with the one-dimensional operator PN : C(S)3 → C(S)3 given by

(PNΨ)(x) = N(x)
∫
S

N · Ψ do .

Because the normal field N forms a basis of the nullspace of the operator 1
2 I3+H∗λ,

which is adjoint to 1
2 I3 +D∗λ, the system (3.28) is uniquely solvable in C(S)3 [1],

and moreover, in case of (3.25) its solution Ψ solves (3.26), too. The latter follows
easily by multiplying (3.28) with N , integrating over S, and noting that∫

S

(D∗λΨ) ·N do =
∫
S

Ψ · (H∗λN) do = −1
2

∫
S

Ψ ·N do .

Thus we have shown

Theorem. Let b ∈ C(S)3 with (3.25) be given on a C2-boundary S of a
bounded domain G ⊆ R3, and let 0 < λ ∈ R. Then the interior hydrodynamic
Dirichlet problem (3.22) has a solution u ∈ C2(G)3 ∩ C(G)3, q ∈ C1(G). Here
u is uniquely determined , while q is unique up to an additive constant only. The
solution u, q can be represented in G as a pure double layer potential

(
u
q

)
(x) =

(DλΨ)(x), where the source density Ψ ∈ C(S)3 is the unique solution of the second
kind Fredholm system of boundary integral equations

(3.28) b = 1
2Ψ + (D∗λΨ)− (PNΨ) on S .
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Here D∗λΨ is the velocity part of DλΨ and PN : C(S)3 → C(S)3 is defined by
(PNΨ)(x) = N(x)

∫
S
N · Ψ do.

4. Spatial discretization. Summarizing the results from the last two sec-
tions we find that the potential representation given in (1.5) defines an approx-
imate solution (vk(x), qk(x)) of the Stokes equations (1.1) at time tk = kh (k =
1, 2, . . . , N). It depends on the solution Ψ of the system (1.6) of boundary integral
equations, which — for each time step — has the form (3.28). For the discretiza-
tion of (3.28) we choose a collocation procedure developed in [6] (see also [17]).
To be concrete, in the following let us restrict our considerations to the case of
the unit ball G ⊆ R3 with the boundary S and let us use the parametrization

f : S∧ = [0, 1]2 → S , f(ϑ, η) = (x1, x2, x3) ∈ S ,
i.e. x1 = sin(πϑ) cos(2πη), x2 = sin(πϑ) sin(2πη), x3 = cos(πϑ). For the sake
of illustration, in the following we suppress some analytical problems due to the
non-uniqueness of the inverse mapping f−1. For L ∈ N let σ = (2L)−1 and define
on S∧ the so-called collocation grid

C∧σ = {x∧ = (iσ, jσ) | i, j = 0, . . . , 2L}
consisting of (2L+ 1)2 collocation points, and the integration grid

J∧σ = {y∧ = ((i+ 0.5)σ, (j + 0.5)σ) | i, j = 0, . . . , 2L− 1}
consisting of (2L)2 integration points. For y∧ = ((i+ 0.5)σ, (j + 0.5)σ) ∈ J∧σ let

Q∧y = {(ϑ, η) | iσ < ϑ < (i+ 1)σ, jσ < η < (j + 1)σ}
be the square with length σ and center y∧. The projections of these sets on S are
denoted by

Cσ = f(C∧σ ) , Jσ = f(J∧σ ) , Qy = f(Q∧y ) .
Setting

ω(τ) =

{
τ + 1 for −1 ≤ τ ≤ 0,
1− τ for 0 ≤ τ ≤ 1,
0 elsewhere,

for every x∧ = (x1, x2) ∈ C∧σ let us define a bi-linear B-spline

ξ∧ : S∧ → R , ξ∧(ϑ, η) = ω((ϑ− x1)/σ)ω((η − x2)/σ) .

These splines are used for interpolation: the interpolate P∧σ Φ
∧ : S∧ → R3 of some

vector function Φ∧ : S∧ → R3 is defined by

(P∧σ Φ
∧)(ϑ, η) =

∑
x∧∈C∧σ

Φ∧(x∧)ξ∧(ϑ, η) ,

and we have (P∧σ Φ
∧)(z∧) = Φ∧(z∧) for all z∧ ∈ C∧σ . Analogously, we call

PσΦ = (P∧σ (Φ ◦ f)) ◦ f−1

the interpolate of Φ : S → R3.
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Let us now go back to the system (3.28) of boundary integral equations and
look for an approximate solution

Ψσ = Ψ∧σ ◦ f−1 ,

where the vector function Ψ∧σ : S∧ → R3 has the form

Ψ∧σ (ϑ, η) =
∑

x∧∈C∧σ

α(x∧, σ)ξ∧(ϑ, η) .

Here the unknown coefficients α(x∧, σ) ∈ R3 have to be determined from the
collocation procedure

(4.1) Pσb = Pσ( 1
2Ψσ + (D∗λ,σΨσ)− (PN,σΨσ)) ,

where (compare (3.15) and (3.28))

(D∗λ,σΨσ)(x) =
∑
y∈Jσ

D
(r)
λ (x, y)Φσ(y)|Qy| (x 6∈ Jσ) ,(4.2)

(PN,σΨσ)(x) = N(x)
∑
y∈Jσ

N(y) · Φσ(y)|Qy| (x ∈ S) ,(4.3)

and |Qy| =
∫
Qy
do. Hence integration has been replaced by a quadrature formula

(midpoint rule). Thus considering (4.1) on the collocation grid only, we obtain a
linear algebraic system for 3(2L + 1)2 unknowns (3 components, (2L + 1)2 col-
location points) with a non-sparse but diagonal-dominant system matrix, which
is invertible for sufficiently small σ > 0. This follows by the usual perturbation
theory from the fact that (3.28) is uniquely solvable in C(S)3. Moreover, the
following estimates can be obtained in the case of boundary values b ∈ C(S)3 as
in [6]:

max
x∈S
|Ψ(x)− Ψσ(x)| ≤ c(λ)σ ln(1/σ) ,

max
x∈Gσ

|D∗λΨ(x)−D∗λ,σΨσ(x)| ≤ c(λ)σ ln(1/σ) .

Here (Gσ)σ>0 is a family of subregions Gσ exhausting G as σ → 0.
Extending both grids from the boundary S into the domain G, the volume po-

tentials can be approximated analogously, using the midpoint rule as quadrature
formula instead of integration. In the following, we present some test calculations
for the non-stationary Stokes equations (1.1) in the 3D unit ball, which have been
performed without using any symmetry property of the ball: Let

(t, x)→ v(t, x) = (t+ 1)(exp(−r2)− exp(−1))

x3 − x2

x1 − x3

x1 − x2

 ,

(t, x)→ p(t, x) = constant , r = (x2
1 + x2

2 + x2
3)1/2 .

Then v, ∇p is the unique solution of a constructed non-stationary Stokes problem
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(1.1) with
ν = 1 , F = Dtv −∆v +∇p , v0 = v(0) .

The following numerical results give some idea about the accuracy of our ap-
proach. They have been obtained for the time step size h = 0.1 and the spatial
step size σ = 1/16 with single precision. Let E(j), j = 1, 2, 3, denote the mean
(in space) relative error (%), i.e.

E(j) =
100
L

L∑
l=1

∣∣∣∣vappr
j (xl)− vexa

j (xl)
vexa
j (xl)

∣∣∣∣ .
Development in time of E(j)

t j = 1 j = 2 j = 3
0.1 1.215 1.594 2.932
0.2 1.316 1.373 2.721
0.3 1.517 1.354 2.490
0.4 1.615 1.354 2.331
0.5 1.748 1.392 2.229
0.6 1.872 1.444 2.159
0.7 1.931 1.454 2.099
0.8 1.991 1.466 2.049
0.9 2.049 1.478 2.012
1.0 2.108 1.492 1.985
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