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Abstract. In this paper, we analyze a class of stabilized finite element formulations used in
computation of (i) second order elliptic boundary value problems (diffusion-convection-reaction
model) and (ii) the Navier–Stokes problem (incompressible flow model). These stabilization tech-
niques prevent numerical instabilities that might be generated by dominant convection/reaction
terms in (i), (ii) or by inappropriate combinations of velocity/pressure interpolation functions
in (ii). Stability and convergence results on non-uniform meshes are given in the whole range
from diffusion to convection/reaction dominated situations. In particular, we recover results for
the streamline upwind and Galerkin/least-squares methods. Numerical results are presented for
low order interpolation functions.

1. Introduction. We consider two basic models in fluid mechanics:

(i) second order elliptic boundary value problems (modelling diffusion-
convection-reaction problems), and

(ii) Navier–Stokes equations (modelling incompressible flow problems).

Standard Galerkin finite element solutions may suffer from numerical instabilities
which are generated by dominant convection (and/or reaction) terms in (i), (ii)
or by inappriopriate velocity/pressure interpolation functions in (ii).

In the past decade, Hughes and his co-workers introduced the concept
of streamline upwind (SU) and Galerkin/least-squares (GLS) methods for (i)
and (ii). The SU-stabilization is achieved by adding to the Galerkin formulation
a series of integral terms over each finite element involving the product of the
basic equations and the advective operator acting on the test function. In the
GLS-approach, least-squares forms of the basic equations are added to the Galer-
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kin formulation. Basic ideas and results for these methods can be found in [Hu],
[Ja], [FFH], [FS], [Wa].

We present a class of stabilized finite element schemes which involves both
methods for diffusion-convection-reaction problems and give existence and error
results. Furthermore, we derive design properties for the inherent parameters. In
particular, we generalize a result in [FFH]. Numerical results in 2D and 3D show
the performance of the method (cf. §2).

In §3 we analyze the GLS-method applied to linearized Navier–Stokes equa-
tions and derive error estimates and design properties for the discretization pa-
rameters. The method allows for arbitrary C0-interpolations of velocity-pressure.
We generalize a result in [DW], [FS] for the Stokes problem to the non-symmetric
case.

The estimates are valid on non-uniform meshes. For the GLS-method they
involve control of weighted discrete residuals. Both facts could be exploited in
adaptive mesh refinement methods.

Extensions to unsteady problems and more complicated nonlinear problems
are possible but not discussed here (cf. [Hu], [HS], [Tea], [Teb], [Ja]).

For G ⊆ Ω we denote by W k,p(G) the Sobolev space of functions with deriva-
tives of order ≤ k belonging to Lp(G). The norm and seminorm on W k,p(G)
are denoted by ‖ · ‖k,p,G and | · |k,p,G, respectively; (·, ·)G is the inner product in
L2(G).

2. Stationary diffusion-convection-reaction problems

2.1. Stabilized Galerkin methods. Let Ω ⊂ R
d, d ≤ 3, be a bounded domain

with a Lipschitz continuous boundary Γ = ∂Ω. We consider the following sec-
ond order elliptic boundary value problem modelling steady diffusion-convection-
reaction problems:

Lu := −ε∆u+ b · ∇u+ cu = f in Ω ,(2.1)

u = 0 on Γ(2.2)

with the following assumptions:

(H.1)
ε > 0 , b ∈ L∞(Ω)d , ∇ · b = 0 a.e. in Ω ,

c ∈ L∞(Ω) , c ≥ 0 a.e. in Ω , f ∈ L2(Ω) .

A weak solution u ∈ V := W 1,2
0 (Ω) of (2.1), (2.2) satisfies

(2.3) BG(u, v) := ε(∇u,∇v)Ω + (b · ∇u+ cu, v)Ω = (f, v)Ω ∀v ∈ V .

Let now Th = {K} be a triangulation of Ω =
⋃
K with shape-regular elements

K of diameter hK . Further, let

Vh := {vh ∈ V : vh|K ∈ Pl(K) ∀K ∈ Th} ,
a usual conforming finite element space of piecewise polynomials of degree l ≥ 1
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satisfying an inverse estimate

(2.4) ∃CI > 0 : CI

∑

K

h2
K‖∆vh‖2

0,2,K ≤ |vh|21,2,Ω ∀vh ∈ Vh .

The standard Galerkin finite element solution uh of

(2.5) uh ∈ Vh : BG(uh, vh) = (f, vh)Ω ∀vh ∈ Vh

may suffer from numerical oscillations that are generated by dominant convective
or reaction terms. Under assumption (H.1), a solution u ∈ V satisfies Lu = f in
L2(Ω) and thus with ψ(v) ∈ L2(Ω)

(2.6) BG(u, v) +
∑

K

(Lu− f, ψ(v))K = (f, v)Ω ∀v ∈ V .

Stabilized Galerkin methods of residual type start from (2.6):

(2.7a) uh ∈ Vh : BSG(uh, vh) = LSG(vh) ∀vh ∈ Vh

where

BSG(u, v) := BG(u, v) +
∑

K

(Lu,ψ(v))K ,(2.7b)

LSG(v) := (f, v)Ω +
∑

K

(f, ψ(v))K .(2.7c)

We consider the following class of methods with

(2.8) ψ(vh)|K := δKb · ∇vh + γK(−ε∆vh + cvh) ∀K ∈ Th

and the following (minimal) design properties:

(H.2a) 0 ≤ γK ≤ δK ≤ δ ≤ 1

2‖c‖0,∞,Ω
,

(H.2b) εδK ≤ Aδh
2
K , Aδ <

1

2
CI (CI from (2.4)) .

The properties (H.2) are valid for the following schemes:

(i) γK = δK = 0 Galerkin finite element method (G),

(ii) γK = 0, δK = 0 streamline upwind finite element method (SU),

(iii) γK = δK > 0 Galerkin/least-squares finite element method (GLS).

2.2. Auxiliary results. The stabilizing effect of the parameters δK and γK can
be seen from

Lemma 2.1. For vh ∈ Vh we have under the assumptions (H.1), (H.2)

(2.9) BSG(vh, vh) ≥ C0|||vh|||2 with C0 = 1 − 1√
2



88 G. LUBE

where

|||vh|||2 := ε|vh|21,2,Ω + ‖
√
cvh‖2

0,2,Ω +
∑

K

δK‖b · ∇vh‖2
0,2,K(2.10)

+
∑

K

γK‖−ε∆vh + cvh‖2
0,2,K .

P r o o f. We set uh = vh in (2.7), (2.8) and find that

BG(vh, vh) = ε(∇vh,∇vh)Ω + ((c− 1

2
∇ · b)vh, vh)Ω (integration(2.11)

by parts)

= ε|vh|21,2,Ω + ‖
√
cvh‖2

0,2,Ω (by (H.1)),

BSG(vh, vh) = BG(vh, vh)(2.12)

+
∑

K

δK{‖b · ∇vh‖2
0,2,K + (−ε∆vh + cvh,b · ∇vh)K}

+
∑

K

γK{‖−ε∆vh + cvh‖2
0,2,K

+ (b · ∇vh,−ε∆vh + cvh)K}
≥ |||vh|||2 − |I| − |II|

with

|I| =
∣∣∣
∑

K

δK(−ε∆vh + cvh,b · ∇vh)K

∣∣∣(2.13)

≤
(∑

K

ε2δK‖∆vh‖2
0,2,K

)1/2(∑

K

δK‖b · ∇vh‖2
0,2,K

)1/2

+
(∑

K

δK‖cvh‖2
0,2,K

)1/2( ∑

K

δK‖b · ∇vh‖2
0,2,K

)1/2

≤ 1

2
(α1 + α2)

∑

K

δK‖b · ∇vh‖2
0,2,K

+
1

2α1

εAδ

∑

K

h2
K‖∆vh‖2

0,2,K +
1

2α2

δ‖c‖0,∞,Ω

∑

K

‖
√
cvh‖2

0,2,K

≤ 1

2
(α1 + α2)

∑

K

δK‖b · ∇vh‖2
0,2,K +

1

4α1

ε|vh|21,2,Ω

+
1

4α2

‖
√
cvh‖2

0,2,Ω (by (2.4) and (H.2)) ,

|II| =
∣∣∣
∑

K

γK(b · ∇vh,−ε∆vh + cvh)K

∣∣∣(2.14)

≤
(∑

K

δK‖b · ∇vh‖2
0,2,K

)1/2( ∑

K

γ2
Kδ

−1

K ‖−ε∆vh + cvh‖2
0,2,K

)1/2
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≤ 1

2
α3

∑

K

δK‖b · ∇vh‖2
0,2,K +

1

2α3

∑

K

γK‖−ε∆vh + cvh‖2
0,2,K (by (H.2)) .

From (2.12)–(2.14) it follows that

BSG(vh, vh) ≥ |||vh|||2 −
1

4α1

ε|vh|21,2,Ω − 1

4α2

‖
√
cvh‖2

0,2,Ω

− 1

2
(α1 + α2 + α3)

∑

K

δK‖b · ∇vh‖2
0,2,K

− 1

2α3

∑

K

γK‖−ε∆vh + cvh‖2
0,2,K

and with α = α1 = α2 = 1

2
α3 = 1/(2

√
2),

BSG(vh, vh) ≥
(

1 − 1√
2

)
|||vh|||2 .

R e m a r k 2.1. For the Galerkin/least-squares method (GLS) with γK =δK >
0 we find that

(2.9∗) BGLS(vh, vh) ≥ ε|vh|21,2,Ω + ‖
√
cvh‖2

0,2,Ω +
∑

K

δK‖Lvh‖2
0,2,K .

Furthermore, we need a continuity estimate for BSG(·, ·).

Lemma 2.2. For u, v ∈ V with ∆u, ∆v ∈ L2(K), ∀K ∈ Th we have under the

assumptions (H.1), (H.2)

|BSG(u, v)| ≤ 1

2
C0|||v|||2 +

1

C0

{
ε|u|21,2,Ω + ‖

√
cu‖2

0,2,Ω(2.15)

+ 4
∑

K

δK‖b · ∇u‖2
0,2,K + 8εAδ

∑

K

h2
K‖∆u‖2

0,2,K

+ 8
∑

K

δK‖cu‖2
0,2,K +

∑

K

min{δ−1

K ; ε−1‖b‖2
0,∞,K}‖u‖2

0,2,K

}
.

P r o o f. We have

(2.16) |BSG(u, v)| ≤ |III| + |IV| + |V|
with

(2.17) |III| = |BG(u, v)|
= |ε(∇u,∇v)Ω + (

√
cu,

√
cv)Ω − (u,b · ∇v)Ω | (integration by parts)

≤ ε|u|1,2,Ω |v|1,2,Ω + ‖
√
cu‖0,2,Ω‖

√
cv‖0,2,Ω

+

{
(
∑

Kδ
−1

K ‖u‖2
0,2,K)1/2(

∑
KδK‖b · ∇v‖2

0,2,K)1/2 if δK > 0

(ε−1d
∑

K‖b‖2
0,∞,K‖u‖2

0,2,K)1/2(ε
∑

K |v|21,2,K)1/2 otherwise

}
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≤ 1

4
C0(ε|v|21,2,Ω + ‖

√
cv‖2

0,2,Ω) +

{∑
K δK‖b · ∇v‖2

0,2,K if δK > 0

ε|v|21,2,Ω otherwise

}

+
1

C0

(ε|u|21,2,Ω + ‖
√
cu‖2

0,2,Ω

+
∑

K

min{δ−1

K ; ε−1d‖b‖2
0,∞,K}‖u‖2

0,2,K) ,

(2.18) |IV| =
∣∣∣
∑

K

δK{(−ε∆u+ cu,b · ∇v)K + (b · ∇u,b · ∇v)K}
∣∣∣

≤ 1

2
(L1 + L2)

∑

K

δK‖b · ∇v‖2
0,2,K +

1

2L1

∑

K

δK‖b · ∇u‖2
0,2,K

+
1

2L2

∑

K

δK‖−ε∆u+ cu‖2
0,2,K ,

(2.19) |V| =
∣∣∣
∑

K

γK{(−ε∆u+ cu,−ε∆v + cv)K + (b · ∇u,−ε∆v + cv)K}
∣∣∣

≤ 1

2
(L3 + L4)

∑

K

γK‖−ε∆v + cv‖2
0,2,K

+
1

2L3

∑

K

γK‖−ε∆u+ cu‖2
0,2,K +

1

2L4

∑

K

γK‖b · ∇u‖2
0,2,K .

We summarize (2.16)–(2.19) with L1 = L2 = L3 = L4 = 1

4
C0:

|BSG(u, v)| ≤ 1

2
C0

{
ε|v|21,2,Ω + ‖

√
cv‖2

0,2,Ω

+
∑

K

δK‖b · ∇v‖2
0,2,K +

∑

K

γK‖−ε∆v + cv‖2
0,2,K

}

+
1

C0

{
ε|u|21,2,Ω + ‖

√
cu‖2

0,2,Ω + 4
∑

K

δK‖b · ∇u‖2
0,2,K

+ 8
∑

K

ε2δK‖∆u‖2
0,2,K + 8

∑

K

δK‖cu‖2
0,2,K

+
∑

K

min{δ−1

K ; ε−1d‖b‖2
0,∞,K}‖u‖2

0,2,K

}
,

which yields (2.15).

2.3. Error analysis and parameter design. We may now state the following
convergence result.
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Theorem 2.3. Under the assumptions (H.1), (H.2), there exists a unique so-

lution uh ∈ Vh of (2.7), (2.8) which converges to the solution of (2.3) as follows:

|||u− uh|||2 := ε|u− uh|21,2,Ω + ‖
√
c(u− uh)‖2

0,2,Ω(2.20)

+
∑

K

δK‖b · ∇(u− uh)‖2
0,2,K

+
∑

K

γK‖−ε∆(u− uh) + c(u− uh)‖2
0,2,K

≤ C
∑

K

h2l
KBK(ε, hK , δK)|u|2l+1,2,K

if u ∈ V ∩W l+1,2(Ω), l ≥ 1. Furthermore,

BK(ε, hK , δK) := ε+ δK‖b‖2
0,∞,K(2.21)

+ min{δ−1

K ; ε−1‖b‖2
0,∞,K}h2

K + ‖c‖0,∞,Kh
2
K .

P r o o f. The existence and uniqueness of uh∈Vh are a consequence of Lemmas
2.1, 2.2 and Lax–Milgram’s lemma.

Let eh := uh − u = (uh − πhu) + (πhu − u) ≡ ϑh + ηh where πh : V → Vh

denotes the interpolation operator in Vh. Then

(2.22) C0|||ϑh|||2 ≤ BSG(ϑh, ϑh) (by Lemma 2.1)

= BSG(eh − ηh, ϑh) = −BSG(ηh, ϑh) (consistency, by (2.6))

≤ 1

2
C0|||ϑh|||2 +

1

C0

{
ε|ηh|21,2,Ω + ‖

√
cηh‖2

0,2,Ω

+ 4
∑

K

δK‖b · ∇ηh‖2
0,2,K + 8εAδ

∑

K

h2
K‖∆ηh‖2

0,2,K

+ 8
∑

K

δK‖cηh‖2
0,2,K

+
∑

K

min{δ−1

K ; ε−1‖b‖2
0,∞,K}‖ηh‖2

0,2,K

}
.

The estimate (2.22), together with the standard approximation result

(2.23) ‖ηh‖m,2,K ≤ CAh
l+1−m
K |u|l+1,2,K

∀u ∈W l+1,2(K) , 0 ≤ m ≤ l + 1 , ∀K ∈ Th ,
implies

|||ϑh|||2 ≤
√

2

C0

CA

∑

K

h2l
K{ε+ ‖c‖0,∞,Kh

2
K + δK‖b‖2

0,∞,K

+ δK‖c‖2
0,∞,Kh

2
K + min{δ−1

K ; ε−1‖b‖2
0,∞,Kh

2
K}}|u|2l+1,2,K

≤ C
∑

K

h2l
KBK |u|2l+1,2,K .

Note that by (H.2), δK‖c‖0,∞,K ≤ 1

2
.
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We now derive an additional design condition for δK by optimizing (2.21),
more precisely by balancing the terms

(2.24) δK‖b‖2
0,∞,K ∼ min{δ−1

K ; ε−1‖b‖2
0,∞,K}h2

K .

A simple analysis yields with the local Peclet number PeK := ε−1hK‖b‖0,∞,K

(2.25) (H.2c)
δK ∼ hK(‖b‖0,∞,K)−1 if PeK ≥ 1 ,

δK ∼ h2
Kε

−1 if PeK ≤ 1 .

Then it follows that

BK(ε, hK , δK) ∼ ε+ ‖b‖0,∞,KhK + ‖c‖0,∞,Kh
2
K .

Corollary 2.4. Under the assumptions (H.1) and (H.2) a, b, c, we have the

convergence result

(2.26) |||u− uh|||2 ≤ C
∑

K

h2l
K(ε+ ‖b‖0,∞,KhK + ‖c‖0,∞,Kh

2
K)|u|2l+1,2,K .

R e m a r k 2.2. For d = 1, c = 0, b, f = const and h = hK , one has a nodally
exact solution of the SU- or GLS-method provided that

(2.27) δ = δK =
h

2|b|

{
coth

PeK

2
− 2

PeK

}
,

which is in accordance with the “double-asymptotic” law (2.25) for PeK ≫ 1
and PeK ≪ 1. Unfortunately, such a superconvergence result is not available in
multiple dimensions for variable coefficients. Nevertheless, a “double-asymptotic”
law of type (2.25) is frequently used in computations [FFH], [Tea], [Teb]. Note
that (2.25) has been derived by a local L2-error analysis argument only. On the
other hand, the SU- and GLS-methods with (2.25) cannot “model” characteristic
interior and/or boundary layer (cf. §2.4) and they result in mild oscillations which
are restricted to a small neighbourhood of the layers. Based on a refined local error
analysis, one can prove that characteristic numerical layers have a “spread” of
O(

√
æ lnæ−1), æ := max{h; ε} [Wa]. For a modified SU-scheme, an L∞-analysis

yields even a “spread” of O(h3/4 lnh−1) if ε ≤ h3/2 for d = 2 and b = (1, 0)T.

R e m a r k 2.3. The error estimate (2.26) is uniformly valid for 0 ≤ γK

≤ δK and thus holds for the SU- and GLS-methods with γK = 0 and γK = δK ,
respectively. For the latter method (2.9∗) holds and there exists additional control
of a weighted residual according to

(2.26∗)
∑

K

δK‖Luh − f‖2
0,2,K ≤ C

∑

K

h2l
KBK |u|2l+1,2,K

which could be exploited in adaptive methods [Jo].

R e m a r k 2.4. The SU-method does not take into account reaction dominated
situations with ‖c‖0,∞,Kh

2
K ≫ ε. So it could be desirable to separate more clearly

the influence of the convection and reaction terms with γK > 0. An alternative
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choice to the GLS-method with γK = δK is

γK ∼ hK(‖b‖0,∞,K)−1 if P̃eK := hK‖b‖0,∞,Ωε
−1 ≥ 1 ,

γK ∼ h2
Kε

−1 if P̃eK ≤ 1

(cf. §3, [Teb]).

2.4. Numerical results and extensions. Now we present numerical results for
P1 interpolation (l = 1) in (2.7), (2.8) for two- and three-dimensional problems
using the package GLSFEM written by D. Weiß [W]. Based on the estimates of
§2.3, the calculations were performed with γK = δK and

(2.28) δK = δ∗
hK

2‖b‖0,∞,K
min

{
1;

1

6
PeK

}
, PeK =

hK‖b‖0,∞,K

ε
,

which is in accordance with (2.25). For δ∗ → 0 we recover the Galerkin method.

We denote by ν the outward unit normal vector on Γ and by Γ−, Γ0, Γ+ the
“inflow”, “characteristic” and “outflow” parts of the boundary Γ where b ·ν < 0,
b · ν = 0 and b · ν > 0, respectively.

The first examples are devoted to convection dominated problems.

Example 2.1. Let Ω = (0, 1)2 ⊂ R
2, ε = 10−6, b = (1; 0.5)T, c = f = 0.

A discontinuous profile given at the “inflow” part Γ− is transported along the
streamlines. The solution admits an interior “characteristic” layer at S and an
“ordinary” boundary layer at the upper part of the “outflow” boundary Γ+ (cf.
Fig. 2.1a). Level lines of the discrete solution of (2.7), (2.8), (2.28) with δ∗ = 2 on
an equidistant 20×20-mesh are given in Fig. 2.1c. The layers are sharply resolved
but mild oscillations appear in a small neighbourhood of the layers. For δ∗ → 0
we arrive at the Galerkin solution with global pollution of the oscillations (not
shown here). If δ∗ is too big, the layers are smeared out (not shown here).

In Fig. 2.1b we present the dependence of the discrete L2-error (on an equidis-
tant 20 × 20-mesh) on the parameter δ∗. The error is minimized for δ∗ ∼ 2.

We remark that the local oscillations cannot be avoided with grid refinement
(cf. Fig. 2.1d with δ∗ = 2 on an equidistant 100 × 100-mesh) and in adaptive
codes [KR].

Discrete solutions with local oscillations appearing in the neighbourhood of
layers (cf. Example 2.1) are, in some sense, not satisfactory. As a remedy, [Jb]
proposed to introduce an additional term of artificial diffusion depending on the
discrete residual, the so-called “shock-capturing streamline upwind method”. It
reads

(2.29a) uh ∈ Vh : BSG(uh, vh) +
∑

K

(βK(uh)∇uh,∇vh)K = LSG(vh)

with

(2.29b) βK(uh) := β∗hγ
K |(Luh − f)|K | , γ ∈ (1.5; 2] .
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One can solve (2.29) by means of simple iteration:

(2.30) un+1

h ∈ Vh : BSG(un+1

h , vh) +
∑

K

(βK(un
h)∇un+1

h ,∇vh)K

= LSG(vh) , n = 0, 1, . . .

Example 2.2. We discuss the effect of the “shock-capturing” modification
for Example 2.1 using an equidistant 32 × 32-mesh and δ∗ = 2. In Table 2.1 we
present for different values of β∗ the discrete L2-error (MQA) and maximal and
minimal values umax

h and umin
h , respectively, of uh. Note that 0 ≤ u ≤ 1 such that

umax
h and umin

h represent the effect of numerical oscillations.

Table 2.1. “Shock-capturing streamline upwind method”
for Example 2.1 — discrete L2-error, umaxh , uminh

β∗ MQA = ‖u− uh‖0,2,Ωh umaxh uminh
0.00 0.0930 1.060 −0.1037
0.10 0.1115 1.043 −0.0533
0.15 0.1209 1.041 −0.0351
0.20 0.1297 1.040 −0.0199
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The oscillations are obviously reduced with increasing β∗ but the solution is
smeared out so that the discrete L2-error increases with β∗. The discrete solution
of (2.29), (2.30) tends to smear with increasing number of iterations in (2.30).
The analysis of the scheme (2.29) seems to be open.

In three-dimensional problems we find similar effects of stabilized Galerkin
methods as for d = 2.

Example 2.3. Let Ω = (0, 1)3 ⊂ R
3, ε = 10−6, b = (−x2, x1, 0)

T, c = f
= 0. A discontinuous profile given at the “inflow” part Γ− is transported along
the (curved) streamlines (cf. Fig. 2.2a). At the outflow part Γ+ we impose a
homogeneous Neumann condition thus avoiding an “ordinary” boundary layer in
the leading term of the asymptotic expansion of the original problem. In Fig. 2.2c
we present the outlet profile of the discrete solution (using an equidistant 16×16×
16-mesh with δ∗ = 2) which has again local oscillations in the neighbourhood of
the discontinuities of u. The dependence of the discrete L2-error MQA and umax

h ,
umin

h on the parameter δ∗ (on a 16 × 16 × 16-mesh) is given in Fig. 2.2b. The
solution is robust with respect to δ∗ due to the vanishing “ordinary” boundary
layer at the outflow boundary Γ+.

In the next examples, we discuss the effect of reaction terms in (2.1), (2.2).
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Example 2.4. Let Ω = (0, 1)2 ⊂ R
2, ε = 10−6, b = (1 − x2

2, 0)
T, c = 5,

f = 0. At the inflow part of the boundary (x1 = 0) let u = 1; on Γ0 ∪ Γ+ we
impose homogeneous Neumann conditions. In the characteristic boundary layer
at x2 = 0, there exists a strong interaction of diffusion, convection and reaction
terms. The mesh is refined in the neighbourhood of this layer. The SU-solution
with γK = 0 admits a strong discontinuity at (0, 0) (cf. Fig. 2.3a with δ∗ = 1).
The local error at (0, 0) is obviously reduced in the GLS-method with γK = δK
even on a rough mesh (cf. Fig. 2.3b with δ∗ = 1).

Example 2.5. Let Ω = (0, 1)2 ⊂R
2, ε = 10−8, b = (0, 0)T, c = f = 1 such

that the problem is reaction dominated. Let u = 1 at x1 = 0 and x2 = 0, but
u = 0 at x1 = 1 and x2 = 1. The solution admits a boundary layer at x2 = 1 and
x1 = 1, respectively. The GLS-solution has local oscillations in the neighbourhood
of the layers (cf. Fig. 2.4a on a 20 × 20-mesh).

[FD] proposes as a remedy the so-called Galerkin-gradient/least-squares
method (GGLS):

uh ∈ Vh : BSG(uh, vh) +
∑

K

ηK(∇(Luh − f),∇(Lvh))K = LSG(vh) .

For piecewise linear interpolation (l = 1), the additional term represents numeri-
cal diffusivity according to

∑

K

ηK(∇(cuh − f),∇(cvh))K .
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In Fig. 2.4b and c we give the plot of the GGLS-solution on a 20 × 20- and a
100 × 100-mesh, respectively, with ηK = 0.75h2, h = hK .

An error analysis for the GGLS-scheme is given in [FD] in the case of b =
(0, 0)T.

3. Stationary incompressible flow problems.

3.1. Stabilized Galerkin methods. Let Ω ⊂ R
d, d ≤ 3, be the bounded flow

domain with a Lipschitz continuous boundary Γ = ∂Ω. We consider the following
velocity-pressure formulation of the Navier–Stokes equations governing steady
incompressible flow:

N(u, û) := −ε∆u + (u · ∇)u + ∇p = f in Ω ,(3.1)

∇ · u = 0 in Ω(3.2)

where û = (u, p), u and p are velocity and pressure. We assume that for the
inverse Reynolds number ε and a given body force f ,

(H.3a) ε > 0 , f ∈ L2(Ω)d .

For simplicity we analyze only homogeneous Dirichlet boundary conditions

(3.3) u = 0 on Γ .

Let X := V × Q, V := W 1,2
0 (Ω)d, Q := L2

0(Ω) := {q ∈ L2(Ω),
∫

Ω
q dx = 0}.

There exists at least one solution û ∈ X of (3.1)–(3.3) which is additionally unique
for small data

(3.4) β‖f‖V ∗ ε−2 ≤ ω < 1 , β := sup
u,v,w∈V

((u · ∇)v,w)Ω

|u|V |v|V |w|V
.

Otherwise the solution set of (3.1)–(3.3) is “essentially finite” [T].
We consider the following simple iteration procedure (n = 0, 1, . . .):

ûn+1 ∈ X : BG(un : ûn+1,v) = (f ,v) ∀v ∈ V ,(3.5)

(∇ · un+1, q) = 0 ∀q ∈ Q(3.6)

for given û0 ∈ X with

(3.7) BG(a; û,v) := ε(∇u,∇v)+
1

2
{((a·∇)u,v)Ω−((a·∇)v,u)Ω}−(p,∇·v)Ω ,

which, according to (3.4), converges for small data to the (unique) solution û ∈ X
of (3.1)–(3.3) [GR].

In the following we restrict ourselves to stabilized Galerkin schemes for lin-
earized Navier–Stokes problems of type (3.5), (3.6). For a given field a with

(H.3b)
a ∈ L∞(Ω)d ∩Hdiv(Ω) , ∇ · a = 0 a.e. in Ω ,

Hdiv(Ω) := {v ∈ L2(Ω)d , ∇ · v ∈ L2(Ω)}
let

û ∈ X : BG(a; û,v) = (f ,v)Ω ∀v ∈ V ,(3.8)
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(∇ · u, q)Ω = 0 ∀q ∈ Q .(3.9)

Note that a ≡ 0 corresponds to the Stokes problem.
With a discretization of Ω as introduced in §2, we define the following con-

forming finite element interpolation function spaces for velocity and pressure:

Xh := Vh ×Qh ⊂ X := V ×Q ,(3.10)

Vh := {v ∈ V : v|K ∈ Pl(K)d ∀K ∈ Th} ,(3.11)

Qh := {q ∈ Q ∩W 1,2(Ω) : q|K ∈ Pk(K) ∀K ∈ Th}(3.12)

with integers l, k, l ≥ 1, k ≥ 0. The basic Galerkin finite element discretization
of (3.8), (3.9) reads

ûh = (uh, ph) ∈ Xh : BG(a, ûh,vh) = (f ,vh)Ω ∀vh ∈ Vh ,(3.13)

(∇ · uh, qh)Ω = 0 ∀qh ∈ Qh .(3.14)

R e m a r k 3.1. For discontinuous pressure interpolation in Qh, one can intro-
duce in (3.13), (3.14) a jump term

∑

K

βK([ph], [qh])∂K

where [p] denotes the jump of p across ∂K [DW], [FS].

Numerical oscillations in such mixed methods might be generated by

(a) inappriopriate combinations of velocity/pressure interpolation functions
which do not satisfy the inf-sup condition (or Babuška–Brezzi condition)

(3.15) inf
qh∈Qh

sup
vh∈Vh

(qh,∇ · vh)Ω

‖qh‖Q |vh|V
≥ γ > 0

with a mesh-independent constant γ [BF], and/or

(b) the presence of dominant convective terms such that, for the local Reynolds
number ReK ,

(3.16) ReK := ε−1‖a‖0,∞,KhK > 1.

As a consequence of (a), simple low order pairs of velocity/pressure inter-
polation functions (as P1/P1, Q1/Q1 or Q1/P0) which are attractive from the
computational point of view (with respect to unsteady 3D flow computations
using adaptive mesh refinement and multigrid methods) are not allowed. As a
remedy, the following class of stabilized Galerkin methods is considered:

(3.17) ûh = (uh, ph) ∈ Xh : BSG(a; ûh, v̂h) = LSG(a; v̂h) ,

(3.18) (∇ · uh, qh)Ω +
∑

K

τK(∇ · uh,∇ · vh)K = 0 ∀v̂h = (vh, qh) ∈ Xh

with

BSG(a; û, v̂) := BG(a; û,v) +
∑

K

(N(a, û), ψ(a, v̂))K ,(3.19)
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LSG(a; v̂) := (f ,v)Ω +
∑

K

(f , ψ(a, v̂))K ,(3.20)

ψ(a, v̂)|K := δK(a · ∇)v + γK(−ε∆v + ∇q) ∀K ∈ Th .(3.21)

Note that a solution of (3.8), (3.9) still satisfies the stabilized formulation (3.17)–
(3.21). With δK = γK > 0 we recover the GLS method. [Tea] introduced the
streamline upwind/pressure stabilizing method with δK 6= γK which is similarly
defined as the method in Remark 2.4.

3.2. Parameter design and error analysis. For simplicity, we discuss only the
GLS-method with δK = γK ; more precisely, we assume the following (minimal)
design condition to be satisfied:

(H.4a) 0 < εδK ≡ εγK < Aδh
2
K , Aδ <

1

2
CI (cf. (2.4)) ∀K ∈ Th ,

(H.4b) τK > 0 ∀K ∈ Th

and continuous pressure interpolation (but cf. Remark 3.1)

(H.5) Qh ⊂ Q ∩W 1,2(Ω) .

Let ||| · ||| : Xh = Vh ×Qh → R
+ be defined as

|||ûh|||2 := ε|uh|21,2,Ω +
∑

K

τK‖∇ · uh‖2
0,2,K(3.22)

+
∑

K

δK‖−ε∆uh + (a · ∇)uh + ∇ph‖2
0,2,K ,

which is a norm on Xh due to (H.5) and δK , τK > 0 by (H.4). Furthermore, let
with δK = γK

(3.23) B̃GLS(a; û, v̂) := BSG(a; û, v̂) + (∇ · u, q)Ω +
∑

K

τK(∇ · u,∇ · v)K

such that the GLS-method is rewritten as

(3.24) ûh ∈ Xh : B̃GLS(a; ûh, v̂h) = LSG(a, v̂h) ∀v̂h ∈ Xh .

Now we give some auxiliary estimates for the bilinear form B̃GLS(a; ·, ·) which
follow similarly to Lemmas 2.1, 2.2 in §2 (for details cf. [LA], Lemma 4.2).

Lemma 3.1. For each v̂h = (vh, qh) ∈ Xh, B̃GLS(a; v̂h, v̂h) = |||v̂h|||2.
P r o o f. Set v̂h = ûh in (3.17)–(3.21) with δK = γK and use (3.22).

Lemma 3.2. Under assumptions (H.3), (H.4), (H.5) there exists a positive

constant C (independent of ε, hK , δK , τK) such that ∀v̂ ∈ Xh and ∀û ∈ X =
V ×Q with N(a, û) ∈ L2(Ω)d,

|B̃GLS(a; û, v̂)| ≤ 1

2
|||v̂|||2 + C

{
|||û|||2 +

∑

K

δ−1

K ‖u‖2
0,2,K(3.25)

+
∑

K

min{ε−1; τ−1

K }‖p‖2
0,2,K

}
.
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Using the auxiliary results of Lemmas 3.1 and 3.2, we can now state the
following existence and convergence result.

Theorem 3.3. Under the assumptions (H.3), (H.4), (H.5) there exists a unique

solution ûh ∈ Xh of the GLS-method with δK = γK . Furthermore, if the solution

û = (u, p) of (3.8), (3.9) satisfies

u ∈ V ∩W t+1,2(Ω)d , 1 ≤ t ≤ l , p ∈ Q ∩W s+1,2(Ω) , 0 ≤ s ≤ k,

then ûh converges to the solution û of (3.8), (3.9) as follows:

(3.26) |||û− ûh|||2 ≤ C1

∑

K

h2t
KEK |u|2t+1,2,K + C2

∑

K

h2s
KFK |p|2s+1,2,K

with constants C1, C2 independent of ε, hK , δK , τK and

EK(ε, hK , δK , τK) := ε+ τK + min{‖a‖2
0,∞,KδK ;h2

Kδ
−1

K } ,(3.27)

FK(ε, hK , δK , τK) := δK + min{ε−1; τ−1

K }h2
K .(3.28)

P r o o f. The existence and uniqueness of ûh ∈ Xh are a consequence of Lax–
Milgram’s theory and Lemmas 3.1, 3.2.

Let

êh ≡ (uh − u, ph − p) = (uh − πhu, ph − πhp) + (πhu − u, πhp− p)

≡ (ϑu
h, ϑ

p
h) + (ηu

h , η
p
h) ≡ ϑ̂h + η̂h .

Then

|||ϑ̂h|||2 = B̃GLS(a; ϑ̂h, ϑ̂h) (by Lemma 3.1)

= B̃GLS(a; êh − η̂h, ϑ̂h) = −B̃GLS(a; η̂h, ϑ̂h) (by consistency)

≤ 1

2
|||ϑ̂h|||2 + C

{
|||ηh|||2 +

∑

K

δ−1

K ‖ηu
h‖2

0,2,K

+
∑

K

min{ε−1; τ−1

K }‖ηp
h‖2

0,2,K

}
.

The triangle inequality and standard interpolation results (cf. (2.23)) imply
(3.26)–(3.28).

We now derive an additional design condition for the parameters δK and τK by
balancing the terms in (3.27), (3.28). A simple calculation with the local Reynolds
number ReK yields

(H.4∗a) (3.29a)
δK ∼ hK(‖a‖0,∞,K)−1

τK ∼ hK‖a‖0,∞,K

if ReK =
hK‖a‖0,∞,K

ε
≥ 1 ,

(H.4∗b) (3.29b)
δK ∼ h2

Kε
−1

τK ∼ ε
if ReK ≤ 1 .

Then it follows that

EK(ε, hK , δK , τK) ∼ ε+ ‖a‖0,∞,KhK ∼ ε(1 + ReK) ,(3.30a)
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FK(ε, hK , δK , τK) ∼ min

{
hK

‖a‖0,∞,K
;
h2

K

ε

}
(3.30b)

∼ hK

‖a‖0,∞,K
min{1;ReK}

and

Corollary 3.4. Under the assumptions (H.3), (H.4∗), (H.5), the following

error estimate for the GLS-method with δK = γK is valid :

|||û− ûh|||2 := ε|u − uh|21,2,Ω +
∑

K

τK‖∇ · (u − uh)‖2
0,2,K(3.31)

+
∑

K

δK‖N(a, û − ûh)‖2
0,2,K

≤ C1

∑

K

h2t
Kε(1 + ReK)|u|2t+1,2,K

+ C2

∑

K

h2s+1

K (‖a‖0,∞,K)−1 min{1;ReK}|p|2s+1,2,K .

We conclude with some remarks.

R e m a r k 3.2. The estimate (3.31) involves control of weighted discrete resid-
uals of the GLS-method according to

(3.32) ε
∑

K

min{1;ReK}‖∇ · uh‖2
0,2,K

+
∑

K

hK(‖a‖0,∞,K)−1 min{1;ReK}‖N(a, ûh) − f‖2
0,2,K

≤ r. h. s. of (3.31) ,

which could be exploited in adaptive mesh refinement methods (cf. [Jb]).

R e m a r k 3.3. For Stokesian flow (a ≡ 0) we recover essentially the result
of [DW]. Note that ReK = 0.

R e m a r k 3.4. It is possible to repeat the analysis of the GLS-method for
the original Navier–Stokes problem (3.1)–(3.3) replacing a with uh. Then Theo-
rem 3.3 and Corollary 3.4 remain valid with a = uh in the small data case (3.4).
Furthermore, an asymptotic error estimate holds for branches of nonsingular so-
lutions of (3.1)–(3.3) (cf. [GR], [LA]).

3.3. Numerical results. We present simple 2D examples with Lagrangian
P1/P1 interpolation (l = k = 1) of velocity and pressure which do not satisfy the
inf-sup condition (3.15).

Example 3.1. As an accuracy test we performed calculations for Stokes flow
problems (a ≡ 0) for the fully developed Poiseuille flow with Dirichlet outlet (a)
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and with free outlet (b) and for two body force problems with f 6≡ 0 (c, d —
cf. [P]). Averaged discrete numerical convergence rates are given in Table 3.1.
Ωh denotes the set of finite element nodes in Ω.
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Table 3.1. Discrete numerical convergence rates (averaged)
for Stokesian flow problems

exampleP
P

P
P

P
P

P
P

P

a b c d
norm

‖u− uh‖0,2,Ωh 1.88 1.82 1.41 1.77
‖u− uh‖0,∞,Ωh 1.60 1.85 1.57 1.94
‖p− ph‖0,2,Ωh 1.89 1.64 1.42 1.75
‖p− ph‖0,∞,Ωh 1.11 1.09 1.08 1.21
‖∇ · uh‖0,∞,Ωh 1.00 0.99 0.99 0.89

Example 3.2. As an example for the Navier–Stokes problem we considered
the standard driven cavity square problem with f ≡ 0. The velocity is prescribed
to zero at the lower, left and right parts of the boundary and to (1, 0) on the
upper part of the boundary. In Fig. 3.1 to 3.3 we present the results for Reynolds
numbers 400, 1000 and 3000 on an equidistant 32 × 32-mesh after 100 iteration
steps of (3.5), (3.6). The results for Re = 400 and 1000 are comparable with those
given in [Tea], [Teb] and [HS].

References

[BF] F. Brezz i and M. Fort in, Mixed and Hybrid Finite Element Methods, Springer, New
York 1991.

[DW] J. Douglas, Jr., and J. Wang, An absolutely stabilized finite element method for the
Stokes problem, Math. Comp. 52 (186) (1989), 495–508.

[FD] L. P. Franca and E. G. Dutra do Carmo, The Galerkin-gradient-least-squares
method , Comput. Methods Appl. Mech. Engrg. 74 (1989), 41–54.

[FFH] L. P. Franca, S. L. Frey and T. J. R. Hughes, Stabilized finite element methods: I.
Applications to the advective-diffusive model , ibid., to appear.

[FS] L. P. Franca and R. Stenberg, Error analysis of some Galerkin-least-squares methods
for the elasticity equations, SIAM J. Numer. Anal. (1991), to appear.

[GR] V. Girau lt and P. A. Rav iart, Finite Element Methods for Navier–Stokes Equations.
Theory and Algorithms, Springer, 1986.

[HS] P. Hansbo and A. Szepessy, A velocity-pressure streamline diffusion finite element
method for the incompressible Navier–Stokes equations, Comput. Methods Appl. Mech.
Engrg. 84 (1990), 175–192.

[Hu] T. J. R. Hughes, Recent progress in the development and understanding of SUPG
methods with special reference to the compressible Euler and Navier–Stokes equations,
Internat. J. Numer. Methods Fluids 7 (1987), 1261–1275.

[Ja] C. Johnson, Numerical Solution of Partial Differential Equations by the Finite Element
Method , Studentlitteratur, Sweden, 1987.

[Jb] —, Adaptive finite element methods for diffusive and convective problems, Comput.
Methods Appl. Mech. Engrg. 82 (1990), 301–322.

[KR] R. Kornhuber and R. Roitzsch, On adaptive grid refinement in the presence of
internal and boundary layers, IMPACT of Computing in Science and Engineering 2
(1990), 40–72.

[LA] G. Lube and A. Auge, Regularized mixed finite element approximations of incompress-
ible flow problems. II. Navier–Stokes flow , preprint, TU Magdeburg, 1991.



104 G. LUBE

[P] R. Pierre, Simple C0 approximation for the computation of incompressible flow , Com-
put. Methods Appl. Mech. Engrg. 68 (1988), 205–227.

[T] R. Temam, Navier–Stokes Equations and Nonlinear Functional Analysis, CBMS-NSF
Regional Conf. Ser. in Appl. Math. 41, SIAM, 1983.

[Tea] T. E. Tezduyar, R. Sh ih, S. Mitta l and S. E. Ray, Incompressible flow computations
with stabilized bilinear and linear equal-order interpolation velocity-pressure elements,
preprint UMSI 90/165, Univ. of Minnesota, 1990.

[Teb] T. E. Tezduyar, Stabilized finite element formulations for incompressible flow compu-
tations, von Karman Institute for Fluid Dynamics, Lecture Series 1991-01.

[Wa] L. B. Wahlb in, Local behavior in finite element methods, in: Handbook of Numerical
Analysis, P. G. Ciarlet and J. L. Lions (eds.), Vol. II, North-Holland, 1990.

[We] D. Weiß, Numerische Simulation von Temperaturfeldern bei Schweißvorgängen, For-
schungsbericht, TU Magdeburg, 1991.


