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ON KRASNÉR’S THEOREM FOR THE FIRST CASE
OF FERMAT’S LAST THEOREM

BY

VIJAY JHA (ALLAHABAD)

1. Introduction. In 1934 Krasnér [3] deduced from Kummer’s congru-
ences for the first case of Fermat’s Last Theorem (abbreviated FLT1) that if
FLT1 fails for the prime p, and the Bernoulli number Bp−n−1 6≡ 0 (mod p)
for even n, 2 ≤ n ≤ p− 3, then

(1) log p < f(n) where f(n) = 2(n− 1) log(n!).

From this he derived that for n < k(p) = 2(log p)1/3 and p > (45!)88, Bp−1−n

≡ 0 (mod p). The restriction p > (45!)88 was removed later by Wada [5]
and Keller and Löh [2].

In 1986 Sami [4], by transforming Kummer’s congruences, obtained the
bound S(p) = (log p)0.4. Later Granville [1] used (1) to obtain the bound
G(p) = ((log p)/ log log p)1/2.

In Section 2 we show that, without going through the lengthy transfor-
mations of Sami, a slightly better bound with exponent 0.4057 . . . can be
directly obtained from (1). In fact, in the following proposition we give a
more definite result.

1.1. Proposition. Let h(n) = (log(f(n)))/(log n). Then the best
possible bound implied by (1) and of the type (log p)c is attained for c =
1/h(22) = 0.405761 . . .

Next we ask the question: “what is the best possible bound, resulting
from (1) and without any restriction on the type?”. Here, the exact bound
may be complicated, so we raise the question of asymptotically best bound.
Throughout we say φ ≈ ϕ if both are defined and nonzero in an interval
x > x0 and

lim
x→∞

φ(x)/ϕ(x) = 1.
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A bound h1(p) is called asymptotically best if for any other bound h2(p) ≥
h1(p), h1(p) ≈ h2(p). In Section 2 we prove

1.2. Proposition. Let ϑ(p) be a bound resulting from (1) and such
that ϑ(p) ≥ G(p). Then limp→∞ ϑ(p)/G(p) = 1.

It follows that Granville’s bound is asymptotically the best possible so-
lution of Krasnér’s inequality (1), and by this method one cannot expect
any further improvements. Thus for any essential improvement one has to
modify Krasnér’s method at an early stage and try to improve the inequality
(1). In Section 3 we accomplish this by factoring the resultant into smaller
integers. Precisely, we prove

1.3. Theorem. Let the first case of Fermat’s Last Theorem fail for an
odd prime p and let

V (p) = max{(2(log p)/ log log p)1/2, (log p)617/1398}.
Then Bp−1−n ≡ 0 (mod p) for 1 < n ≤ V (p).

1.4. R e m a r k. It follows that the bound V (p) is better than the bounds
S(p) and G(p) and that it cannot be obtained by the methods of Krasnér,
Sami and Granville. Although we improve over Granville only by a constant
factor, it needs a basically new idea.

2. Proofs of Propositions 1.1 and 1.2. Let n! denote the value of
the Gamma function of a real variable at n + 1. Then the function of real
variable f(n) = 2(n− 1) log(n!) strictly increases for n > 1. Let f−1 denote
the inverse function. Then (1) is equivalent to the inequality f−1(log p) < n.

2.1. P r o o f o f P r o p o s i t i o n 1.1. We are looking for the best (i.e.
largest) c such that for n ≤ (log p)c, Bp−1−n ≡ 0 (mod p). By the result
of Krasnér quoted at the beginning, this would certainly be the case if
n ≤ (log p)c implies that f(n) ≤ log p, i.e., if f(n) ≤ n1/c. Now, f(n) < nu

if and only if h(n) ≤ u where h(n) = (log(f(n)))/(log n). Thus the best u
is max{h(n) : n ∈ Z+}.

Direct computation for integers n < 150 yields that the maximum of
h(n) for integers in this interval is attained for n = 22. We now show that
h(n) ≤ h(22) for all n ∈ Z+. Obviously

(2) f(n) < 2n2 log n

and hence
h(n) < 2 + (log(2(log n)))/(log n).

The right hand side of the above, as a function of real variable, strictly
decreases for n > 5 and since it is less than h(22) at n = 150, it must be so
for n > 150.
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R e m a r k. The above result contains Sami’s [4] result and decides the
problem in a more definite way.

2.2. P r o o f o f P r o p o s i t i o n 1.2. We first notice that the best
possible bound is obviously f−1(log p). Let H(x) = (x/(log x))1/2. It is
enough to show that f−1(log p) ≈ G(p), where G(p) = H(log p) is Granville’s
bound. For this, it would be sufficient to show that f−1(x) ≈ H(x). Let
now g(x) = 2x2(log x). Then

lim
x→∞

g−1(x)/H(x) = lim
y→∞

g−1(g(y))/H(g(y)) = lim
y→∞

y/H(g(y)).

Since
H(g(y)) = y(2(log y)/(log 2 + 2(log y) + log log y))1/2,

it follows that g−1(x) ≈ H(x). To prove the proposition, it is sufficient to
show that f−1 ≈ g−1. Since both are strictly increasing and the derivative
g′ also increases, the proposition follows from the following lemma.

2.3. Lemma. Let the functions f and g be strictly increasing , continu-
ous, unbounded for x > x0 and f ≈ g. Suppose that f < g for x > x0 and
g has continuous derivative which is a nondecreasing function of x in some
neighborhood of infinity. Then f−1 ≈ g−1.

P r o o f. Let ε > 0. As f ≈ g, there exists x1 > 0 such that ∀x > x1,
f(x) < g(x) < (1 + ε)f(x). Put g−1 = φ. Then

∀x > x1, φ(f(x)) < x < φ((1 + ε)f(x)),

or 1 < x/φ(f(x)) < 1 + εL(x), where

L(x) = (φ((1 + ε)f(x))− φ(f(x)))/(εφ(f(x))).

Now, by the Mean Value Theorem,

L(x) = f(x)φ′((1 + δ)f(x))/φ(f(x)) for some δ, 0 < δ < ε.

As φ′(z) = 1/g′(φ(z)), and g′ is nondecreasing, g′(z) ≤ g′((1 + δ)z). There-
fore L(x) ≤ g(y)/(yg′(y)) for y = φ(f(x)). But this implies that if y1 =
φ(f(x1)) then

L(x) ≤ g(y1)/(yg′(y)) + (g(y)− g(y1))/(yg′(y))
≤ g(y1)/(yg′(y)) + (y − y1)g′(z)/(yg′(y))

for some z, y1 < z < y. Thus, there exist x2 such that L(x) < 2 for all
x > x2. Hence, 1 < x/φ(f(x)) < 1 + 2ε for all sufficiently large x.

3. Proof of Theorem 1.3. The proof consists of several steps. First
we state some known facts and notation. Let the first case fail for the prime
p. Then there exist integers x, y, z, such that

(3) xp + yp + zp = 0, p - xyz.
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Let the polynomials Mi be defined as follows:

(4) M1 = −T, Mi+1(T ) = T (1− T )M ′
i(T ) for i ≥ 1.

Then Krasnér [3] showed that for t = y/(x + y),

(5)
di log(x + yev)

dvi

∣∣∣
v=0

= −Mi(t),

and deduced that if in addition Bp−i 6≡ 0 (mod p), then the nonzero re-
sultant Ri of Mi(T )/T (1− T ) and T iMi(1/T )/(1− T ) vanishes modulo p.
First we summarize some known properties of Mi.

3.1. Lemma (see [3]). Let i ≥ 1. Then the leading coefficient of Mi(T )
is (−1)i(i − 1)! and the coefficient of T is −1. The roots of Mi are real ,
simple and lie in the closed unit interval [0, 1].

3.2. Lemma. Let i ≥ 3 be odd. Then Mi(T ) = T (1− T )(2T − 1)Ni(T ),
where Ni is of degree d = i− 3 and has integer coefficients. Further ,

(6) Ni(1− T ) = Ni(T ),

and if N∗
i (T ) = T i−3Ni(1/T ) then N∗

i is monic with integer coefficients
and constant term A = (i− 1)!/2.

P r o o f. First we show by induction upon i that for i ≥ 2,Mi(1− T ) =
(−1)iMi(T ). This is obvious for i = 2. Let it be true for i. By differentiating
the identity Mi(1−T ) = (−1)iMi(T ) and multiplying by T (1−T ) we deduce
from (4) that Mi+1(1− T ) = (−1)i+1Mi+1(T ). The assertion follows.

Next, for odd i ≥ 3,Mi(1/2) = −Mi(1/2) and thus Mi(1/2) = 0. Hence
2T − 1 divides Mi(T ), so Mi = T (1− T )(2T − 1)Ni where Ni ∈ Z[T ]. The
remaining assertions follow from the above and Lemma 3.1.

In the next lemma we factor the resultant Si of Ni and N∗
i (by Lemmas

3.1 and 3.2 it is obvious that Si 6= 0). We assume that i is a fixed odd
integer > 3 and d = i− 3 is the degree of Ni.

3.3. Lemma. Let t1 < . . . < td be all the roots of Ni and let t′k = 1− tk,
ak = 1/t′k, 1 ≤ k ≤ d. Put

B =
∏
j<k

(ajak − 1), c =
d/2∏
k=1

(ak/tk − 1).

Then B and c are positive rational integers and c divides B. Let further
Si be the resultant of Ni and N∗

i . Then

(7) Si = Ni(1)Ni(−1)(bc)2 where b = B/c.

P r o o f. It is clear that B and c are positive. By Lemma 3.2, 1/tk
are roots of N∗

i and thus are algebraic integers. Since tk are the roots of
Ni, therefore again by Lemma 3.2, 1 − tk are also roots of Ni and thus
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ak = 1/(1− tk) is an algebraic integer. It follows that B and c are algebraic
integers. Since B is invariant under every permutation of the roots of N∗

i (T ),
it must be a rational integer.

Further, let σ be any automorphism of the algebraic closure of the field
of rationals. Then σ permutes the roots of every polynomial with rational
coefficients. As σ(t′j) = 1 − σ(tj), for tj < 1/2 either σ(tj) = tk or σ(tj) =
1 − σ(tk) for some k < d/2 (we use the obvious fact that by (6) half of
the roots of Ni are less than 1/2 and the other half are > 1/2). Thus
σ leaves c unchanged and hence c is also a rational integer. Next, Si =∏d

j,k=1(akaj − 1) = uv, where

u =
d∏

k=1

(a2
k − 1) = Ni(1)Ni(−1), v =

∏
j 6=k

(akaj − 1) = B2.

Finally, for 1 < k < d/2, ak = aj for some j > d/2 and thus ak/tk = ajak.
This shows that c divides B.

3.4. Lemma. Let d > 6 and W (d) = Ad−2(3/4)d(d−2)/2. Then the
integers Ni(1), Ni(−1), c and b are positive and less than W (d). Further ,

log(W (d)) < (d + 2)1398/617.

P r o o f. Let ujk = (1− tjtk)(1− tjt
′
k)(1− t′jtk)(1− t′kt′j). Then

Si = A2d
d∏

j,k=1

(1− tktj) =
{

Ad−2

d/2∏
j<k

ujk

}2

A4

d/2∏
j=1

ujj .

However,

A4

d/2∏
j=1

ujj = A4

d/2∏
j=1

(1− t2j )(1− t′2j )(1− tjt
′
j)

2

=
{

A2

d/2∏
j=1

(1−t2j )(1−t′2j )
}{

A

d/2∏
j=1

(1− tjt
′2
j )

}2

= Ni(1)Ni(−1)c2.

Hence, by (7),

(8) b = Ad−2

d/2∏
j<k

ujk.

Now u
1/4
jk , as the geometric mean of four numbers, must be less than their

arithmetic mean, which turns out to be 3/4. Thus ujk < (3/4)4 and (8)
gives b < A(d−2)(3/4)d(d−2)/2. This implies that b < W (d).
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Further, max{c,Ni(1)} < A < Ni(−1) and

Ni(−1) = A

d∏
k=1

(1 + tk) = A

d/2∏
k=1

(1 + tk)(1 + t′k).

Since for 0 < x < 1/2, (1 + x)(2 − x) < 9/4 and 1 + t′k = 2 − tk, we get
Ni(−1) < A(3/2)d. As A = (i − 1)!/2 = (d + 2)!/2 (see Lemma 3.2), it
follows that for d > 6, A(3/2)d < W (d).

To get the bound for W (d), let n = d + 2. By Stirling’s formula,

n! < (2πe)1/2e1/(12n)(n/e)n+0.5.

Let Xn = log{(πe/2).5e1/(12n)(n/e)n+.5(3/4)n/2−1}. Then

log(W (d)) < (n− 4)Xn.

Now log{(πe/2)0.5e1/(12n)(3/4)n/2−1} < 0, for n ≥ 8, and thus

(9) log(W (d)) < n2 log(n/e) for n ≥ 8.

Let u = 164/617. Now the function α(m) = −um + log(m− 1) defined for
real m > 1 has a unique maximum at m = 1 + 1/u. Also exp(α(log n)) =
(n−u log(n/e)). It follows that α(log n) < 0 if and only if n2 log(n/e) < n2+u

and in this case log(W (d)) < n2+u. Let x0 = e1+1/u. It can be verified that
for x1 = 500, α(log x1) < 0. Since x1 > x0 and α decreases for x > log x0,
we get log(W (d)) < n2+u for n > 500. If 6 ≤ n < 500, then it can be
verified computationally that log(W (d)) < (n− 4)Xn < n2+u.

3.5. P r o o f o f t h e T h e o r e m. Let FLT1 fail for the prime p > 2
and suppose that Bp−1−n 6≡ 0 (mod p) for 2 ≤ n ≤ p − 3. Then by [2],
n ≥ 44. Let t = y/(x + y). In the first case t 6≡ 0, 1 (mod p). Krasnér [3]
showed that in this case Mn+1(t) and Mn+1(1/t) both vanish modulo p.

If t ≡ 1/2 (mod p) then, as x+y+z ≡ 0 (mod p), we get x ≡ y (mod p)
and hence y/(y+z) ≡ −1 (mod p). Replacing x by z, we get Nn+1(−1) ≡ 0
(mod p). By Lemma 3.4, p < Nn+1(−1) < W (n− 2).

If t 6≡ 1/2 (mod p) then by Lemma 3.2, t is the common root of Nn+1 and
N∗

n+1 modulo p and thus their resultant Sn+1 ≡ 0 (mod p). By Lemma 3.3,
p must divide one of the integers Nn+1(1), b, c and Nn+1(−1). By Lemma 3.4
once more p < W (n− 2).

Thus in every case p < W (n − 2). By Lemma 3.4, log p < n1398/617 or
n > (log p)617/1398. Using (9) we obtain log p < n2 log(n/e). Since the value
of the increasing function α2 log(α/e) at α = (2(log p)/ log log p)1/2 is less
than log p, we conclude that n ≥ (2(log p)/ log log p)1/2. Hence n ≥ V (p).

3.6. R e m a r k. It is known [5] that the set H = {x/y, y/x, x/z, z/x, y/z,
z/y}, considered modulo p, can have 2, 3 or 6 elements. The factorization
of the resultant conducted in Lemma 3.3 shows that the factor b (needing
the largest majorant) must correspond to the case when H has 6 elements.
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As reported in [2], [5], in this case (for n ≤ 44) by using other roots and
solving the simultaneous polynomial system of congruences [5], the possible
primes p come out to be much smaller than Ni(−1). If this could be proved
for all n then we would (by using the bound for Ni(−1) obtained in Lemma
3.4) have the following result.

3.7. Conjecture. If FLT1 fails for the prime p then Bp−1−n ≡ 0
(mod p) for 1 ≤ n ≤ (log p)/(log log p).
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Reçu par la Rédaction le 3.1.1992;
en version modifiée le 11.8.1993


