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THE SUPPORT OF A FUNCTION WITH THIN SPECTRUM
BY

KATHRYN E. HARE (WATERLOO, ONTARIO)

We prove that if £ C G does not contain parallelepipeds of arbitrarily
large dimension then for any open, non-empty S C G there exists a con-
stant ¢ > 0 such that ||flg|l2 > c||f|l2 for all f € L?(G) whose Fourier
transform is supported on E. In particular, such functions cannot vanish on
any open, non-empty subset of G. Examples of sets which do not contain
parallelepipeds of arbitrarily large dimension include all A(p) sets.

0. Introduction. Many authors have studied the behaviour of func-
tions whose Fourier coefficients vanish on long intervals. For example, if
f = Y age™t € L2[0,27] where ngi1 —ng > q > 0 and f # 0, then f
cannot vanish on any interval of length 27 /q [14, p. 222]. Similarly, if the
Fourier transform of an integrable function f is extended to R by defining
f(y) = f027r e~ f(x) dx, and the upper density of {y : f(y) = 0} is d, then
f cannot be supported on any interval of length less than d [8, p. 13].

These results resemble the uncertainty principle in that the smaller {f;é
0} is, the more {f # 0} must “spread out”. It is natural to ask how little
one can assume about {J? # 0} and still obtain interesting conclusions on
{f # 0}. In particular, it seems natural to ask: If F has arbitrarily large
gaps and f = Y age™t € L% f # 0, then can f vanish on any set with
non-empty interior? Of course, the answer is no if E is a finite set or E = Z™*.
In this note we will obtain a stronger conclusion than just that f cannot
vanish, but under a stronger assumption.

DEFINITION. A subset P of Z is called a parallelepiped of dimension N
if P is the sum of N two-element sets and P has 2V elements.

Arithmetic progressions of length 2V are examples of parallelepipeds of
dimension N. Lacunary sets in Z and many other “thin” sets, such as A(p)
sets (see Section 2), are examples of sets which do not contain parallelepipeds
of arbitrarily large dimension.
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It is a consequence of results of [10] and [12] that if F does not contain
parallelepipeds of arbitrarily large dimension then no non-trivial L? function
whose Fourier transform is supported on E can vanish on any non-empty
open set. With the same hypothesis we will prove that for every non-empty
open set S there is a constant ¢ > 0 such that || f1g||2 > ¢||f||2 for all f € L?
with supp f C E. This builds on the work of [11] and [3]. Of course, this
stronger conclusion cannot hold if we only assume that E has arbitrarily
large gaps since such sets can contain arbitrarily long blocks of consecutive
integers.

An interesting consequence of our theorem is that the support of the
Fourier transform of a non-trivial, properly supported measure must contain
arbitrarily large parallelepipeds.

1. Main result. Our results will actually be proved in the general
framework of a compact abelian group G with dual group I'. The notion of
parallelepiped generalizes to subsets of I" in the obvious way.

DEFINITIONS. A subset F of I' is said to be strictly-2-associated with
a subset S of G if there is a constant ¢ > 0 (called a constant of strict-2-
associatedness for E and S) such that ||flg|la > c[/f|l2 for all f € L% =
{f € L*(G) : supp f C E}.

Let X and F be subsets of I'. We say that E is X-subtransversal if
whenever y, v € E, x # 1, then yv ! & X.

If there are distinct characters x and 1 in E such that x1»~! belongs to a
finite subgroup X, then the polynomial y — 1 vanishes on the annihilator of
X, an open subgroup of G, and hence FE is not strictly-2-associated with all
non-empty open subsets of G. If G is connected then the only finite subgroup
of I' is the trivial subgroup, so all subsets of I" are X-subtransversal for all
finite subgroups X. Thus when G is a connected group the assumption of
X-subtransversality in our theorems is vacuous.

THEOREM 1. Suppose E C I is X -subtransversal for all finite subgroups
X of I'. If E does not contain parallelepipeds of arbitrarily large dimension
then E is strictly-2-associated with all non-empty open subsets of G.

Remarks. In [3] we obtained a stronger result, but under stronger
assumptions (see the remarks after Corollary 2.2). Some of the same ideas
are used in this proof.

Several preliminary lemmas are needed.

LEMMA 1.1. Suppose E C I' and U is an open, non-empty subset of G
such that E and U are strictly-2-associated. Let S be any open subset of
G containing U. There is a finite subgroup X of I', depending on S and
E, so that whenever the set E'U {x}, {x} € I', is X-subtransversal, then
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E U{x} is strictly-2-associated with S, with constant of strict-2-associated-
ness independent of x.

Proof. Choose a neighbourhood V' of the identity so that UV C S.
Given v € V and f € LEU{ 1 (G), let fo(x) = f(xv) — x(v)f(x). Observe
that

115 £13 = V ffv dm(v)

z@év,ffuv (&) dm (o).

Assume that whenever h € Trigg(G) then ||1yhl|3 > c1]|h]|3. Since
fo € Trig(G) for all v € V| we have

s £13 >

ey J I,

The proof of the lemma is completed in the same manner as were the proofs
of Lemmas 2.2 and 3.4 of [3]. =

COROLLARY 1.2. Suppose E C I' is X-subtransversal for all finite sub-
groups X of I'. If there is a finite set F' and an open, non-empty set U
so that E\F and U are strictly-2-associated, then E is strictly-2-associated
with any open set S containing U.

Proof. Assume F = {x1,...,xn}. Being a compact Hausdorff space,
G is normal. Thus it is possible to choose open sets S1, ..., Sy_1 satisfying

UcS,cS i cS,c...c Sy_1CS.

By the previous lemma (E\F)U{x1} is strictly-2-associated with Sp, hence
(E\F) U {x1, x2} is strictly-2-associated with S3, and so by induction F is
strictly-2-associated with S. m

LEMMA 1.3. Let S and S; be open, non-empty subsets of G with S; C S.
Given ¢ > 0 there is a finite symmetric set F = F(c,S1,S) C I', containing
the identity, so that if the sets {E;}ier C I are strictly-2-associated with
S1, with constant of strict-2-associatedness c, and EZ»EJ-_1 NFE =0 for all
i,j €1,i#j, then J,c; i is strictly-2-associated with S.

Proof. Since G is normal there is a continuous function g : G — [0, 1]
with ¢(51) =1 and ¢g(S°) = 0. Let P be a polynomial with

|P—g|l% <e=c?/12.

Set F = (supp P)(supp P)~L. If f € Trigyg, (G), f = > i fi with
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fi € Trigg (G), then
IPfl5 = ZHPfng-

iel
Thus

s 15 = llgf13 = IUPAIE = 1P~ 9)fII3 = 5 Y IPFill3 —ell 13-
iel

But also

IPfill3 > 5llgfill3 = ell £ill3 > 5l11s, fill3 — el £il13 > 32 1fill3 — el £il13

since the sets {F;}icsr are strictly-2-associated with S; with constant of
strict-2-associatedness c.
Hence

s 15 = Y GENE — 3ellfill3) — el F113

iel
> 2113 = 3ell 12 = 5N f13. m

DEFINITIONS. Let F' be a finite subset of I'. For x,v¢ € I" we say that
x is F-equivalent to v if for some positive integer m there is a sequence
X = X1, X2, -+ Xm = ¥ with X¢+1Xi_1 eFfori=1,....m—1. If y; € E
fori=1,...,m we say x is (F, F)-equivalent to 1.

When F' is a symmetric subset of I' containing the identity this is an
equivalence relation.

We will say E has the uniformly large gap property provided for each
finite symmetric subset F' of I, containing the identity, there is an integer
s > 0 such that if yy»=! & F'®* then x and v are not (E, F')-equivalent.

LEMMA 1.4 (Theorem 3.1 of [3]). Suppose E C I' does not contain arbi-
trarily large parallelepipeds. Then E has the uniformly large gap property.

LEMMA 1.5. Suppose E does not contain arbitrarily large parallelepipeds
and is X -subtransversal for all finite subgroups X of I'. Let S be an open
subset of G and assume E' C E is strictly-2-associated with the open set Sy
whose closure is contained in S. Then there is a finite set Fy = F1(E, E’,
S,S1) so that whenever E"” = {x;}ic1 C E satisfies XiX{l & Fy if i # 7,
then E' U E" is strictly-2-associated with S.

Proof. Choose Sy open with S; C S C Sy € S. By Lemma 1.1 there
is a constant ¢ > 0 which is a constant of strict-2-associatedness for Sy and
each of the sets B’ U {x}, x € I By Lemma 1.3 we obtain the finite set
F = F(c,S2,S) with the property that if {E;};c; are strictly-2-associated
with Sy with constant of strict-2-associatedness ¢, and E; E; 'NF =0, then
Uicr Ei is strictly-2-associated with S.
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Set F} = F'® where s is chosen as in the previous lemma. Let F; denote
the elements of E’ U E” which belong to the (E, F')-equivalence class which
contains x;, and let Ey = E' U E"\|J,c; Es. If i € I then E; C E' U {x;},
and Ey C E’. Thus each set E; with i € TU{0} is strictly-2-associated with
S with constant of strict-2-associatedness c. By definition of the equivalence
relation, E;E; 'NF = 0 if i # j and so by Lemma 1.3, U, 0y i = E'UE"
is strictly-2-associated with S. =

Before completing the proof of the theorem we need some additional
terminology.

DEFINITIONS. A subset E of I' is said to tend to infinity if for every
finite set A C I" there is a finite set /' C E such that if x, ¢ are distinct
elements of E\F then yy~! ¢ A.

For subsets of Z this means that for each positive integer NV only finitely
many points of F differ in absolute value by at most N.

As in [11] we define sets of class M,, inductively as follows:

My = class of subsets of I" which tend to infinity;

M, = class of those subsets of I" which for each finite set A are the
union of two sets, one a finite union of sets in class M,,_; and the other a
set of the form {y;} where Xin_l g Aif i # 7.

In [11] it is shown that any subset of Z which does not contain paral-
lelepipeds of dimension n belongs to the class M,,_5. Essentially the same
proof works for subsets of I'.

Proof of Theorem 1. We will prove the following statement by
induction on k: Let E” C FE belong to Mj. For all non-empty open sets
S: and S, with S; C S, and for all subsets E' of E which are strictly-2-
associated with Sy, it is the case that E'UE" is strictly-2-associated with S.

As FE belongs to class M,, for some n, this clearly suffices to prove the
theorem.

So first assume E” is in class My, and let S,S; and E’ be as above.
Choose Sy open with S; € Sy € Sy C S. Choose the finite set F} =
Fi(E,E',S5,51) as in Lemma 1.5. Since E” tends to infinity there is a
finite set F' so that if x,v € E”’\F, x # v, then xv»~! € F;. By Lemma 1.5,
E’ U (E"\F) is strictly-2-associated with Ss. By Corollary 1.2, E' U E” is
strictly-2-associated with S, which completes the first step in the induction
argument.

Now assume the induction statement is true for £ = n and suppose E” is
in class M,, ;1. Let S1, S be non-empty, open sets with S; C 9, and suppose
E' C E is strictly-2-associated with S;. Choose Sy open with S; C Sy C
Sy C S, and choose the finite set F} = Fy(E, E’,S5,51) as in Lemma 1.5.
Since E" belongs to M,,+1, B = E* U {x;} where E* is a finite union of
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sets in class M, and if i # j, then y;x; ' € Fi. By Lemma 1.5, E' U {x;}
is strictly-2-associated with S5. Now assume E* = Ui:l FE; where each set
FE; is in class M,,. Suppose S3 is an open set satisfying So C S3 C S3 C S.
By the induction assumption E'U{y;}U E; is strictly-2-associated with Ss,
and by applying the induction assumption m — 1 more times it follows that
E'U{xi} UE* = E'UE" is strictly-2-associated with S. m

2. Applications. The reader will have noticed that we have actually
proved the following stronger result:

THEOREM 2. Suppose EE C I' belongs to the class M, for some n, E
has the uniformly large gap property and E is X -subtransversal for all finite
subgroups X of I'. Then E is strictly-2-associated with all open, non-empty
subsets of G.

As a consequence we can prove

COROLLARY 2.1. In either of the following two cases E is strictly-2-
associated with all open, non-empty subsets of G:

(a) E C I tends to infinity and is X -subtransversal for all finite sub-
groups X .
(b) E C Z belongs to the class M, for some n.

Proof. (a) Sets which tend to infinity clearly have the uniformly large
gap property.

(b) Subsets of Z which belong to the class M,, have zero uniform density
[11] and such sets are easily seen to have the uniformly large gap property.
As T is connected all subsets are X-subtransversal for all finite subgroups
of Z. m

DEFINITIONS. Let 0 < p < co. A subset F of I' is called a A(p) set if
there is some ¢ < p and constant ¢(q) such that || f||, < c(q)| f|l; whenever
supp ]?is a finite subset of FE.

Let 1 <p < 2. We say that E is a p-Sidon set if there is a constant ¢ so
that ||f||p < ¢||f]loo Whenever supp f is a finite subset of E. A 1-Sidon set
is usually called a Sidon set.

Lacunary sets in Z are examples of sets which are A(p) for all p > 0 and
are p-Sidon for all 1 < p < 2. For other examples the reader is referred to
[6], [9] or [13]. Subsets of I" which are A(p) for some p > 0 or p-Sidon for
some 1 < p < 2 cannot contain parallelepipeds of arbitrarily large dimension
([4], [6]) and thus we have

COROLLARY 2.2. If E C I' is a A(p) set for some p > 0 which is X-
subtransversal for all finite subgroups X of I', then E is strictly-2-associated
with all open, non-empty subsets of G.
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Previously ([3]) we extended work of [1], [2] and [11] by showing that any
A(p) set for some p > 2, which was X-subtransversal for all finite subgroups,
was strictly-2-associated with all sets of positive measure. As there are no
known examples of A(p) sets which are not A(2 + ¢) sets for some ¢ > 0,
Corollary 2.2 is only of formal interest.

No arithmetic characterization of A(p) sets or p-Sidon sets is known.
One reason for the interest in studying properties of sets which do not con-
tain large parallelepipeds is because it is unknown if the absence of paral-
lelepipeds of arbitrarily large dimension characterizes A(2) sets.

We will give one other application of our theorem. Klemes [7] used other
methods to prove a weaker version of this result.

COROLLARY 2.3. Let G be a connected group. Suppose u € M(G), u# 0
and [ is supported on a proper compact set K. Then supp i contains par-
allelepipeds of arbitrarily large dimension.

Remark. Host and Parreau [5] proved a theorem resembling this, but
with stronger assumptions and conclusions.

Proof of Corollary 2.3. The regularity of Haar measure m ensures
that there is an open set O containing K with m(O) < 1. Let V be a
neighbourhood of the identity chosen so that KV C O, and let S be the
complement of KV. Then obviously S is an open set of positive measure.
Choose F' € L*°(G) supported on V, with F * p # 0.

If supp 1 does not contain parallelepipeds of arbitrarily large dimension
then supp ¢ is strictly-2-associated with S, and as supp F' * u C supp i, it
follows that F' x y cannot vanish identically on S. But F' * pu is supported
on KV = S¢, which is a contradiction. =
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