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Abstract. The numerical solution of transferable differential-algebraic equations (DAE’s)
by implicit Runge–Kutta methods (IRK) is studied. If the matrix of coefficients of an IRK is non-
singular then the arising systems of nonlinear equations are uniquely solvable. These methods are
proved to be stable if an additional contractivity condition is satisfied. For transferable DAE’s
with smooth solution we get convergence of order min(kE , kI + 1), where kE is the classical
order of the IRK and kI is the stage order. For transferable DAE’s with generalized solution
convergence of order 1 is ensured, provided that kE ≥ 1.

1. Introduction. Numerical methods for initial value problems of transferable
differential-algebraic equations (DAE’s)

(1) f(x′(t), x(t), t) = 0, x(t0) = x0, t ∈ [t0, T ], x : [t0, T ]→ Rm

have found much interest in recent years. Transferable means that DAE (1) is
equivalent to a system of state equations [GM86, §1.2].

Implicit Runge–Kutta methods (IRK) for (1) are given by (cf. [Pe86])

(2)

xn+1 = xn + h

s∑
j=1

bjx
(j) ′
n+1,

x
(i)
n+1 = xn + h

s∑
j=1

aijx
(j) ′
n+1, f(x(i) ′

n+1, x
(i)
n+1, tn + cih) = 0 (i = 1, . . . , s) ,

A = ((aij)) denotes the Runge–Kutta matrix, bj the weights and ci the nodes of
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the method. We assume that IRK (2) satisfies the contractivity condition

(3) |R(∞)| < 1

with the stability function R(·) known from stiff ODE-theory (if the Runge–Kutta
matrix A is non-singular, then R(∞) = 1 −

∑
j,k bja

∗
jk with a∗jk the elements of

A−1).
Assuming that matrix A is non-singular Petzold [Pe86] studies IRK with (3)

applied to quasilinear DAE’s of uniform index 1 and obtains convergence of or-
der min(kE , kI + 1), with the classical (ODE-) order kE and the stage order kI
defined by

(4) kI := max
{
k :
∑
j

aijc
l−1
j =

1
l
cli,
∑
j

bjc
l−1
j =

1
l
, i = 1, . . . , s, l = 1, . . . , k

}
.

For methods with non-singular matrix A we have kI ≤ kE .
In the special case of semi-explicit DAE’s (1) of index 1 the methods (2) with

non-singular Runge–Kutta matrix A are convergent with order min(kE , kI+1) (if
(3) is satisfied or R(∞) = −1) or kI (if R(∞) = 1), and diverge if |R(∞)| > 1. For
these semi-explicit DAE’s, IRK with cs = 1, bj = asj (j = 1, . . . , s) are of special
interest since these methods (that are denoted by IRK(DAE)) do not suffer from
order reduction and are convergent with order kE [HLR89].

Throughout the paper we assume the following properties of DAE (1) that
guarantee its transferability into a system of state equations (for details see
[GM86]):

• f = f(y, x, t) is a continuously differentiable function f : G → Rm with
G = Rm × Rm × [t0, T ]. The Jacobians f ′y(y, x, t) and f ′x(y, x, t) are uniformly
Lipschitz-continuous on G; furthermore, ‖f ′x(y, x, t)‖ is supposed to be uniformly
bounded on G.
• The Jacobian f ′y(y, x, t) has constant rank on G. ker f ′y(y, x, t) depends nei-

ther on y nor on x and N(t) ≡ ker f ′y(y, x, t) is a smooth subspace of Rm, i.e.,
there is a continuously differentiable projector function Q(t) : Rm → N(t).
• The matrix G(y, x, t) := f ′y(y, x, t)+f ′x(y, x, t)Q(t) has a uniformly bounded

inverse on G.

Under these assumptions the Runge–Kutta equations (2) are uniquely solvable
for sufficiently small stepsizes h, provided that the contractivity condition (3) is
satisfied and the Runge–Kutta matrix A is non-singular. For IRK(DAE) applied
to transferable DAE’s (1) stability and (if kI ≥ 2) convergence with order kI has
been shown (cf. [Ob90]). In [GM86, §2.1] IRK for transferable DAE’s (1) with
constant ker f ′y(y, x, t) ≡ N are studied in detail: If the contractivity condition
(3) is satisfied and the matrix A is non-singular, then method (2) is stable and
the convergence with order kI (for IRK(DAE): order kE) is proved.

In this paper we prove that the results of Petzold remain valid for transferable
DAE’s (1) with time-dependent ker f ′y(y, x, t) ≡ N(t). In Section 2 the existence



RUNGE–KUTTA METHODS FOR TRANSFERABLE DAE’S 269

and uniqueness of Runge–Kutta solutions and the stability of IRK (2) with (3)
are stated. Using the stability estimate convergence is proved for DAE’s (1) with
smooth and with generalized solution (Section 3). The final Section 4 contains
the somewhat technical proofs of Theorems 1 and 2.

2. Stability of implicit Runge–Kutta methods for transferable
DAE’s. The definition of method (2) includes systems of non-linear equations.
For sufficiently small stepsizes h the existence and uniqueness of a Runge–Kutta
solution is shown in the following theorem so that the IRK is well-determined. A
similar theorem was proved in [Ob90] under the additional assumption that the
contractivity condition (3) is satisfied.

Theorem 1. Suppose that the Runge–Kutta matrix A of method (2) is non-
singular. Then equations (2) are uniquely solvable for sufficiently small step-
sizes h.

P r o o f. See Section 4.

Next we study the influence of small perturbations to the numerical solution,
i.e. the stability of IRK (2) in the sense of Dahlquist. Such perturbations may
be caused e.g. by round-off errors or by errors in the iterative solution of the
Runge–Kutta equations. In Section 3 the exact solution of (1) is inserted into (2)
to prove convergence of the method and the arising defect is once again interpreted
as perturbation of (2). Let a sequence (x̂n) be defined by

(5)

x̂n+1 = x̂n + h

s∑
j=1

bj x̂
(j) ′
n+1 + hϕn+1 ,

x̂
(i)
n+1 = x̂n + h

s∑
j=1

aij x̂
(j) ′
n+1 + hϕ

(i)
n+1, f(x̂(i) ′

n+1, x̂
(i)
n+1, tn + cih) = ψ

(i)
n+1

(i = 1, . . . , s)

with perturbations ϕn+1, ϕ(i)
n+1, ψ(i)

n+1 bounded by

‖P (tn+1)ϕn+1‖ ≤ δEϕ,P , ‖Q(tn+1)ϕn+1‖ ≤ δEϕ,Q ,

‖ϕ(i)
n+1‖ ≤ δIϕ, ‖ψ(i)

n+1‖ ≤ δψ
where Q(t) denotes a smooth projector function onto ker f ′y(y, x, t) and P (t) :=
I −Q(t). In Theorem 2 we give the stability estimate. For IRK(DAE) with non-
singular Runge–Kutta matrix A (then (3) is satisfied with R(∞) = 0) a stability
estimate was given in [Ob90].

Theorem 2. An implicit Runge–Kutta method (2) applied to a transferable
DAE (1) is stable if the matrix A is non-singular and the contractivity condition
(3) is satisfied. For sufficiently small stepsizes h and for t0 +nh ≤ T we have the
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estimate

(6) ‖x̂n − xn‖ ≤ C0(‖x̂0 − x0‖+ δEϕ,P + hδEϕ,Q + hδIϕ + δψ)

with a constant C0 being independent of h, n and of the perturbations.

P r o o f. See Section 4.

3. Convergence of implicit Runge–Kutta methods for transferable
DAE’s. Provided that the solution x(t) of DAE (1) is sufficiently smooth, ex-
pansion of x(t) in a Taylor series gives the estimates

x(tn + h) = x(tn) + h

s∑
j=1

bjx
′(tn + cjh) +O(hkE+1) and

x(tn + cih) = x(tn) + h

s∑
j=1

aijx
′(tn + cjh) +O(hkI+1) (i = 1, . . . , s)

(note that an IRK of order kE satisfies the condition B(kE):
∑
j bjc

l−1
j = 1/l,

l = 1, . . . , kE [But87]). Inserting the analytical solution x(t) in the Runge–Kutta
equations (2) we therefore get a defect of order δEϕ,P , δEϕ,Q = O(hkE ), δIϕ = O(hkI ),

δψ = 0 (set x̂n = x(tn), x̂(i)
n+1 = x(tn + cih), x̂(i) ′

n+1 = x′(tn + cih) in (5)). Thus
stability estimate (6) gives the proof of

Theorem 3. Suppose that IRK (2) has a non-singular Runge–Kutta matrix A
and satisfies the contractivity condition (3). Applying (2) to a transferable DAE
(1) with smooth solution the method is convergent with order min(kE , kI + 1)
(x0 := x(t0)).

We thus have convergence for Radau IA, Radau IIA and Lobatto IIIC methods
since these methods satisfy the assumptions of Theorem 3 (see [But87]). The
order of convergence (for transferable DAE’s) is s (Radau IA and Lobatto IIIC
methods) or min(2s− 1, s+ 1) (Radau IIA methods). Theorem 3 does not apply
to Gauß–Legendre methods (because of |R(∞)| = 1) and to Lobatto IIIA and
Lobatto IIIB methods (since A is singular). Furthermore, for IRK(DAE) we get
order min(kE , kI + 1) only. Until now we have no idea how to show order kE as
in the special case of ker f ′y(y, x, t) ≡ N (and as suggested by the numerical tests
discussed in [Pe86]).

In practical applications DAE’s appear that have non-differentiable solution
components. For such DAE’s Griepentrog and März [GM86, §1.2] introduce the
concept of generalized solutions. A continuous function x(t) is called a generalized
solution of DAE (1) if the projection P (t)x(t) is continuously differentiable and

(7) f((P (t)x(t))′ − P ′(t)x(t), x(t), t) = 0

is satisfied (because of x′(t) = P (t)x′(t) + Q(t)x′(t) = (P (t)x(t))′ − P ′(t)x(t) +
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Q(t)x′(t) and Q(t)x′(t) ∈ ker f ′y(y, x, t), a smooth solution of (1) also satisfies
(7)). We have

Theorem 4. Under the assumptions of Theorem 3, IRK (2) (of classical or-
der kE ≥ 1) applied to a transferable DAE (1) with generalized solution x(t) is
convergent with order 1, provided that x(t) and the derivatives (P (t)x(t))′ and
Q′(t) are Lipschitz-continuous.

P r o o f. To use the stability estimate (6) we set x̂n = x(tn), x̂(i)
n+1 = x(tn+cih)

as before and choose now x̂
(i) ′
n+1 = (Px)′(tn+ cih)− (P ′x)(tn+ cih). Then δψ = 0,

δEϕ,Q = O(1) and δIϕ = O(1) follow immediately. Because of kE ≥ 1 the order
condition

∑
j bj = 1 is satisfied and thus

P (tn+1)ϕn+1 =
P (tn+1)(x(tn+1)− x(tn))

h

−
∑
j

bjP (tn+1)((Px)′(tn + cjh)− (P ′x)(tn + cjh))

= P (tn+1)
∑
j

bj

((
(Px)(tn+1)− (Px)(tn)

h
− (Px)′(tn + cjh)

)

−
(
P (tn+1)− P (tn)

h
x(tn)− (P ′x)(tn + cjh)

))
.

Applying the mean-value theorem to (Px)(·) and P (·) we get δEϕ,P = O(h) and
order 1 of convergence (see (6)).

4. Technical details. In this section the proofs of Theorems 1 and 2 are
given.

P r o o f o f T h e o r e m 1. We define Qi = Q(tn + cih) and Pi = P (tn + cih)
and get QiPi = PiQi = 0, Qi+Pi = I, Q2

i = Qi and P 2
i = Pi. With the notations

ui = Pix
(i)
n+1, wi = Qix

(i)
n+1 + Pix

(i) ′
n+1, vi = Qix

(i) ′
n+1

IRK (2) reads

(8) xn+1 = ui +Qiwi, x
(i) ′
n+1 = Piwi + vi

and

f(wi + vi −Qiwi, ui +Qiwi, tn + cih) = 0 ,(9)

ui +Qiwi = xn + h
∑
j

aij(Pjwj + vj) ;(10)

Qi is a projector onto ker f ′y(y, x, tn + cih), so that

(11) f(wi, ui +Qiwi, tn + cih) = 0

because of (9) (cf. [GM86, §1.2, Theorem 1]).



272 M. ARNOLD

Equation (10) implies

(12) hvj =
∑
k

a∗jk(uk +Qkwk − xn)− hPjwj

with a∗jk the elements of the matrix A−1. We multiply (12) by Qj , apply Qjvj =
vj , QjPjwj = 0 and Qj(uk + Qkwk − xn) = Qkwk − Qkxn + (Qj − Qk)(uk +
Qkwk − xn) and get

(13) h
∑
j

aijvj = Qiwi −Qixn +
∑
j,k

aija
∗
jk(Qj −Qk)(uk +Qkwk − xn) ,

(14) ui −
∑
j,k

aija
∗
jk(Qj −Qk)(uk +Qkwk)− h

∑
j

aijPjwj

= Pixn −
∑
j,k

aija
∗
jk(Qj −Qk)xn .

Equations (14) and (11) form a system of 2ms equations with 2s unknown vectors
u1, . . . , us, w1, . . . , ws. The Jacobian of this system has the form

(15) J =
(
I +O(h) O(h)
O(1) G

)
with I the identity matrix of order ms and

G = diag
i

(G(wi, ui +Qiwi, tn + cih)), G(y, x, t) = f ′y(y, x, t) + f ′x(y, x, t)Q(t)

(note that Qj−Qk=O(h) ). Because of the transferability of DAE (1), the matrix
G is regular and has a bounded inverse, thus for sufficiently small stepsizes h the
Jacobian J is regular as well and has a bounded inverse. Due to Hadamard’s theo-
rem (see e.g. [ORh70]) (14) and (11) have a unique solution u1, . . . , us, w1, . . . , ws.
Subsequently, xn+1 is computed using (2) and (8).

P r o o f o f T h e o r e m 2. First we will give estimates for ‖P+(x̂n+1−xn+1)‖
and ‖Q+(x̂n+1−xn+1)‖ in terms of ‖P0(x̂n−xn)‖, ‖Q0(x̂n−xn)‖, δEϕ,P , δEϕ,Q, δIϕ
and δψ (where P0 = P (tn), Q0 = Q(tn), P+ = P (tn+1), Q+ = Q(tn+1)). Similarly
to (13) we obtain

x̂n − xn + h
∑
j

bj(v̂j − vj) = P+(x̂n − xn) +
(

1−
∑
j,k

bja
∗
jk

)
Q+(x̂n − xn)

+Q+

∑
j,k

bja
∗
jkQk(ŵk − wk)− hQ+

∑
j,k

bja
∗
jkϕ

(k)
n+1 +R

with

R =
∑
j,k

bja
∗
jk((Qj−Qk)(ûk−uk)+(Qj−Q+)(Qk(ŵk−wk)−(x̂n−xn)−hϕ(k)

n+1)) .

The projections of x̂n+1 − xn+1 are given by
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P+(x̂n+1 − xn+1) = P0(x̂n − xn) + (P+ − P0)(x̂n − xn)(16)

+ h
∑
j

bjP+Pj(ŵj − wj) + hP+ϕn+1 + P+R ,

Q+(x̂n+1 − xn+1) =
(

1−
∑
j,k

bja
∗
jk

)
Q0(x̂n − xn)(17)

+
(

1−
∑
j,k

bja
∗
jk

)
(Q+ −Q0)(x̂n − xn)

+Q+

∑
j,k

bja
∗
jkQk(ŵk − wk)

+ h
∑
j

bjQ+Pj(ŵj − wj) + hQ+ϕn+1

− hQ+

∑
j,k

bja
∗
jkϕ

(k)
n+1 +Q+R .

The vectors ui, wi and ûi, ŵi are solutions of the systems of equations (14), (11)
and

(18) ûi −
∑
j,k

aija
∗
jk(Qj −Qk)(ûk +Qkŵk)− h

∑
j

aijPjŵj

= Pix̂n −
∑
j,k

aija
∗
jk(Qj −Qk)x̂n + hPiϕ

(i)
n+1 − h

∑
j,k

aija
∗
jk(Qj −Qk)ϕ(k)

n+1 ,

(19) f(ŵi, ûi +Qiŵi, tn + cih) = ψ
(i)
n+1

respectively. (System (18), (19) has a unique solution û1, . . . , ûs, ŵ1, . . . , ŵs (cf.
the proof of Theorem 1).) For sufficiently small stepsizes h the Jacobian J of these
systems (cf. (15)) has a uniformly bounded inverse, so that the implicit function
theorem gives

(20) ‖ûi − ui‖+ ‖ŵi − wi‖
≤ O(1)‖P0(x̂n − xn)‖+O(h)‖Q0(x̂n − xn)‖+O(h)δIϕ +O(1)δψ .

(Note that Pi(x̂n − xn) = P0(x̂n − xn) + (Pi − P0)(x̂n − xn), Qj − Qk = O(h)
and x̂n − xn = P0(x̂n − xn) +Q0(x̂n − xn).) We insert (20) in (16) and (17) and
arrive at

(21)

‖P+(x̂n+1 − xn+1)‖ ≤ (1 + Ch)‖P0(x̂n − xn)‖
+ Ch‖Q0(x̂n − xn)‖+ hC∆

‖Q+(x̂n+1 − xn+1)‖ ≤ C‖P0(x̂n − xn)‖
+ (α+ Ch)‖Q0(x̂n − xn)‖+ C∆

with ∆ = δEϕ,P + hδEϕ,Q + hδIϕ + δψ, a constant C ≥ 0 (independent of h, n and
∆) and α = 1−

∑
j,k bja

∗
jk, i.e., α is the value of the stability function at infinity:

α = R(∞).



274 M. ARNOLD

Because of the contractivity condition (3), Lemma 1 (see below) is applicable
here with yn = ‖P (tn)(x̂n − xn)‖, zn = ‖Q(tn)(x̂n − xn)‖, n ≥ 0, and gives the
stability estimate (2).

Lemma 1. Let sequences (yn) and (zn) of non-negative numbers be given that
satisfy

yn+1 ≤ (1 + hL)yn + hMzn + hδ, zn+1 ≤ Nyn + (α+ hγ)zn + δ

with non-negative constants L, M , N , α, γ, δ and α < 1.
Then there is an h∗ > 0 so that for all h ∈ (0, h∗]

yn + zn ≤ C∗(1 + hL∗)n(y0 + (αn + h)z0 + (1 + nh)δ)

with constants C∗ and L∗ independent of h and δ.

P r o o f. The proof is similar to that of Lemma 2 in [DHZ87] (cf. also [Arn90]).
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