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THE SUPPORT OF A FUNCTION WITH THIN SPECTRUM

BY

KATHRYN E. HARE (WATERLOO, ONTARIO)

We prove that if E ⊆ Ĝ does not contain parallelepipeds of arbitrarily
large dimension then for any open, non-empty S ⊆ G there exists a con-
stant c > 0 such that ‖f1S‖2 ≥ c‖f‖2 for all f ∈ L2(G) whose Fourier
transform is supported on E. In particular, such functions cannot vanish on
any open, non-empty subset of G. Examples of sets which do not contain
parallelepipeds of arbitrarily large dimension include all Λ(p) sets.

0. Introduction. Many authors have studied the behaviour of func-
tions whose Fourier coefficients vanish on long intervals. For example, if
f =

∑
ake

inkt ∈ L2[0, 2π] where nk+1 − nk ≥ q > 0 and f 6≡ 0, then f
cannot vanish on any interval of length 2π/q [14, p. 222]. Similarly, if the
Fourier transform of an integrable function f is extended to R by defining
f̂(y) ≡

∫ 2π

0
e−iyxf(x) dx, and the upper density of {y : f̂(y) = 0} is d, then

f cannot be supported on any interval of length less than d [8, p. 13].
These results resemble the uncertainty principle in that the smaller {f̂ 6=

0} is, the more {f 6= 0} must “spread out”. It is natural to ask how little
one can assume about {f̂ 6= 0} and still obtain interesting conclusions on
{f 6= 0}. In particular, it seems natural to ask: If E has arbitrarily large
gaps and f =

∑
ake

inkt ∈ L2, f 6≡ 0, then can f vanish on any set with
non-empty interior? Of course, the answer is no if E is a finite set or E = Z+.
In this note we will obtain a stronger conclusion than just that f cannot
vanish, but under a stronger assumption.

Definition. A subset P of Z is called a parallelepiped of dimension N
if P is the sum of N two-element sets and P has 2N elements.

Arithmetic progressions of length 2N are examples of parallelepipeds of
dimension N . Lacunary sets in Z and many other “thin” sets, such as Λ(p)
sets (see Section 2), are examples of sets which do not contain parallelepipeds
of arbitrarily large dimension.
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It is a consequence of results of [10] and [12] that if E does not contain
parallelepipeds of arbitrarily large dimension then no non-trivial L2 function
whose Fourier transform is supported on E can vanish on any non-empty
open set. With the same hypothesis we will prove that for every non-empty
open set S there is a constant c > 0 such that ‖f1S‖2 ≥ c‖f‖2 for all f ∈ L2

with supp f̂ ⊆ E. This builds on the work of [11] and [3]. Of course, this
stronger conclusion cannot hold if we only assume that E has arbitrarily
large gaps since such sets can contain arbitrarily long blocks of consecutive
integers.

An interesting consequence of our theorem is that the support of the
Fourier transform of a non-trivial, properly supported measure must contain
arbitrarily large parallelepipeds.

1. Main result. Our results will actually be proved in the general
framework of a compact abelian group G with dual group Γ . The notion of
parallelepiped generalizes to subsets of Γ in the obvious way.

Definitions. A subset E of Γ is said to be strictly-2-associated with
a subset S of G if there is a constant c > 0 (called a constant of strict-2-
associatedness for E and S) such that ‖f1S‖2 ≥ c‖f‖2 for all f ∈ L2

E =
{f ∈ L2(G) : supp f̂ ⊆ E}.

Let X and E be subsets of Γ . We say that E is X-subtransversal if
whenever χ, ψ ∈ E, χ 6= ψ, then χψ−1 6∈ X.

If there are distinct characters χ and ψ in E such that χψ−1 belongs to a
finite subgroup X, then the polynomial χ−ψ vanishes on the annihilator of
X, an open subgroup of G, and hence E is not strictly-2-associated with all
non-empty open subsets ofG. IfG is connected then the only finite subgroup
of Γ is the trivial subgroup, so all subsets of Γ are X-subtransversal for all
finite subgroups X. Thus when G is a connected group the assumption of
X-subtransversality in our theorems is vacuous.

Theorem 1. Suppose E ⊆ Γ is X-subtransversal for all finite subgroups
X of Γ . If E does not contain parallelepipeds of arbitrarily large dimension
then E is strictly-2-associated with all non-empty open subsets of G.

R e m a r k s. In [3] we obtained a stronger result, but under stronger
assumptions (see the remarks after Corollary 2.2). Some of the same ideas
are used in this proof.

Several preliminary lemmas are needed.

Lemma 1.1. Suppose E ⊆ Γ and U is an open, non-empty subset of G
such that E and U are strictly-2-associated. Let S be any open subset of
G containing U . There is a finite subgroup X of Γ , depending on S and
E, so that whenever the set E ∪ {χ}, {χ} ∈ Γ , is X-subtransversal , then
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E ∪ {χ} is strictly-2-associated with S, with constant of strict-2-associated-
ness independent of χ.

P r o o f. Choose a neighbourhood V of the identity so that UV ⊆ S.
Given v ∈ V and f ∈ L2

E∪{χ}(G), let fv(x) = f(xv) − χ(v)f(x). Observe
that

‖1Sf‖22 =
1

m(V )

∫
V

∫
S

|f(x)|2 dm(x) dm(v)

≥ 1
4m(V )

∫
V

∫
U

|fv(x)|2 dm(x) dm(v).

Assume that whenever h ∈ TrigE(G) then ‖1Uh‖22 ≥ c1‖h‖22. Since
fv ∈ TrigE(G) for all v ∈ V , we have

‖1Sf‖22 ≥
c1

4m(V )

∫
V

‖fv‖22 dm(v).

The proof of the lemma is completed in the same manner as were the proofs
of Lemmas 2.2 and 3.4 of [3].

Corollary 1.2. Suppose E ⊆ Γ is X-subtransversal for all finite sub-
groups X of Γ . If there is a finite set F and an open, non-empty set U
so that E\F and U are strictly-2-associated , then E is strictly-2-associated
with any open set S containing U .

P r o o f. Assume F = {χ1, . . . , χN}. Being a compact Hausdorff space,
G is normal. Thus it is possible to choose open sets S1, . . . , SN−1 satisfying

U ⊂ S1 ⊂ S1 ⊂ S2 ⊂ . . . ⊂ SN−1 ⊂ S.

By the previous lemma (E\F )∪{χ1} is strictly-2-associated with S1, hence
(E\F ) ∪ {χ1, χ2} is strictly-2-associated with S2, and so by induction E is
strictly-2-associated with S.

Lemma 1.3. Let S and S1 be open, non-empty subsets of G with S1 ⊆ S.
Given c > 0 there is a finite symmetric set F = F (c, S1, S) ⊆ Γ , containing
the identity , so that if the sets {Ei}i∈I ⊆ Γ are strictly-2-associated with
S1, with constant of strict-2-associatedness c, and EiE

−1
j ∩ F = ∅ for all

i, j ∈ I, i 6= j, then
⋃

i∈I Ei is strictly-2-associated with S.

P r o o f. Since G is normal there is a continuous function g : G → [0, 1]
with g(S1) = 1 and g(Sc) = 0. Let P be a polynomial with

‖P − g‖2∞ < ε ≡ c2/12.

Set F = (supp P̂ )(supp P̂ )−1. If f ∈ Trig∪Ei
(G), f =

∑
i∈I fi with
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fi ∈ TrigEi
(G), then

‖Pf‖22 =
∑
i∈I

‖Pfi‖22.

Thus

‖1Sf‖22 ≥ ‖gf‖22 ≥ 1
2‖Pf‖

2
2 − ‖(P − g)f‖22 ≥ 1

2

∑
i∈I

‖Pfi‖22 − ε‖f‖22.

But also

‖Pfi‖22 ≥ 1
2‖gfi‖22 − ε‖fi‖22 ≥ 1

2‖1S1fi‖22 − ε‖fi‖22 ≥ 1
2c

2‖fi‖22 − ε‖fi‖22
since the sets {Ei}i∈I are strictly-2-associated with S1 with constant of
strict-2-associatedness c.

Hence

‖1Sf‖22 ≥
∑
i∈I

( 1
4c

2‖fi‖22 − 1
2ε‖fi‖22)− ε‖f‖22

≥ 1
4c

2‖f‖22 − 3
2ε‖f‖

2
2 ≥ 1

8c
2‖f‖22.

Definitions. Let F be a finite subset of Γ . For χ, ψ ∈ Γ we say that
χ is F -equivalent to ψ if for some positive integer m there is a sequence
χ = χ1, χ2, . . . , χm = ψ with χi+1χ

−1
i ∈ F for i = 1, . . . ,m − 1. If χi ∈ E

for i = 1, . . . ,m we say χ is (E,F )-equivalent to ψ.
When F is a symmetric subset of Γ containing the identity this is an

equivalence relation.
We will say E has the uniformly large gap property provided for each

finite symmetric subset F of Γ , containing the identity, there is an integer
s > 0 such that if χψ−1 6∈ F s then χ and ψ are not (E,F )-equivalent.

Lemma 1.4 (Theorem 3.1 of [3]). Suppose E ⊂ Γ does not contain arbi-
trarily large parallelepipeds. Then E has the uniformly large gap property.

Lemma 1.5. Suppose E does not contain arbitrarily large parallelepipeds
and is X-subtransversal for all finite subgroups X of Γ . Let S be an open
subset of G and assume E′ ⊂ E is strictly-2-associated with the open set S1

whose closure is contained in S. Then there is a finite set F1 = F1(E,E′,
S, S1) so that whenever E′′ = {χi}i∈I ⊂ E satisfies χiχ

−1
j 6∈ F1 if i 6= j,

then E′ ∪ E′′ is strictly-2-associated with S.

P r o o f. Choose S2 open with S1 ⊂ S2 ⊂ S2 ⊂ S. By Lemma 1.1 there
is a constant c > 0 which is a constant of strict-2-associatedness for S2 and
each of the sets E′ ∪ {χ}, χ ∈ Γ . By Lemma 1.3 we obtain the finite set
F = F (c, S2, S) with the property that if {Ei}i∈I are strictly-2-associated
with S2 with constant of strict-2-associatedness c, and EiE

−1
j ∩F = ∅, then⋃

i∈I Ei is strictly-2-associated with S.
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Set F1 = F s where s is chosen as in the previous lemma. Let Ei denote
the elements of E′ ∪E′′ which belong to the (E,F )-equivalence class which
contains χi, and let E0 = E′ ∪ E′′\

⋃
i∈I Ei. If i ∈ I then Ei ⊆ E′ ∪ {χi},

and E0 ⊂ E′. Thus each set Ei with i ∈ I ∪{0} is strictly-2-associated with
S with constant of strict-2-associatedness c. By definition of the equivalence
relation, EiE

−1
j ∩F = ∅ if i 6= j and so by Lemma 1.3,

⋃
i∈I∪{0}Ei = E′∪E′′

is strictly-2-associated with S.

Before completing the proof of the theorem we need some additional
terminology.

Definitions. A subset E of Γ is said to tend to infinity if for every
finite set ∆ ⊆ Γ there is a finite set F ⊆ E such that if χ, ψ are distinct
elements of E\F then χψ−1 6∈ ∆.

For subsets of Z this means that for each positive integer N only finitely
many points of E differ in absolute value by at most N .

As in [11] we define sets of class Mn inductively as follows:
M0 = class of subsets of Γ which tend to infinity;
Mn = class of those subsets of Γ which for each finite set ∆ are the

union of two sets, one a finite union of sets in class Mn−1 and the other a
set of the form {χi} where χiχ

−1
j 6∈ ∆ if i 6= j.

In [11] it is shown that any subset of Z which does not contain paral-
lelepipeds of dimension n belongs to the class Mn−2. Essentially the same
proof works for subsets of Γ .

P r o o f o f T h e o r e m 1. We will prove the following statement by
induction on k: Let E′′ ⊂ E belong to Mk. For all non-empty open sets
S1 and S, with S1 ⊂ S, and for all subsets E′ of E which are strictly-2-
associated with S1, it is the case that E′∪E′′ is strictly-2-associated with S.

As E belongs to class Mn for some n, this clearly suffices to prove the
theorem.

So first assume E′′ is in class M0, and let S, S1 and E′ be as above.
Choose S2 open with S1 ⊂ S2 ⊂ S2 ⊂ S. Choose the finite set F1 =
F1(E,E′, S2, S1) as in Lemma 1.5. Since E′′ tends to infinity there is a
finite set F so that if χ, ψ ∈ E′′\F , χ 6= ψ, then χψ−1 6∈ F1. By Lemma 1.5,
E′ ∪ (E′′\F ) is strictly-2-associated with S2. By Corollary 1.2, E′ ∪ E′′ is
strictly-2-associated with S, which completes the first step in the induction
argument.

Now assume the induction statement is true for k = n and suppose E′′ is
in class Mn+1. Let S1, S be non-empty, open sets with S1 ⊂ S, and suppose
E′ ⊂ E is strictly-2-associated with S1. Choose S2 open with S1 ⊂ S2 ⊂
S2 ⊂ S, and choose the finite set F1 = F1(E,E′, S2, S1) as in Lemma 1.5.
Since E′′ belongs to Mn+1, E′′ = E∗ ∪ {χi} where E∗ is a finite union of
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sets in class Mn and if i 6= j, then χiχ
−1
j 6∈ F1. By Lemma 1.5, E′ ∪ {χi}

is strictly-2-associated with S2. Now assume E∗ =
⋃m

i=1Ei where each set
Ei is in class Mn. Suppose S3 is an open set satisfying S2 ⊂ S3 ⊂ S3 ⊂ S.
By the induction assumption E′∪{χi}∪E1 is strictly-2-associated with S3,
and by applying the induction assumption m− 1 more times it follows that
E′ ∪ {χi} ∪ E∗ = E′ ∪ E′′ is strictly-2-associated with S.

2. Applications. The reader will have noticed that we have actually
proved the following stronger result:

Theorem 2. Suppose E ⊆ Γ belongs to the class Mn for some n, E
has the uniformly large gap property and E is X-subtransversal for all finite
subgroups X of Γ . Then E is strictly-2-associated with all open, non-empty
subsets of G.

As a consequence we can prove

Corollary 2.1. In either of the following two cases E is strictly-2-
associated with all open, non-empty subsets of G:

(a) E ⊆ Γ tends to infinity and is X-subtransversal for all finite sub-
groups X.

(b) E ⊆ Z belongs to the class Mn for some n.

P r o o f. (a) Sets which tend to infinity clearly have the uniformly large
gap property.

(b) Subsets of Z which belong to the class Mn have zero uniform density
[11] and such sets are easily seen to have the uniformly large gap property.
As T is connected all subsets are X-subtransversal for all finite subgroups
of Z.

Definitions. Let 0 < p < ∞. A subset E of Γ is called a Λ(p) set if
there is some q < p and constant c(q) such that ‖f‖p ≤ c(q)‖f‖q whenever
supp f̂ is a finite subset of E.

Let 1 ≤ p < 2. We say that E is a p-Sidon set if there is a constant c so
that ‖f̂‖p ≤ c‖f‖∞ whenever supp f̂ is a finite subset of E. A 1-Sidon set
is usually called a Sidon set .

Lacunary sets in Z are examples of sets which are Λ(p) for all p > 0 and
are p-Sidon for all 1 ≤ p < 2. For other examples the reader is referred to
[6], [9] or [13]. Subsets of Γ which are Λ(p) for some p > 0 or p-Sidon for
some 1 ≤ p < 2 cannot contain parallelepipeds of arbitrarily large dimension
([4], [6]) and thus we have

Corollary 2.2. If E ⊆ Γ is a Λ(p) set for some p > 0 which is X-
subtransversal for all finite subgroups X of Γ , then E is strictly-2-associated
with all open, non-empty subsets of G.
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Previously ([3]) we extended work of [1], [2] and [11] by showing that any
Λ(p) set for some p > 2, which was X-subtransversal for all finite subgroups,
was strictly-2-associated with all sets of positive measure. As there are no
known examples of Λ(p) sets which are not Λ(2 + ε) sets for some ε > 0,
Corollary 2.2 is only of formal interest.

No arithmetic characterization of Λ(p) sets or p-Sidon sets is known.
One reason for the interest in studying properties of sets which do not con-
tain large parallelepipeds is because it is unknown if the absence of paral-
lelepipeds of arbitrarily large dimension characterizes Λ(2) sets.

We will give one other application of our theorem. Klemes [7] used other
methods to prove a weaker version of this result.

Corollary 2.3. Let G be a connected group. Suppose µ ∈M(G), µ 6= 0
and µ is supported on a proper compact set K. Then supp µ̂ contains par-
allelepipeds of arbitrarily large dimension.

R e m a r k. Host and Parreau [5] proved a theorem resembling this, but
with stronger assumptions and conclusions.

P r o o f o f C o r o l l a r y 2.3. The regularity of Haar measure m ensures
that there is an open set O containing K with m(O) < 1. Let V be a
neighbourhood of the identity chosen so that KV ⊆ O, and let S be the
complement of KV . Then obviously S is an open set of positive measure.
Choose F ∈ L∞(G) supported on V , with F ∗ µ 6≡ 0.

If supp µ̂ does not contain parallelepipeds of arbitrarily large dimension
then supp µ̂ is strictly-2-associated with S, and as supp F̂ ∗ µ ⊆ supp µ̂, it
follows that F ∗ µ cannot vanish identically on S. But F ∗ µ is supported
on KV = Sc, which is a contradiction.

REFERENCES

[1] A. Bonami, Etude des coefficients de Fourier des fonctions de Lp(G), Ann. Inst.
Fourier (Grenoble) 20 (2) (1970), 335–402.

[2] J. Fournier, Uniformizable Λ(2) sets and uniform integrability , Colloq. Math. 51
(1987), 119–129.

[3] K. Hare, Strict-2-associatedness for thin sets, ibid. 56 (1988), 367–381.
[4] —, Arithmetic properties of thin sets, Pacific J. Math. 131 (1988), 143–155.
[5] B. Host et F. Parreau, Sur les mesures dont la transformée de Fourier–Stieltjes
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