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ON CONVOLUTION OPERATORS WITH SMALL SUPPORT
WHICH ARE FAR FROM BEING CONVOLUTION

BY A BOUNDED MEASURE

BY

EDMOND E. GRAN IRER (VANCOUVER, BRITISH COLUMBIA)

TO MY UNCLE RUDOLF DONNERMANN,
A RIGHTEOUS GENTILE, WHO MADE THE DIFFERENCE

Let CVp(F ) be the left convolution operators on Lp(G) with support
included in F andMp(F ) denote those which are norm limits of convolution
by bounded measures in M(F ). Conditions on F are given which insure that
CVp(F ), CVp(F )/Mp(F ) and CVp(F )/W are as big as they can be, namely
have `∞ as a quotient, where the ergodic space W contains, and at times
is very big relative to Mp(F ). Other subspaces of CVp(F ) are considered.
These improve results of Cowling and Fournier, Price and Edwards, Lust-
Piquard, and others.

Introduction. Let G be a locally compact group with unit e, F ⊂ G
closed and CVp(F ) be the space of left convolution operators Φ on Lp(G),
1 < p < ∞, with suppΦ ⊂ F , equipped with operator norm (see sequel).
Let M(F ) denote the complex bounded Borel measures on F . If µ ∈M(G)
let λpµ ∈ CVp(G) = CVp be given by (λpµ)(f) = µ ∗ f for all f ∈ Lp(G).
DefineMp(F ) = norm clλp(M(F )) (where cl denotes closure). Let PM p(G)
be the ultraweak (u.w) closure in CVp(G) of λp(M(G)) (where u.w is the
topology on CVp(G) generated by the seminorms Φ→ |

∑∞
n=1(Φfn, gn)| with

fn ∈ Lp(G), gn ∈ Lp′(G) with
∑∞

n=1 ‖fn‖p‖gn‖p′ <∞, 1/p+ 1/p′ = 1). As
is well known (see Herz [Hz1, 2]), if G is amenable or p = 2, and in many
other cases, PM p(G) = CVp(G). PM p(G) is the dual of the Banach algebra
Ap(G) and (PM p(G), w∗) = (PM p(G), u.w) (see [Hz1]). If G is abelian and
p = 2 then A2(G) = F(L1(Ĝ)) = A(G) where F denotes Fourier transform.
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Throughout this paper we sometimes omit G and instead of CVp(G),
PM p(G), Ap(G), etc. write CVp, PM p, Ap, etc.

Define PM p(F ) = PM p(G) ∩ CVp(F ) and if P ⊂ CVp and x ∈ G let
Pc = norm cl{Φ ∈ P : suppΦ is compact}, σ(P ) = {x ∈ G : λpδx ∈ P},
EP (x) = norm cl{Φ ∈ P : x 6∈ suppΦ}, and WP (x) = Cλpδx + EP (x).

It so happens that Mp(F ) ⊂WPc(x) for any x ∈ σ(P ) if P ⊂ CVp is any
u.w-closed Ap-submodule with σ(P ) = F (P = CVp(F ) is such).

There are many results in the literature which express the fact that
for some closed subset F ⊂ G, CVp(F ) ∼ λp(M(F )) 6= ∅ (∼ denotes set-
theoretical difference), i.e. that there are convolution operators with sup-
port included in F which are not expressible as convolution by a bounded
measure.

An old result of M. Riesz expresses the fact that if T is the torus and
Φ0 ∈ PM p(T) = P is that element for which F∗Φ0 = 1Z+ , then Φ0 6∈
λp(M(T)). It can in fact be shown that if p = 2, then Φ0 6∈WP (1) (a fortiori
Φ0 6∈M2(T)), hence P/WP (1) 6= {0}.

Most of the results of this paper are concerned with such elements and in
fact with the question of when P/WP (x) is big, for example for P = CVp(F ),
and in fact as big as it can be. Since for second countable G, CVp(G) is a
subspace of `∞, a way to express the above is: For which closed F and for
which x ∈ F , if P = CVp(F ), does P/WP (x) have `∞ as a continuous linear
image (i.e. have `∞ as a quotient).

If F is too thin this cannot happen. In fact, if G is abelian and F is
compact and scattered (i.e. every closed subset has an isolated point) then
Loomis’s lemma [Lo] insures that P = CV2(F ) = WP (x) = M2(F ) for all
x ∈ F .

In improving theorems of B. Brainerd and R. E. Edwards [BE], Figà-
Talamanca and Gaudry [FG], J. F. Price [Pr], M. Cowling and J. Fournier
[CF] prove that for any infinite locally compact group G, if |1/q − 1/2| <
|1/p− 1/2|, there is some Φ ∈ CVq(G) such that Φ 6∈ CVp(G). Any such Φ
clearly cannot be in λq(M(G)).

If p = 2 then Ching Chou has proved for P = CV2(G) using C∗-algebraic
methods (which are not available if p 6= 2) that P/WP (e) has `∞ as a
quotient, and Pc/WPc(e) is not norm separable (see [Ch2], Thm. 3.3, Cor. 3.6
and also [Ch1]), if G is nondiscrete and second countable.

A particular case of Theorem 6 of this paper implies that if G is second
countable nondiscrete, P = PM p(G) and 1 < p < ∞, then for all x ∈
G, Pc/WPc(x) and P/WP (x) (a fortiori Pc/Mp(G)) have `∞ as a quotient,
improving results of [Gr2], p. 173.

The main contribution of this paper is, however , in controlling supports.
They seem to yield results which are new even for the torus T and the real
line R.
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Our main results improve substantially, in a sense, results of Edwards
and Price [EP] (for connections with existing results see Section II). They
imply, for second countable G, that if F is closed such that for some a, b ∈ G,
and nondiscrete closed subgroup H ⊂ G, intaHb(F ) 6= ∅ and P = CVp(F )
then Pc/WPc(x) (a fortiori Pc/Mp(F )) has `∞ as a quotient for all x ∈
intaHb(F ) (intH(F ) is the interior of F in H). Furthermore, the same is the
case if G contains the real line R (or T) and S ⊂ R is an ultrathin symmetric
set and xS ⊂ F , provided p = 2. Moreover, our main results completely
avoid considering whether F is a set of synthesis.

A combination of Theorems 6 and 12 yields

Theorem. Let G be second countable. Let P and Q be Ap-submodules
of PM p(G) such that P is w∗-closed , Q is normed closed and Pc ⊂ Q ⊂ P
and σ(P ) = F (P = PM p(F ) is such).

(a) If H ⊂ G is a nondiscrete closed subgroup, a, b ∈ G and x ∈
intaHb(F ), then Q/WQ(x) (a fortiori Qc/Mp(F ) and CVp(F )/Mp(F ) if such
a, b, x,H exist) has `∞ as a quotient and TIMQ(x) contains the big set F.

(b) If p = 2 and G contains R (or T) as a closed subgroup, S ⊂ R is an
ultrathin symmetric set and xS ⊂ F then Q/WQ(x) (a fortiori Q/M2(F ))
has `∞ as a quotient and TIMQ(x) contains the big set F.

Here TIMQ(x) = {ψ ∈ Q∗ : ψ(λpδx) = 1 = ‖ψ‖, ψ(EQ(x)) = 0}
(from topological invariant mean on Q at x, this being justified by Prop. 1
and Section 0). F ⊂ `∞∗ is the big set given by F = {η ∈ `∞∗ : 1 =
‖η‖ = η(1), η(c0) = 0} where c0 = {x = (xn) ∈ `∞ : limn→∞ xn = 0}
and 1 ∈ `∞ is the constant 1 sequence. We note that, as is well known,
F is a w∗-compact perfect subset of `∞∗ which is as big as it can be, i.e.
cardF = card `∞∗ = 2c, where c is the cardinality of the continuum.

R e m a r k. The onto operator t : Q/WQ(x) → `∞ constructed in this
theorem is such that the into w∗-w∗ and norm isomorphism t∗ satisfies
t∗(F) ⊂ TIMQ(x).

We note that the Cantor middle third set F is an ultrathin symmetric
set in R = G, thus for P = PM 2(F ), P/WP (0), and a fortiori P/M2(F ),
has `∞ as a quotient.

Yet, there exist perfect Helson S-sets F ⊂ Rn (or Tn) for n ≥ 1, which
are continuous curves if n ≥ 2 (or even smooth curves if n ≥ 3) by results
of J.-P. Kahane [Ka2]. And for such, if P = PM 2(F ) then P = WP (x) =
M2(F ) = λ2(M(F )) for all x ∈ F .

Could it be that, if F is a perfect Helson S-set, P = PM 2(F ) is not
big enough, hence P/M2(F ) cannot, by default, be big? Our Theorem I.1
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insures that this is not the case and this, for all G amenable as discrete, and
all 1 < p <∞. We have

Theorem I.1. Let G be amenable as a discrete group and P a w∗-closed
Ap-submodule of PM p(G). If σ(P ) = F contains some compact perfect
metrizable set then P and Pc have `∞ as a quotient and P does not have
the WRNP.

That PM 2(F ) does not have the RNP if F contains a compact perfect
set and G is arbitrary abelian is a known result (see F. Lust-Piquard [P2]
for much more). The fact that PM p(F ) does not have even the WRNP is
a new result, even for G abelian second countable and p = 2. Moreover,
Theorem 1 cannot be much improved since P = PM 2(T ) is isometric to `∞.
If F ⊂ T is a perfect Helson S-set then PM 2(F ) = M(F ) does not contain
`∞ (but only has `∞ as a quotient).

If F ⊂ G is closed let PM p∗(F ) = w∗-cl lin{λpδx : x ∈ F}, Cp(F ) =
Cp(G) ∩ PM p(F ), Cp∗(F ) = Cp(G) ∩ PM p∗(F ) where, following Dela-
porte [De2], let Cp(G) = {Φ ∈ CVp : ΦΦ′ ∈ PFp for Φ′ ∈ PFp} ⊂ PM p

where PFp = norm clλp(L1(G)). Furthermore, let PM pc(F ) = PM p(F ) ∩
(PM p(G))c and PM p∗c(G) = PM p∗(F ) ∩ (PM p(G))c.

Corollary A. Let G be second countable, F ⊂ G closed and Q be any
of the eight spaces (PM p∗(F ))c ⊂ PM p∗c(F ) ⊂ Cp∗(F ) ⊂ PM p∗(F ) or
(PM p(F ))c ⊂ PM pc(F ) ⊂ Cp(F ) ⊂ PM p(F ). If either (a) or (b) of the
main theorem hold for x and F then Q/WQ(x) has `∞ as a quotient and
TIMQ(x) contains F.

We next define, following Delaporte [De1] the β (strict) topology on
CVp(G) by Φα → Φ iff ‖(Φα − Φ)Φ′‖ → 0 for all Φ′ ∈ PFp and get

Corollary B. Let G be second countable, Q ⊂ Cp(G) a β-closed Ap-
submodule of PM p (Qβ(Φ) = β-cl(Ap · Φ) for Φ ∈ Cp(G) is such) and F =
σ(Q). If (a) or (b) of the main theorem hold then Q/WQ(x) and Qc/WQc(x)
(a fortiori Qc/Mp(F )) has `∞ as a quotient and TIMQ(x) contains F.

We further improve, in a sense, a result of R. E. Edwards and J. F. Price
about elements which belong to

⋂
q{PM q(F )∼ λq(M(F ))}.

In the end we show an easy method to construct sets F ⊂ G, for abelian
G, such that if P = PM 2(F ) then P/M2(F ) has `∞ as a quotient yet
P = WP (x) for many x. We further note that Theorems 6 or 12 imply that
the function algebra A′p(F ) = Ap/P0 is not Arens regular for certain sets F .

The reader who will go through the proof of our Theorem 1.1 of [Gr2],
which is used in Theorem 6, and that of Theorem 12 will note our indebt-
edness to H. Rosenthal’s fundamental `1 theorem (see [Ro]).

We have the following open questions:
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(a) Characterize closed sets in Rn (or Tn) for which PM p∗(F )/Mp(F )
or PM p(F )/Mp(F ) have `∞ as a quotient.

(b) A brilliant result of T. Körner [Ko] as improved by Saeki [S] shows
that every nondiscrete abelian G contains a compact Helson set F which
disobeys synthesis. If P = PM 2(F ), does P/WP (x) have `∞ as a quotient
for some x ∈ F?

(c) Do there exist perfect subsets F of R or T such that if P = PM p(F )
then P/Mp(F ) (or P/WP (x) for some x ∈ F ) is an infinite-dimensional
norm separable Banach space?

Many thanks are due F. Lust-Piquard for her kind advice on the editing
of this paper.

0. Definitions and notations

(a) Notations and remarks on locally compact groups. Throughout let
G be a locally compact group with identity e and fixed left Haar mea-
sure λ = dx and Lp(G), 1 ≤ p ≤ ∞, the usual complex-valued function
spaces (see Hewitt–Ross [HR], Vol. I) with norm ‖f‖p = (

∫
|f |p dx)1/p if

p < ∞ and ‖f‖∞ = ess sup |f(x)|. If F ⊂ G is closed let Cc(F ), C0(F ),
UC(F ), C(F ) denote the spaces of complex continuous functions on F :
with compact support, which tend to 0 at infinity, are bounded two-sided
uniformly continuous, are bounded, respectively (all equipped with ‖ ‖∞
norm). WAP(G) ⊂ C(G) denotes the weakly almost periodic functions on
G. If f ∈ C(G) then supp f = cl{x : f(x) 6= 0} where cl denotes closure (in
G in this case). C denotes the field of complex numbers.

If F is locally compact, M(F ) denotes the space of complex bounded
measures on F with variation norm [HR]. Thus M(F ) = C0(F )∗, where X∗

always denotes the dual of the normed space X. If F = G we sometimes
suppress G and write Cc, C0, C, Lp, etc. instead of Cc(G), C0(G), C(G),
Lp(G), etc.

If f, g are complex functions on G and µ ∈ M(G) let: f∨(x) = f(x−1),
f∼(x) = f(x−1), (f∗g)(x) =

∫
g(y−1x)f(y) dy, (µ∗f)(x) =

∫
f(y−1x) dµ(y)

whenever these make sense as in [HR]. If U ⊂ G, 1U (x) = 1 or 0 according
as x ∈ U or x 6∈ U , and λ(U) is the Haar measure of U . Further, let
(lxf)(y) = f(xy) and (rxf)(y) = f(yx) for x, y ∈ G.

If F,H ⊂ G then intH(F ) denotes the interior of F in H. Thus x ∈
intH(F ) iff x ∈ U ∩H ⊂ F for some open set U in G. Set G ∼ U = {x ∈
G : x 6∈ U}.

We follow all other notations on groups and convolutions from Hewitt–
Ross [HR].

(b) Notations and remarks on Ap, PM p, CVp. We generally follow Herz
[Hz1, 2] for notations on Ap, PM p, CVp except when otherwise stated. For
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the reader’s benefit and in the interest of clarity we state below some defi-
nitions and results, some of which are stated in [Hz1, 2] in slightly different
form than needed here.

Ap(G): For 1 < p < ∞, let Ap = Ap(G) be, as in [Hz1], the Banach
algebra of functions f on G which can be represented as f =

∑∞
n=1 un ∗ vn

where un ∈ Lp′(G) and vn ∈ Lp(G), with
∑∞

n=1 ‖un‖p′‖vn‖p < ∞, 1/p +
1/p′ = 1, with norm ‖f‖Ap being the infimum of the last sum over all
representations of f .

Sp
A(x): If x ∈ G define Sp

A(x) = {v ∈ Ap : v(x) = ‖v‖ = 1} and
Sp

A(e) = Sp
A (the set of “states” of Ap) where ‖v‖ stands for ‖v‖Ap or other

norms, obvious from the context.
If E ⊂ G is closed set IE = {v ∈ Ap : v = 0 on E} and JE = {v ∈

Ap ∩ Cc(G) : E ∩ supp v = ∅}. If J ⊂ Ap is any closed ideal whose zero set
is Z(J) = {x ∈ G : u(x) = 0 for all u ∈ J} = E then JE ⊂ J ⊂ IE (see
[Hz1]).

CVp(G) (denoted by CONV p(G) in [Hz1]) is the algebra of bounded
convolution operators Φ on Lp(G) with operator norm. Thus if Φ ∈ CVp

then Φ(f ∗ v) = (Φf) ∗ v for all f ∈ Lp and v ∈ Cc(G). If PM p(G) = u.w-
clλp(M(G)) then Ap(G)∗ = PM p(G) and (PM p, u.w) = (PM p, w

∗) (i.e. the
u.w-topology restricted to PM p coincides with the w∗-topology, see [Hz1],
p. 116, Pier [Pi], p. 94, Prop. 10.3). Furthermore, both PM p and CVp are
Ap-modules (see [Hz1] and Derighetti [Der], pp. 8–9) and if Φ ∈ PM p and
u, v ∈ Ap then (u · Φ, v) = (Φ, uv). If G is amenable or p = 2, and in many
other cases, PM p(G) = CVp(G).

If µ ∈ M(G) then λpµ ∈ PM p is given by (λpµ)(f) = µ ∗ f for f ∈ Lp.
We will omit p at times, and write λ(µ). If x ∈ G, then δx ∈ M(G) is the
point mass at x and we write δx instead of λpδx at times.

If Φ ∈ CVp(G), define the support of Φ ([Hz1], p. 116), suppΦ, by:
If u ∈ Lp then x 6∈ suppu iff there is a neighborhood V of x such that∫
uv dx = 0 for all v ∈ Cc with supp v ⊂ V . Define suppΦ by: x 6∈ suppΦ

iff there is a neighborhood U of e such that x 6∈ suppΦ(u) for all u ∈ Cc

with suppu ⊂ U .
It is shown in [Hz1], p. 120, that for µ ∈ M(G), suppλpµ = suppµ (as

a measure) and (λpµ, v) =
∫
v dµ for v ∈ Ap. Moreover, if v ∈ Ap and

Φ ∈ CVp then suppu · Φ ⊂ suppu ∩ suppΦ ([Hz1], p. 118).
Let P ⊂ CVp(G). Define

σ(P ) = {x : λpδx ∈ P}, Pc = ncl{Φ ∈ P : suppΦ is compact}

and PM pc = PM pc(G) = (PM p(G))c, where ncl denotes norm closure.
Clearly σ(P ) = σ(P ∩ PM p). Furthermore, let

EP (x) = ncl{Φ ∈ P : x 6∈ suppΦ}, WP (x) = Cλpδx + EP (x).
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(EP (x) is sometimes called the null-ergodic space of P at x.) Note that
Pc ⊂ PM p(G) always holds. Indeed, if Φ ∈ CVp has compact support then
by [Hz1], p. 117, Φ is the ultrastrong (hence u.w) closure of {λp(w) : w ∈
Cc(G), ‖λp(w)‖ ≤ ‖Φ‖} and PM p is u.w-closed in CVp.

For closed F ⊂ G, define

CVp(F ) = {Φ ∈ CVp : suppΦ ⊂ F},
PM p(F ) = {Φ ∈ PM p : suppΦ ⊂ F},

PM p∗(F ) = w∗-cl lin{λpδx : x ∈ F},
Mp(F ) = ncl{λpµ : µ ∈M(F )}.

If P ⊂ CVp(G) is an Ap-submodule and x ∈ σ(P ) let

TIMP (x) = {ψ ∈ P ∗ : ψ(λpδx) = 1 = ‖ψ‖,
ψ(u · Φ) = ψ(Φ) for all Φ ∈ P , u ∈ Sp

A(x)}
and TIMP (e) = TIMP . (TIM from topologically invariant mean.) If p = 2
and G is abelian and P = PM 2(G) with F∗P = L∞(Ĝ), where F denotes
Fourier transform, then

TIMP (a) = F∗∗
{
ψ ∈ L∞(Ĝ)∗ : ψ(h) = ψ((af) ∗ h),

for all 0 ≤ f ∈ L1(Ĝ) with
∫
f dx = 1, and h ∈ L∞(Ĝ)

}
.

We stress that we usually omit G and write PM p, PM pc, CVp, etc.
instead of PM p(G), PM pc(G), CVp(G), etc.

(c) Some remarks on Banach spaces. Let `∞ be the space of complex
bounded sequences x = (xn) with ‖x‖ = sup |xn|. Define by c (resp. c0):
{x = (xn) ∈ `∞ : limn xn exists (resp. limn xn = 0)} ⊂ `∞.

Let F = {F ∈ `∞∗ : F (1) = 1 = ‖F‖, F = 0 on c0}.
Note that F is as “big” as it can be, since βN ∼ N ⊂ F and cardF =

2card R = card `∞∗, where R denotes the real line. F is a convex w∗-compact
perfect subset of (`∞∗, w∗).

Note that if G is second countable then CVp(G) is isometric to a subspace
of `∞ (if {fn} and {gn} are norm dense sequences in the unit ball of Lp(G)
and Lp′(G) respectively, then, for Φ ∈ CVp, let (tΦ)(n,m) = (Φfn, gm) ∈
`∞(N× N) ⊂ `∞).

Hence the assertion “P/WP (x) and P/Mp(F ) have `∞ as a quotient”
means, since P ⊂ `∞, that these spaces are as big (and as complex) as they
can be. If Y is any norm separable Banach space, or any dual of such, then
since Y ⊂ `∞, there is some subspace X ⊂ P/WP (x) which has Y as a
quotient.

We follow Rudin [Ru2] in notations for normed spaces. If X is a Banach
space and K ⊂ X∗ we say the K contains F if there is an onto linear
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bounded map t : X → `∞ such that t∗ : `∞∗ → X∗, which is easily seen
to be a w∗-w∗-continuous norm isomorphism into (see sequel), satisfies in
addition t∗(F) ⊂ K.

Let X,Y be Banach spaces, t : X → Y a bounded linear map (an
operator for short). t is an isomorphism (into or onto) if for some a, b > 0,
a‖x‖ ≤ ‖tx‖ ≤ b‖x‖ for all x ∈ X. If t : X → Y is an onto operator then
X/t−1(0) ≈ Y (are isomorphic Banach spaces). Furthermore, if Y0 ⊂ Y is
a closed subspace then X/t−1(Y0) ≈ Y/Y0, since if s : Y → Y/Y0 is the
canonical map then (st)−1(0) = t−1(Y0).

Hence if t : X → `∞ is an onto operator then X has the quotient
X/t−1(0) isomorphic to `∞, and conversely. In this case for any closed
subspace W ⊂ t−1(0), X/W has X/t−1(0) ≈ `∞ as a quotient (X/W is
always equipped with the quotient norm).

If X ⊂ Y are Banach spaces and X has `∞ as a quotient so does Y ,
since any operator t : X → `∞ admits an extension operator t1 : Y → `∞

by the injectivity of `∞ (see [LT]).
If X is a Banach space and K ⊂ X∗ then w∗-seq clK = {y∗ ∈ X∗ : y∗ =

w∗- limx∗n for some sequence {x∗n} ⊂ K}. (y∗ = w∗- limn x
∗
n iff y∗(x) =

limn x
∗
n(x) for all x ∈ X.) This is the w∗-sequential closure of K in X∗.

If B ⊂ X then nclB is the norm closure of B in X; if B ⊂ X∗ then
w∗-clB is the w∗-closure of B in X∗. linB is the linear span of B.

I. When P has `∞ as a quotient. Let P ⊂ PM p(G) be a w∗-closed
Ap-module with σ(P ) = F . If F contains some compact perfect set then P
cannot be norm separable since ‖λpδx − λpδy‖ ≥ 1 if x, y ∈ F and x 6= y.
If G is second countable then P is the dual of the (norm) separable space
Ap/J (where J = (P )0). By Stegall’s theorem ([DU], p. 195), P does not
have the RNP.

The dual X∗ of a Banach space X has the weak RNP (WRNP) iff X
does not contain an isomorph of `1. R. C. James has constructed separable
Banach spaces X which do not contain `1 and such that X∗ is not norm
separable, i.e. X∗ has the WRNP but not the RNP ([DU], p. 214).

We will prove that if Gd (i.e. G with discrete topology) is amenable
and F contains a compact perfect metrizable set then P cannot be a James
space, in fact P cannot have the WRNP, thus has `∞ as a quotient. This
result, which is new even if p = 2 and G is abelian, cannot be much improved
since PM 2(T) is isometric to `∞.

We use in the proof a beautiful result of E. Saab [Sa] which states that
the dual space X∗ has the WRNP iff for every w∗-compact set M ∈ X∗,
the restriction of any x∗∗ ∈ X∗∗ to (M,w∗) has a point of continuity.

Theorem 1. Let G be amenable as a discrete, locally compact group. Let
P be a w∗-closed Ap-submodule of PM p(G). If σ(P ) contains some compact
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perfect metrizable set then P does not have the WRNP , and both Pc and P
have `∞ as a quotient.

P r o o f. Let K ⊂ σ(P ) be perfect, metrizable and compact and let
the countable set S1 ⊂ K be dense in K. Let H be the group generated
(algebraically) by S1. Then 1H is a positive definite function on Gd (which
is amenable). Hence the linear functional F defined on the dense subspace
{
∑n

i=1 αiλδxi : αi ∈ C, xi ∈ G, n ≥ 1} of PF2(Gd) (with PM 2(Gd)
norm) by (F,

∑
i αiλδxi) =

∑
i αi1H(xi) is continuous and in fact ‖F‖ =

‖1H‖Bλ(Gd) = 1. Thus∣∣∣(F, n∑
i=1

αiλδxi

)∣∣∣ ≤ ∥∥∥ n∑
i=1

αiλδxi

∥∥∥
PF2(Gd)

for all αi ∈ C, xi ∈ G, n ≥ 1. It is, however, well known (see for example
[DR2], pp. 437–438) that∥∥∥ n∑

i=1

αiλδxi

∥∥∥
PF2(Gd)

≤
∥∥∥ n∑

i=1

αiλδxi

∥∥∥
PF2(G)

.

But Herz’s main theorem [Hz3] shows that the embedding PM p ⊂ PM 2 is
a contraction if G is amenable. It follows that∣∣∣(F, n∑

i=1

αiλδxi

)∣∣∣ =
∣∣∣ n∑

i=1

αi1H(xi)
∣∣∣ ≤ ∥∥∥ n∑

i=1

αiλδxi

∥∥∥
PMp(G)

.

Thus F can be extended as a continuous linear functional F0 on P . Consider
now F0 restricted to the w∗-compact set KP = {λδx : x ∈ K}, a subset
of the unit ball of P . (Recall that x → λpδx from G to (PM p, w

∗) is
bicontinuous and one-to-one.) Then, if S = H ∩K, for each x ∈ K we have
(F0, λδx) = (F, λδx) = 1S(x). The set S is a countable dense subset of K,
since S1 ⊂ S. And by the known remark that follows this proof, K ∼ S is
also dense in K. Hence 1S , as a function on K, has no point of continuity .
Consequently, the functional F0 restricted to the w∗-compact set (KP , w∗)
has no point of w∗-continuity. By Theorem 1 of E. Saab [Sa] the Banach
space P does not have the WRNP. (Since P is w∗-closed, it is the dual of
the Banach space Ap(G)/J where J = {v ∈ Ap : (Φ, v) = 0 for all Φ ∈ P}.)
Hence by a well known theorem of H. Rosenthal, Ap/J contains a subspace
L isomorphic to `1 ([Ro], p. 808). Thus L∗ is isomorphic to `∞. Let now
t : P → L∗ be the restriction map (tΦ, x) = (Φ, x) for all x ∈ L. Then t
is an onto continuous linear map. Clearly PM p∗(K) ⊂ Pc, and PM p∗(K)
(hence by injectivity Pc) has `∞ as a quotient.

R e m a r k s. 1. If K is locally compact with no isolated points and
S ⊂ K is countable then K ∼ S = S1 is dense in K. If not, K ∼ clS1 6= ∅ is
open and K ∼ clS1 ⊂ K ∼ S1 = S. Thus K ∼ clS1 is countable and locally
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compact. By Baire’s theorem there is some x0 ∈ K ∼ clS1 which is open in
K ∼ clS1, hence in K. But K has no isolated points.

2. It can be shown that if G is not metrizable and σ(P ) contains any
nonvoid Baire set in G (as in [HR], (11.1)) and Gd is amenable then P does
not have the WRNP.

3. (a) If F ⊂ G is a perfect Helson S-set then PM 2(F ) does not contain
an isomorph of `∞, since M(F ) and all its closed subspaces are (while `∞

is not) weakly sequentially complete. Yet PM 2(F ) has `∞ as a quotient.
PM 2(F ) is not, though, a quotient of `∞ since by H. Rosenthal’s theorem
([DU], p. 156), PM 2(F ) would be reflexive, hence by a theorem of Glicksberg
F would be finite.

(b) If F ⊂ R is an ultrathin symetric set (see Thm. 12) then c0 ⊂
PM 2(F ) by Y. Meyer’s theorem (see [P3], p. 201) hence `∞ ⊂ PM 2(F ) (see
[DU], p. 23).

II. When P/WP (x) has `∞ as a quotient

(a) The case that 1 < p < ∞. The main result of this section is Theo-
rem 6. We need in its proof some properties of norm closed Ap-submodules
P of CVp = CVp(G) (or of PM p = PM p(G)) and of the null-ergodic sub-
spaces of P at x, EP (x).

Proposition 1. Let P be a norm closed Ap-submodule of CVp(G) and
a ∈ G. Let S ⊂ Sp

A(a) have the property that for any neighborhood V of a
there is some v ∈ S such that supp v ⊂ V . Then EP (a) = ncl{Φ − u · Φ :
u ∈ Sp

A(a), Φ ∈ P} = ncl{Φ − u · Φ : u ∈ S, Φ ∈ P}. Consequently ,
TIMP (a) = {ψ ∈ P ∗ : ψ(δa) = 1 = ‖ψ‖, ψ(EP (a)) = 0}.

R e m a r k. If G is amenable then S = S2
A(a) ⊂ Sp

A(a) satisfies the above
condition.

P r o o f o f P r o p o s i t i o n 1. If Φ ∈ P and a 6∈ suppΦ let v ∈ S be
such that suppΦ ∩ supp v = ∅. Then by [Hz1], Prop. 10, p. 118, supp v · Φ
= ∅. But v · Φ ∈ PM p. Thus v · Φ = 0 by [Hz1], p. 101, and Φ = Φ− v · Φ.
Thus EP (a) ⊂ ncl{Φ− u · Φ : u ∈ S, Φ ∈ P}.

Let now Φ ∈ P and u ∈ Sp
A(a). Let v ∈ Ap ∩Cc be such that v = 1 on a

neighborhood V of a. Then for any w ∈ Ap with suppw ⊂ V one has

((Φ− u · Φ)− v · (Φ− u · Φ), w) = (Φ− u · Φ,w − vw) = 0

since v = 1 on supp w. It follows by [Hz1], p. 101, that a 6∈ supp[Φ−u ·Φ−
v · (Φ− u ·Φ)]. Thus if we show that (v− uv) ·Φ ∈ EP (a) it will follow that
Φ−u·Φ ∈ EP (a). Now (v−uv)(a) = 0 and v−uv ∈ Ap. Since points are sets
of synthesis ([Hz1], pp. 91–92), there is a sequence vn ∈ Ap ∩ Cc such that
vn = 0 on a neighborhood Vn of a and such that ‖vn − (v − uv)‖ → 0. But
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then a 6∈ vn ·Φ ([Hz1], p. 118), vn ·Φ ∈ EP (a), and ‖vn ·Φ−(v−uv) ·Φ‖ → 0,
since CVp is an Ap-module. Thus (v − uv) · Φ ∈ EP (a).

Proposition 2. Let P be a norm closed Ap-submodule of CVp. Then
EPc(a) = ncl{Φ ∈ P : a 6∈ suppΦ, suppΦ is compact}.

P r o o f. By definition EPc(a) = ncl{Φ ∈ Pc : a 6∈ suppΦ}. It is thus
enough to show that any Φ0 ∈ Pc such that a 6∈ suppΦ0 can be approximated
in norm by elements Φ ∈ P with compact support such that a 6∈ suppΦ.

Since Φ0 ∈ Pc, there are Φn ∈ Pc with compact support such that
‖Φn − Φ‖ → 0. Let v0 ∈ Ap ∩Cc satisfy v0 = 1 on a neighborhood of a and
supp v0 ∩ suppΦ0 = 0. Thus supp v0 · Φ0 = ∅ ([Hz1], p. 118) and v0 · Φ0 ∈
PM p. Thus v0 · Φ0 = 0.

Let now vn ∈ Ap∩Cc be such that vn = 1 on a neighborhood of suppΦn∪
supp v0. Then vn·Φn = Φn and (vn−v0)·Φn = Φn−v0·Φn → Φ0−v0·Φ0 = Φ0,
in norm. But a 6∈ supp(vn − v0), hence a 6∈ supp(vn − v0) · Φn.

Proposition 3. Let P ,Q be Ap-submodules of PM p(G) such that P is
w∗-closed , Q is norm closed and Pc ⊂ Q ⊂ P . Let F = σ(P ). Then for any
a ∈ F , Mp(F ) ⊂ Cλδa ⊕ EQ(a), and the sum is direct.

P r o o f. It is enough to prove that for any probability measure µ ∈
M(F ), λν = λ(µ− µ{a}δa) belongs to EPc(a) ⊂ EQ(a) (we write λ instead
of λp). Let ε > 0. There is by regularity a compact K ⊂ F ∼ {a} such that
‖ν−νK‖M(F ) < ε where νK(B) = ν(K∩B) for all Borel subsets B ⊂ G. But
then ‖λ(ν − νK)‖PMp

≤ ‖ν − νK‖M(F ) < ε. Since supp λνK = supp νK (as
a measure), a 6∈ suppλνK . It is hence enough to show that λνK ∈ P . It will
then follow, since supp λνK is compact, that λνK ∈ Pc, hence λνK ∈ EPc(a).

Let ν0 = ν(K)−1νK . There is a net να of convex combinations of {δx :
x ∈ K} ⊂ P such that

∫
v dνα →

∫
v dν0 for all v ∈ C0(G), a fortiori for

v ∈ Ap. Thus λνα → λν0 in (PM p, w
∗). Thus λν0 ∈ P since P is w∗-closed

and λνK ∈ P .
To show that Cλδa⊕EQ(a) is a direct sum let Vα be a base of neighbor-

hoods at a and vα ∈ Ap be such that supp vα ⊂ Vα and ‖vα‖ = 1 = vα(a).
Then ‖vα · Φ‖ → 0 for any Φ ∈ P such that a 6∈ suppΦ, hence for any
Φ ∈ EP (a), and a fortiori for any Φ ∈ EQ(a). Yet vα · λδa = λδa.

R e m a r k. It follows that Cλδa⊕EQ(a) is a norm closed subspace of Q.

The crux of the proof of the main Theorem 6 is in fact included in the
proof of the next:

Theorem 4. Let G be a second countable locally compact group. Let P ,
Q be Ap-submodules of PM p(G) such that P is w∗-closed , Q is norm closed ,
and Pc ⊂ Q ⊂ P . Let SP and SQ be separable linear subspaces of P and
Q respectively , and define WP = ncl(EP + SP ), WQ = ncl(EQ + SQ) and
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F = σ(P ). If e ∈ intH(F ) for some closed nondiscrete subgroup H ⊂ G,
then P/WP and Q/WQ have `∞ as a quotient and both TIMP and TIMQ
contain F.

R e m a r k. The main part of Theorem 4 is the Q/WQ part. To prove it
we need first to prove the P/WP part and using this, we show that Q/WQ
has `∞ as a quotient.

P r o o f o f T h e o r e m 4. Let

J = (P )0 = {v ∈ Ap : (v, Φ) = 0 for all Φ ∈ P}.
Then by duality P = (Ap/J)∗ and J is a closed ideal whose zero set is
F = σ(P ). (Thus JF ⊂ J ⊂ IF , see [Hz1], p. 101.)

If v ∈ Ap set v′ = v+J ∈ Ap/J with quotient norm ‖v′‖ = inf{‖v−u‖ :
u ∈ J}. If Φ ∈ P then (Φ, v′) = (Φ, v) is well defined and |(Φ, v′)| ≤ ‖Φ‖‖v′‖.
Let v ∈ Sp

A = {v ∈ Ap : 1 = ‖v‖ = v(e)}. Then for any u ∈ J , since e ∈ F ,
1 = v(e) + u(e) ≤ ‖v − u‖.

Thus 1− v(e)≤ inf{‖v− u‖ :u∈J}=‖v′‖≤‖v‖=1 and v′(e)= 1= ‖v′‖,
where we define for x∈F , v′(x)= (λδx, v′)= v(x). (For x ∈ F , w′ → w′(x)
is a multiplicative linear functional on the Banach algebra Ap/J .)

Since Sp
A is a convex set, it follows from the above that (Sp

A)′ = {v′ : v ∈
Sp

A} is a convex subset of the unit sphere of Ap/J .
Since P ⊂ PM p(G) and also P = (Ap/J)∗, both algebras Ap and Ap/J

(which is a function algebra on F ) act on P , namely:

(v′, Φ, w′) = (Φ, v′w′) = (Φ, vw) = (v · Φ,w) for v, w ∈ Ap and Φ ∈ P ,
the last two expressions being independent of which representatives v, w of
v′, w′ (resp.) we chose, since Φ ∈ P . Thus v′ · Φ = v · Φ as elements of
(Ap/J)∗, which is identified with P ⊂ PM p, and ‖v′ · Φ‖ ≤ ‖v′‖‖Φ‖.

By our Theorem 5 on p. 123 and the remark on p. 122, both of [Gr1],
there is some ψ0 ∈ w∗-clSp

A ⊂ PM ∗
p such that 1 = (ψ0, λδe) = ‖ψ0‖ and

(ψ0, u · Φ) = (ψ0, Φ) for all u ∈ Sp
A and Φ ∈ PM p (we consider Ap ⊂ PM ∗

p).
The restriction ψ1

0 of ψ0 to P will satisfy, since λδe ∈ P and ‖ψ1
0‖ ≤ 1,

that 1 = (ψ1
0 , λδe) = ‖ψ1

0‖ and (ψ1
0 , u · Φ) = (ψ0, u

′ · Φ) = (ψ1
0 , Φ) for all

u ∈ Sp
A (i.e. u′ ∈ (Sp

A)′) and Φ ∈ P . Now, considering (Sp
A)′ ⊂ P ∗, we have

ψ1
0 ∈ w∗-cl(S

p
A)′ ⊂ P ∗. In fact, if vα ∈ Sp

A are such that (Φ, vα)→ (ψ0, Φ) for
all Φ ∈ PM p, then for Φ ∈ P and uα ∈ J , we have (Φ, v′α) = (Φ, vα + uα) =
(Φ, vα)→ (ψ0, Φ) = (ψ1

0 , Φ).
Considering (Sp

A)′ ⊂ P ∗ define A = {ψ ∈ w∗- cl(Sp
A)′ : u′ · ψ = ψ for all

u′ ∈ (Sp
A)′} ⊂ P ∗ where (u′ · ψ,Φ) = (ψ, u′ · Φ) for Φ ∈ P , u′ ∈ Ap/J and

ψ ∈ P ∗.
Clearly A 6= ∅ since ψ1

0 ∈ A. Now G is second countable, hence Ap

(a fortiori Ap/J) is norm separable (since Lp(G) is such). Thus Sp
A and

a fortiori (Sp
A)′ is norm separable. We stress that we only need the norm
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separability of (Sp
A)′ in Ap/J , and not the fact that G is second countable,

in the proof.
Let hence an ∈ Sp

A be such that {a′n} is dense in (Sp
A)′. If u′ ∈ (Sp

A)′

and ‖a′nk
− u′‖ → 0 then ‖(a′nk

− u′) · Φ‖ → 0 for any Φ ∈ P . Hence if
ψ ∈ P ∗ and a′n · ψ = ψ for all n then u′ · ψ = ψ for all u′ ∈ (Sp

A)′. This
shows that A = {ψ ∈ w∗-cl(Sp

A)′ : a′n · ψ = ψ for all n} = {ψ ∈ w∗-cl(Sp
A)′ :

S∗∗n (ψ) = 0 for all n} where Sn : Ap/J → Ap/J are the operators defined
by Sn(v′) = a′nv

′ − v′.
We will need in the proof the following which we state as “Claim 5” for

further use:

Claim 5. Under the above assumptions, A ∩ w∗-seq cl(Sp
A)′ = 0.

P r o o f. Assume that ψ1 ∈ A is such that for some sequence vn ∈ Sp
A,

we have (v′n, Φ) → (ψ1, Φ) for all Φ ∈ P . Let r : Ap(G) → Ap(H) be the
restriction map (rv)(x) = v(x) for all x ∈ H. Then by Herz [Hz1], p. 92,
Theorems 1a and 1b, r is onto, ‖r‖ ≤ 1 and r∗ : Ap(H)∗ → PM p(H) is an
into isometric inclusion (where PM p(H) = {Φ ∈ PM p(G) : suppΦ ⊂ H};
see [Hz1], Theorem A, p. 91, and note that H need not be a set of synthesis).

Let V0, U be open in G such that clV0 is compact, H ∩ clV0 ⊂ F ,
U = U−1 and e ∈ U ⊂ U3 ⊂ V0. Let v0 = λ(U)−11U ∗ 1U ∈ Ap(G). Then
v0(e) = 1 = ‖v0‖, v0 = 0 off U2, thus supp v0 ⊂ clU2 ⊂ U3 ⊂ V0 and
v0 ∈ Sp

A.
We claim that the sequence r(v0vn) is a weak Cauchy sequence in the

Banach space Ap(H). Let in fact T ∈ Ap(H)∗ and w ∈ J . Then (v0 ·
r∗T,w) = (T, r(v0w)) = (T, 0) = 0, since w = 0 on F and supp r(v0w) =
supp(rv0)(rw) ⊂ V0 ∩H ⊂ F . Thus r(v0w)(x) = 0 for all x ∈ H.

But then v0 · r∗T ∈ J0 = {Φ ∈ PM p(G) : (Φ, v) = 0 for all v ∈ J}.
However, J = (P )0 and J0 = ((P )0)0 = P since P is w∗-closed. Hence
v0 · r∗T ∈ P for any T ∈ Ap(H)∗. It follows that for any such T ,

(T, r(v0vn)) = (v0 · r∗T, vn) = (v0 · r∗T, v′n)→ (ψ1, v0 · r∗T ).

Hence r(v0vn) is a weak Cauchy sequence in the closed subspace of Ap(H)
given by Ap

K(H) = ncl{v ∈ Ap(H) : supp v ⊂ K} where K = H ∩ clV0 is
compact.

But Ap
K(H) is weakly sequentially complete by a joint result of ours

and M. Cowling ([Gr1], p. 131, Lemma 18) (proved by F. Lust-Piquard
for compact groups H and K = H, [P1], p. 265, Theorem 4). It follows
that there is some u0 ∈ Ap

K(H) ⊂ Ap(H) such that for all T ∈ Ap(H)∗,
(T, u0)← (T, r(v0vn)) = (v0 · r∗T, vn)→ (ψ1, v0 · r∗T ). Thus

(∗) (T, u0) = (ψ1, v0 · r∗T ) for all T ∈ Ap(H)∗.

But if in addition r∗T ∈ P then, since v0 ∈ Sp
A and ψ1 ∈ A, (ψ1, v0 ·

r∗T ) = (ψ1, v
′
0 · r∗T ) = (ψ1, r

∗T ).
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Let now a ∈ F ∩H and T = δa ∈ Ap(H)∗ (a slight abuse of notation).
If v ∈ Ap(G) then (r∗δa, v) = (δa, rv) = v(a). Thus, r∗δa = λδa ∈ P , since
a ∈ F = σ(P ). Hence by (∗),

(∗∗) (ψ1, r
∗δa) = (ψ1, v0 · r∗δa) = (λδa, u0) = u0(a) if a ∈ F ∩H.

Thus u0(e) = (ψ1, v0 · r∗δe) = lim(δe, r(v0vn)) = 1 since v0vn ∈ Sp
A.

But if a 6= e and a ∈ F ∩ H, there is some w ∈ Sp
A such that a 6∈ suppw.

Thus w · r∗δa = 0, by pairing with any v ∈ Ap(G). Hence by (∗∗), 0 =
(ψ1, w · r∗δa) = (ψ1, r

∗δa) = u0(a). It follows that u0 is not a continuous
function, since H is not discrete by assumption. Yet u0 ∈ Ap(H) ⊂ C0(H),
which is a contradiction. This proves Claim 5.

Continuing the proof of Theorem 4 we first show that P/WP has `∞ as
a quotient. Let {Φn} be a dense sequence in SP . Clearly ψ1

0 ∈ A = {ψ ∈
w∗-cl (Sp

A)′ : S∗∗n ψ = 0 for all n} where Sn(v′) = a′nv
′ − v′ if v′ ∈ Ap/J .

Let βn = (ψ1
0 , Φn) and A0 = {ψ ∈ A : (ψ,Φn) = βn for all n}. Then

ψ1
0 ∈ A0. Thus A0 6= ∅ and A0∩w∗-seq cl(Sp

A)′ = ∅, since A0 ⊂ A. Clearly
A0 ⊂ w∗-cl(Sp

A)′.
We apply now our Theorem 1.4 of [Gr2], p. 158 (see introduction), to

conclude that there exists an onto operator t : P → `∞ such that if S =
ncl lin{

⋃∞
n=1 S

∗
nP} then t(S + SP ) ⊂ c = {a = (an) ∈ `∞ : lim an exists}

and t∗ : `∞∗ → P ∗ is a w∗-w∗-continuous norm isomorphism into such that
t∗(F) ⊂ A0. The operator t : P → `∞ is given by (tΦ)(n) = (Φ, un) where
{u′n} ⊂ (Sp

A)′ is a particular sequence, which is isomorphic to a canonical `1

basis. If X0 = ncl lin{u′n} in Ap/J then X0 is isomorphic to `1 and t = i∗,
where i : X0 → Ap/J is the embedding map.

Note that S∗nΦ = a′n ·Φ−Φ for Φ ∈ P and if u ∈ Sp
A and ‖a′ni

− u′‖ → 0
then ‖(u′ ·Φ−Φ)− (a′ni

·Φ−Φ)‖ → 0. Hence S = ncl lin{u′ ·Φ−Φ : u ∈ Sp
A,

Φ ∈ P}. But as was seen above, u·Φ = u′ ·Φ if Φ ∈ P = (Ap/J)∗ and u ∈ Sp
A.

Applying now Proposition 1 we see that S = EP , hence t(EP +SP ) ⊂ c, i.e.
EP + SP ⊂ t−1(c).

Thus WP = ncl(EP + SP ) has the property that P/WP has P/t−1(c) ≈
`∞/c (norm isomorphism) as a quotient (see Section 0). But as is well
known, `∞/c contains an isometric copy Y of `∞ (by folklore, or see [Gr2],
p. 161). The identity map i0 : Y → Y has (since `∞ is injective, [DU],
p. 155) a linear bounded extension i1 : `∞/c → Y . Hence P/t−1(c), and a
fortiori P/WP , has `∞ as a quotient.

We now prove the Q/WQ case. Since SQ ⊂ Q ⊂ P we will choose
in the above proof SQ = SP and let {Φn} ⊂ SQ be dense in SQ. Let
t : P → `∞ be the onto operator constructed above such that t(EP+SQ) ⊂ c,
t∗ : `∞∗ → P satisfies t∗(F) ⊂ A0 and P/t−1(c) ≈ `∞/c is isomorphic. Let
Π : `∞ → `∞/c be the canonical map. Then for any u ∈ Sp

A and Φ ∈ P ,



CONVOLUTION OPERATORS 47

Πt(u · Φ − Φ) = 0, thus Πt(u · Φ) = ΠtΦ. Now u · Φ ∈ Pc ⊂ Q since
Ap ∩ Cc(G) is dense in Ap(G). It follows that Πt(Q) = Πt(P ) = `∞/c.

Let now % be the map Πt restricted to Q. Since EQ ⊂ EP we have
%(EQ) ⊂ Πt(EP ) = {0}. Also, since SQ ⊂ Q, %(SQ) = {0}. Hence EQ +
SQ ⊂ %−1(0), and WQ ⊂ %−1(0). But %(Q) = `∞/c, hence Q/%−1(0) ≈
`∞/c. But, as above, `∞/c contains a copy of `∞ and thus has `∞ as a quo-
tient. It follows that Q/WQ has Q/%−1(0), and a fortiori `∞, as a quotient.

Define now i : Q → P as the inclusion map, iΦ = Φ. Clearly %(Φ) =
Πti(Φ) if Φ ∈ Q. Let TIP = {ψ ∈ P ∗ : u · ψ = ψ for all u ∈ Sp

A} (TI for
topologically invariant), and let TIQ be defined similarly.

We claim that i∗ restricted to TIP is a w∗-w∗-continuous isometry such
that i∗(TIP ) ⊂ TIQ and i∗(TIMP ) ⊂ TIMQ. To show this let ψ ∈ TIP and
Φ0 ∈ P , ‖Φ0‖ = 1, such that (ψ,Φ0) ≥ ‖ψ‖ − ε. Let u ∈ Sp

A ∩ Cc(G). Then
u ·Φ0 ∈ Pc ⊂ Q, ‖u ·Φ0‖ ≤ ‖Φ0‖ = 1 and (i∗ψ, u ·Φ0) = (ψ, u ·Φ0) = (ψ,Φ0).
But ‖i∗‖ ≤ 1. Thus ‖i∗ψ‖ = ‖ψ‖ if ψ ∈ TIP . Let now ψ ∈ TIP , u ∈ Sp

A

and Φ ∈ Q. Then (i∗ψ, u · Φ) = (ψ, u · Φ) = (ψ,Φ) = (ψ, iΦ) = (i∗ψ,Φ), and
i∗(TIP ) ⊂ TIQ.

If now ψ ∈ TIMP , then (ψ, δe) = 1 = ‖ψ‖. But λδe ∈ Pc ⊂ Q. Hence
(i∗ψ, λδe) = (ψ, λδe) = 1 = ‖ψ‖ = ‖i∗ψ‖, which proves our claim.

Recall now that {Φn} is dense in SQ ⊂ Q and (ψ1
0 , Φn) = βn. If ψ ∈

TIMP and ψ(Φn) = βn for all n, then (i∗ψ,Φn) = (ψ,Φn) = βn. Hence
i∗{ψ ∈ TIMP : (ψ,Φn) = βn for all n} ⊂ {ψ ∈ TIMQ : (ψ,Φn) = βn for
all n}.

But t∗ : `∞∗ → P ∗ was a w∗-w∗-continuous norm isomorphism into such
that t∗(F) ⊂ A0 ⊂ {ψ ∈ TIMP : (ψ,Φn) = βn for all n}.

It follows that i∗t∗ restricted to the linear span ofF (which coincides with
c⊥0 ⊂ `∞∗ and is hence w∗-closed) is a w∗-w∗-continuous norm isomorphism
into TIQ such that i∗t∗(F) ⊂ {ψ ∈ TIMQ : (ψ,Φn) = βn for all n}.

R e m a r k. If we make use of the full force of Theorem 1.6 of [Gr2] we
can see that even Q/W ′

Q has `∞ as a quotient where W ′
Q is a much larger

space than WQ (where even W ′
Q/WQ has `∞ as a quotient). In fact, if

AC = C1 ⊕ ncl lin{f − fn : f ∈ `∞, n ≥ 1} ⊂ `∞ where fn(k) = f(n + k)
for k ≥ 1, then W ′

Q = %−1(AC/c) and Q/%−1(AC/c) ≈ `∞/AC and this
last has `∞ as a quotient (see details in [Gr2], p. 162). Here % : Q→ `∞ is
defined in the above proof.

One of the main results of this section is Theorem 6. The reader will
note that the crux of its proof is contained in Theorem 4.

Theorem 6. Let G be a second countable locally compact group. Let P
and Q be Ap-submodules of PM p(G) such that P is w∗-closed , Q is norm
closed , Pc ⊂ Q ⊂ P and σ(P ) = F . Let SP and SQ be separable linear
subspaces of P and Q respectively , and define WP (d) = ncl(EP (d) + SP )
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and WQ(d) = ncl(EQ(d) + SQ) for d ∈ F . Let H ⊂ G be a nondiscrete
closed subgroup, and a, b ∈ G. Then for any d ∈ intaHb(F ), Q/WQ(d),
P/WP (d) and CVp(F )/WP (d) have `∞ as a quotient , and TIMP (d) and
TIMQ(d) contain F. Consequently , Pc/Mp(F ), Q/Mp(F ), P/Mp(F ) and
CVp(F )/Mp(F ) have `∞ as a quotient if such a, b, d,H exist.

R e m a r k s t o T h e o r e m 6. 1. The onto operator t : Q/WQ(d)→ `∞

constructed is such that the into w∗-w∗ and norm isomorphism t∗ satisfies
t∗(F) ⊂ TIMQ(d). This also applies to Theorem 12.

2. The fact that Q/WQ(d) has `∞ as a quotient is a strictly stronger
fact than that Q/Mp(F ) has such, since even WQ(e)/Mp(G) has `∞ as a
quotient if G is abelian, p = 2 and Q = PM 2c(G) by C. Chou [Ch1]. More
such examples are given at the end of this section.

3. The fact that Pc/WPc(d) and P/WP (d) have `∞ as a quotient does
not imply, directly from the injectivity of `∞, that Q/WQ(d) has `∞ as
a quotient. In fact, if G is abelian and F : L1(Ĝ) → A2(G) is Fourier
transform, let P = PM 2(G) and Q = F∗−1(C(Ĝ)). Then Pc ⊂ Q ⊂ P and
Pc 6= Q 6= P if Ĝ is not discrete or compact, since UC(Ĝ) 6= C(Ĝ) 6= L∞(Ĝ).
Furthermore, F∗(EPc(e)) = ncl lin{f − lxf : x ∈ Ĝ, f ∈ UC(Ĝ)} and
F∗(EQ(e)) = ncl lin{f − Φ ∗ f : f ∈ C(Ĝ), 0 ≤ Φ ∈ L1(Ĝ),

∫
Φdx = 1}

where ncl is in L∞(Ĝ) norm. Then F∗(EPc(e)) 6= F∗(EQ(e)) (see [LR]).
Let WQ = Cλδe ⊕ EQ(e), WPc = Cλδe ⊕ EPc(e). Then WPc 6= WQ and the
fact that Pc/WPc has `∞ as a quotient does not imply the same for Q/WQ,
directly from the injectivity of `∞. This is the reason that we phrased
Theorem 6 in terms of the module Q with Pc ⊂ Q ⊂ P .

4. The space WQ(d) is not usually w∗-closed. In fact, if Q = PM 2(G)
then WQ(e) = Cλδe ⊕ EQ(e) satisfies w∗-clWQ(e) = Q if G is not discrete,
as can be easily seen from the fact that L∞(Ĝ) does not admit invariant
means which belong to L1(Ĝ).

5. It has been proved by H. Rosenthal that if some operator T : C(K)→
X is not weakly compact where K is Stonean compact Hausdorff and X a
Banach space then X contains a copy of `∞ (see [DU], p. 156, Thm. 10,
p. 180, for W ∗-algebras, and p. 23, Cor. 6). One may hence be tempted to
show that the canonical map q : Q → Q/WQ is not weakly compact and
apply Rosenthal’s theorem. Unfortunately, Q = Pc may be very different
from an L∞ space or a W ∗-algebra.

Even in the case that G is abelian and p = 2 and we take P = PM 2(G)
then Pc ≈ UC(Ĝ) (are isometric, via F∗). Thus Pc is not even a dual
Banach space if Ĝ is not discrete. Furthermore, if G = R and F = {x ∈ R :
0 ≤ x ≤ 1} then F∗(PM 2(F )) ⊂ UC(R) is not even a pointwise subalgebra
of UC(R).
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But moreover, if p 6= 2 and even ifG is abelian, then PM p(G) is strikingly
different from PM 2(G). It has been shown by Y. Benyamini and P. K. Lin
in [BL] that if G1, G2 are compact abelian and PM p(G1), PM p(G2) are
isometric as Banach spaces then G1, G2 are isomorphic (while PM 2(G) is
isometric to `∞ for any infinite abelian compact metric group G).

6. All our results express the fact that Q/WQ and P/WP have `∞ as a
quotient. In this connection R. Haydon has constructed in [Ha] a Banach
space C(K), K compact Hausdorff, which has `∞ as a quotient, does not
contain an isomorph of `∞ and yet has the Grothendieck property (i.e. w∗-
convergent sequences in C(K)∗ converge weakly). See also Talagrand [T].

P r o o f o f T h e o r e m 6. For a ∈ G, let ra, la : Ap → Ap be defined
by (rav)(x) = v(xa) and (lav)(x) = v(ax). Then la, ra are isometric algebra
isomorphisms of Ap ([Hz1], p. 97). To see that, note that by [HR], Vol. I,
p. 292, la(v ∗ ǔ) = (lav) ∗ ǔ and ra(v ∗ ǔ) = v ∗ (raǔ), where ǔ(x) = u(x−1).
But (raǔ)∨ = la−1u. Thus ‖lav‖p′‖u‖p = ‖v‖p′‖u‖p = ‖v‖p′‖la−1u‖p =
‖v‖p′‖(raǔ)∨‖p for any u ∈ Lp′ , v ∈ Lp. Hence ‖law‖Ap ≤ ‖w‖Ap and
‖raw‖Ap ≤ ‖w‖Ap . Using this for la−1 and ra−1 we get equality for all
w ∈ Ap. Also clearly, for all a, b ∈ G, rbla = larb, lalb = lba and rarb = rab.

It is readily checked, and known, that if J = (P )0 = {v ∈ Ap : (Φ, v) =
0 for all Φ ∈ P} then Z(J) = F and Z(lxryJ) = x−1Fy−1. Furthermore,
if for I ⊂ Ap we define I0 = {Φ ∈ PM p : (Φ, v) = 0 for all v ∈ I} then
(lxryJ)0 = l∗x−1r∗y−1(P ). Since (Φ, lxryv) = 0 for all v ∈ J iff l∗xr

∗
yΦ ∈ J0 = P

iff Φ ∈ r∗−1
y l∗−1

x P = l∗x−1r∗y−1P . (Clearly the last is w∗-closed since r∗a, l∗a
are w∗-w∗-continuous isometries onto.) Thus

(∗) a−1Fb−1 = Z(larbJ) = σ((larbJ)0) = σ(l∗a−1r∗b−1P ).

Clearly r∗b (λδx) = λδxb and l∗a(λδx) = λδax. Also, for any v ∈ Ap and
Φ ∈ PM p one has l∗ar

∗
b (v · Φ) = (la−1rb−1v) · (l∗ar∗bΦ), thus l∗ar

∗
bR is an Ap-

submodule if R is such. To check this for rb let u ∈ Ap. Then (r∗b (v ·Φ), u) =
(Φ, v(rbu)) = (Φ, rb((rb−1v)u)) = ((rb−1v) · r∗bΦ, u). This readily implies that

(∗∗) supp(l∗ar
∗
bΦ) = a(suppΦ)b for all Φ ∈ PM p .

In fact, if x ∈ suppΦ and va · Φ→ λδx in w∗, then λ(δaxb)← l∗ar
∗
b (va · Φ) =

(la−1rb−1va) · (l∗ar∗bΦ), and by [Hz1], pp. 119–120, axb ∈ supp(l∗ar
∗
bΦ). If

y ∈ supp(l∗ar
∗
bΦ) then x = a−1yb−1 ∈ supp(l∗a−1r∗b−1 l∗ar

∗
bΦ) = suppΦ and

y = axb.
We now claim that l∗ar

∗
bPc = (l∗ar

∗
bP )c ⊂ l∗ar∗bQ ⊂ l∗ar∗bP and that

(∗∗∗) l∗ar
∗
bER(x) = El∗ar∗

b
R(axb) if R = P ,Pc or Q.

In fact, if Φ ∈ P then x 6∈ suppΦ iff axb 6∈ a(suppΦ)b = supp(l∗ar
∗
bΦ)

by (∗∗). Clearly suppΦ is compact if supp(l∗ar
∗
bΦ) = a(suppΦ)b is compact.

Thus (∗∗∗) follows.
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Assume first that d = s ∈ intH(F ) and let t = s−1. Then s ∈ sV ∩H ⊂ F
for some neighborhood V of e. Thus e ∈ V ∩H ⊂ tF = σ(l∗tP ) by (∗∗).

Apply now Theorem 4 to the w∗-closed Ap-module l∗tP (since e ∈
intH(tF )). We deduce that R1 = l∗tP/l

∗
t (WP (d)) and R2 = l∗tQ/l

∗
t (WQ(d))

have `∞ as a quotient since by (∗∗∗), l∗t (WR(d)) = ncl(El∗tR
(e) + l∗tSR) for

R = P or Q, and l∗tSR is separable.
Also, TIM l∗tR

contains F if R = P or Q.
Now, again since l∗s : PM p → PM p is a w∗-w∗-continuous isometry

onto, we see that R1 and R2 are norm isomorphic to l∗s l
∗
tP/l

∗
s l
∗
tWP (d)

= P/WP (d) and l∗s l
∗
tQ/l

∗
s l
∗
tWQ(d) respectively. Hence P/WP (d) and

Q/WQ(d) have `∞ as a quotient.
Now l∗∗y is also a w∗-w∗-continuous norm isometry of PM ∗

p onto PM ∗
p.

Thus (l∗∗s )−1(TIM l∗tR
) = l∗∗t (TIM l∗tR

) contains F. But since t = s−1,
l∗∗t TIM U = TIM l∗sU (s) = TIMR(s) if U = l∗tR where R = P or R = Q,
since if ψ ∈ TIM U then (l∗∗t ψ, λδs) = (ψ, λδe) = 1, and ltS

p
A = Sp

A(s) =
{v ∈ Ap : v(s) = 1 = ‖v‖}. Hence TIMP (s) and TIMQ(s) contain F.

This proves the theorem if d ∈ intH(F ).
Assume now that d ∈ intaHb(F ). Let V be a neighborhood of e such

that d ∈ dV ∩ aHb ⊂ F . Then a−1db−1 ∈ a−1dV b−1 ∩ H ⊂ a−1Fb−1.
Hence a−1db−1 ∈ intH(a−1Fb−1). But by the first part with s = a−1db−1

and since by (∗), a−1Fb−1 = σ(l∗a−1r∗b−1P ), we see that U = l∗a−1r∗b−1R/WR
has `∞ as a quotient for R = P or Q, where we apply (∗∗∗) with x = a−1,
y = b−1 and WR = ncl(El∗xr∗yR(xdy) + l∗xr

∗
ySR) = ncl l∗a−1r∗b−1(ER(d) + SR).

Also TIM V (xdy) contains F, where V = l∗xr
∗
yR with R = P or Q. Now

since l∗x, r∗x are w∗-w∗-continuous isometries onto, by taking images by l∗ar
∗
b

we get R/l∗ar
∗
bWR ≈ U , hence R/l∗ar

∗
bWR has `∞ as a quotient with R = P

or Q, since l∗ar
∗
bWR = ncl(ER(d) + SR) = WR(d), as follows readily from

(∗∗∗). Thus P/WP (d) and Q/WQ have `∞ as a quotient.
If now L is any normed space such that R/WR(d) ⊂ L (with R = P or Q)

then by the injectivity of `∞, L has `∞ as a quotient. SinceQ ⊂ P ⊂ CVp(F )
we see that CVp(F )/WR(d) has `∞ as a quotient with R = P or Q.

If we apply the theorem with SP = SQ = Cλδd then by Proposition 3,
Mp(F ) ⊂ Cλδd ⊕EQ(d) = WQ(d). Since Q/WQ(d) has `∞ as a quotient so
does Q/Mp(F ), hence so do P/Mp(F ), CVp(F )/Mp(F ) and (since Q = Pc

is allowed) Pc/Mp(F ).
Now the argument above for TIMP (s) and TIMQ(s) carries over by

taking images by l∗a−1r∗b−1 . Hence we conclude that TIMP (s) and TIMQ(s)
contain F.

R e m a r k. We have in fact also proved that if {Φn} ⊂ SQ is dense in SQ
and ψ0 ∈ TIMQ(d) and (ψ0, Φn) = βn then even the set {ψ ∈ TIMQ(d) :
(ψ,Φn) = βn for all n} contains F (see the proof of Theorem 4). The reader
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should also note the remarks after the statement of Theorem 4.
The norm closed Ap-submodules of PM p in the next corollary are defined

in the introduction.
For the rest of the paper denote for simplicity WP (x) = Cλpδx +EP (x).

Corollary 7. Under the assumptions on G , H , a, b, as in Theorem 6,
let F ⊂ G be closed and let Q be any of the eight spaces (PM p∗(F ))c ⊂
PM p∗c(F ) ⊂ Cp∗(F ) ⊂ PM p∗(F ), (PM p(F ))c ⊂ PM pc(F ) ⊂ Cp(F ) ⊂
PM p(F ). Then for any d ∈ intaHb(F ), Q/WQ(d) (a fortiori Q/Mp(F ) and
CVp(F )/Mp(F ) if such a, b, d,H exist) has `∞ as a quotient and TIMQ(d)
contains F.

R e m a r k. IfG is amenable then PM pc(F ) = (PM p(F ))c and PM p∗c(F )
= (PM p∗(F ))c.

Our next corollary deals with the case that P ⊂ CVp(G) (which may
properly include PM p(G)).

Corollary 8. Under the assumptions as in Theorem 6 except that
P ⊂ CVp(G) is an ultraweakly closed Ap-submodule ([Hz1], p. 116, [Der],
pp. 9–10), the conclusions of Theorem 6 hold for Pc.

P r o o f. Clearly Pc ⊂ PM p. Let Q = P ∩ PM p. Since PM p is ultra-
weakly closed ([Hz1], p. 91) so is Q. And since (PM p, w

∗) = (PM p, u.w), Q
is a w∗-closed Ap-submodule of PM p ([Pi], p. 95). Clearly Pc ⊂ Q ⊂ P and
Qc = Pc. Now F = σ(P ) = σ(Q). We apply our Theorem 6 to Q.

We apply next our results to β (strictly) closed Ap-submodules of PM p

(with a view to further applications).

Definition. Following the beautiful thesis of Delaporte [De1] we define
the β (or strict) topology on CVp(G) by: Φα→Φ in β iff ‖(Φα−Φ)Φ′‖→0 for
all Φ′ ∈ PFp(G), where PFp(G) and Cp(G) are defined in the introduction.

It is shown in [De1], Thm. 2.1, that Cp(G) is a norm closed subalge-
bra and an Ap-submodule of CVp(G) and PM pc(G) ⊂ Cp(G) ⊂ PM p(G).
Furthermore, (CONV p(G), β) and (Cp(G), β) are complete and if Wp(G) is
the dual of (PFp(G), norm) then Wp(G) can be identified with the dual of
(Cp(G), β) in analogy with the well known theorems of Buck for the abelian
case. (To be consistent with [De1] we note that right and left can be inter-
changed by [De1], p. 8.)

Lemma 9. Let Q ⊂ Cp(G) be a β-closed Ap-module (if Φ ∈ Cp(G) then
Qβ(Φ) = β-cl(Ap · Φ) is such). If P = w∗-clQ then Pc ⊂ Q ⊂ P , hence
σ(Q) = σ(P ).

P r o o f. Let Φ ∈ Pc ⊂ Cp(G) have compact support. Let u ∈ Ap∩Cc(G)
be such that u · Φ = Φ. Let Φα ∈ Q, Φα → Φ in w∗ and let w ∈ Wp(G) =
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(Cp(G), β)′ (the dual of (Cp(G), β) by [De1], Thm. 2.8). Then 〈w, u · (Φα −
Φ)〉 → 0. Hence Φ = σ(Cp,Wp)-limu · Φα. Now Φ ∈ Pc ⊂ Cp(G). Hence
Φ ∈ β-cl(Ap · Q) ⊂ Q (by duality). Hence Pc ⊂ Q (since norm ≥ β, Q is
also norm closed).

As for Qβ(Φ) let β-limuα · Φ = Ψ , with uα ∈ Ap. Let w ∈ Wp(G) =
(Cp(G), β)′ and u ∈ Ap(G). Then 〈w, u(uαΦ − Ψ)〉 = 〈wu, uαΦ − Ψ〉 → 0.
Since u ·Ψ ∈ Cp(G) we get u ·Ψ ∈ σ(Cp,Wp)-cl(Ap ·Φ) = β-cl(Ap ·Φ) (since
Cp(G) is β-closed in PM p, β-cl(Ap · Φ) ⊂ Cp(G), and by duality).

R e m a r k. If G is in addition amenable then Delaporte has shown in
[De1], Cor. 4.4, that Q = P ∩ Cp(G).

Corollary 10. Let G be second countable, H ⊂ G a closed nondiscrete
subgroup, and a, b ∈ G. Let Q ⊂ Cp(G) be a β-closed Ap-submodule and
σ(Q) = F . Then for any d ∈ intaHb(F ), Q/WQ(d) and Qc/WQc(d) (a
fortiori Qc/Mp(F ) if such a, b, d,H exist) have `∞ as a quotient and both
TIMQ(d) and TIMQc(d) contain F.

P r o o f. Let P = w∗-clQ. Then Pc ⊂ Q ⊂ P and Pc = Qc, by Lemma 9.
The rest is just Theorem 6.

Are there any (many) elements which belong simultaneously, for all 1 <
p < ∞, to PM p(F ) ∼ λp(M(F ))? We improve, in a sense, Theorem 5.7 of
Edwards and Price [EP] (see sequel) in the next corollary.

IfG is amenable then Herz’s Theorem C [Hz3] allows one to conclude that
PM p(G) ⊂ PM q(G) if 1 < p ≤ q ≤ 2 or 2 ≤ q ≤ p <∞, with contraction of
norms. Furthermore, if Φ ∈ PM p then by the definition of support, suppΦ
in PM p(G) is the same as suppΦ in PM q(G). Thus PM p(F ) ⊂ PM q(F ) if
p, q are as above. Consider in the sequel PM p(G) for all 1 < p <∞ to be a
subset of PM 2(G). The above observations will now yield

Corollary 11. Let G be amenable and second countable, a, b ∈ G, and
H ⊂ G a closed nondiscrete subgroup. If F is closed and intaHb(F ) 6= ∅
then, for 1 < p ≤ 2,

(PM p(F ))c ∼ λp(M(F )) =
⋂

p≤q≤2

{(PM q(F ))c ∼ λq(M(F ))},

has cardinality c, and the same conclusion holds for 2 ≤ p < ∞ with the
intersection taken over 2 ≤ q ≤ p.

P r o o f. Our main theorem shows that card(PM p(F ))c ∼ Mp(F ) = c
since (PM p(F ))c/Mp(F ) has `∞ as a quotient and cardPM p(G) = c. Since
λp(M(F )) = λq(M(F )) for all p, q, the rest follows.

R e m a r k. Gaudry and Inglis have proved in [GI] that PM p(T) is not
norm dense in PM q(T) if 1 < p < q ≤ 2.
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Connections with existing results. In improving theorems of B. Brainerd
and R. E. Edwards [BE], Figà-Talamanca and Gaudry [FG] and J. F. Price
[Pr] (see also [DR]) have proved that if G is noncompact abelian or G is
any compact group, then there exists an operator Φ in PM p(G) for all
1 < p < ∞ which is not convolution by a bounded measure. Furthermore,
Cowling and Fournier prove in [CF], p. 65, that for any locally compact G, if
|q−1− 2−1| < |p−1− 2−1| there is some Φ ∈ CVq(G) such that Φ 6∈ CVp(G).
Any such Φ clearly cannot be convolution by a bounded measure. Cowling
and Fournier are even able to control, in a sense, the support of Φ (see
further remarks).

Furthermore, it has been proved by J. Dieudonné ([Pi], p. 85, Thm. 9.6)
that if G is a nonamenable group then for every 1 < p < ∞ there exists
a positive unbounded Radon measure µ on G such that the convolution
operator (λµ)(f) = µ ∗ f for f ∈ Lp is in CVp(G). Clearly λµ 6∈ λ(M(G)).

All the above constructed operators belong to PM pc(G) (some even to
Mp(G)). If we apply our Theorem 6 with P = PM p(G) we get a much more
powerful result, in a sense, namely that if G is second countable nondiscrete
then PM pc(G)/Cλpδx ⊕EPc(x) for all x ∈ G (a fortiori PM pc /Mp(G)) has
even (the nonseparable) `∞ as a quotient. Hence {Φ ∈ PM pc(G) : Φ 6∈
Mp(G)} is big. This also improves Ching Chou’s result in [Ch2] who shows
that if G is second countable and P = CV2(G) then P/Cλ2δe + EP (e)
has `∞ as a quotient and Pc/Cλ2δe + EPc(e) is not norm separable (see
[Ch2], Thm. 3.3 and Cor. 3.6). Chou uses C∗-algebra methods which are
not available if p 6= 2.

As for controlling the supports of elements Φ ∈ CVp(G) such that Φ 6∈
λ(M(G)), the following should be noted:

If G is any locally compact group and U ⊂ G is any open set with
F = clU compact, R. E. Edwards and J. F. Price construct in [EP], p. 269,
norm separably many elements Φ ∈ PM pc(G) such that suppΦ ⊂ F and
Φ 6∈λ(M(G)), provided U admits a Rudin–Schapiro (URS) sequence ([EP],
p. 267). In fact, moreover, part of their Theorem 5.7 shows that there are

in this case kn ∈ Cc(G) with supp kn ⊂ U and there is a continuum of
sequences ω=(ωn)∈ `1+ such that the series

∑∞
n=1 ωnλ(kn)=Φω ∈PM p(F )

(convergence in PM p norm for every 1< p< ∞), yet Φω 6∈λ(M(G)). If G
is abelian, URS sequences exist for all open sets U . But if G is arbitrary,
necessary and sufficient conditions for the existence of URS sequences for a
given open set U seem to be unknown (see [EP], p. 267 and pp. 288–293).

Furthermore, Cowling and Fournier are even able to control the support
of the elements Φ ∈ CVq, Φ 6∈ CVp mentioned above by showing that suppΦ
can be chosen in any symmetric Cantor set ([Ka3], p. 35) if G = T (the
torus), or if G is not unimodular supp Φ can be chosen in the kernel of the
modular function.
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If we restrict ourselves to fixed p, and G second countable, then our
Theorem 6 yields a much more powerful result, in a sense. We only assume
that F is closed and intaHb F 6= ∅ for some nondiscrete closed subgroup
H, and some a, b ∈ G (which holds e.g. if intF 6= ∅; note that we need
no Rudin–Schapiro sequences at all), and we get the existence of plenty
(PM pc(F )/Mp(F ) is not even separable) of elements in PM pc(F ) which do
not belong to λ(M(F )). Our results, however, do not cover the case that G
is discrete or that F ⊂ T is a Cantor symmetric set unless p = 2.

In regard to Theorem 1, it has been shown by Lust-Piquard [P2] that if
G is abelian and F ⊂ G contains a perfect set then CVp(F ) does not have
the RNP.

(b) The case that p = 2. If p = 2 and F contains an “ultrathin symmet-
ric” (see sequel) subset of R or T then the result of Theorem 6 remains true.
Thus F can be much thinner in this case. We use in the proof a powerful
result of Y. Meyer ([Me], p. 246), namely:

Theorem (Y. Meyer). Let G = R, and S ⊂ R an ultrathin symmetric
compact set. If fk ∈ A2(S) is such that ‖fk‖A2(S) = 1 for all k ≥ 1 and
‖fk‖A2(K) → 0 for all compact K ⊂ S not containing 0, then {fk} contains
a subsequence equivalent to a canonical `1 basis.

Here A2(F ) = A2(G)/IF is the usual quotient algebra, for any closed
F ⊂ G.

We do not know if Y. Meyer’s theorem is true if p 6= 2. The proof of
Theorem 12 works for all 1 < p <∞ for which Y. Meyer’s theorem holds.

We thank F. Lust-Piquard for pointing out to us Y. Meyer’s result (also
used in [P3], p. 200).

Definition. Let tj > 0, for j ≥ 1, be such that tn >
∑∞

j=n+1 tj for all
n ≥ 1. Let S be the compact set of all reals t =

∑∞
j=1 εjtj where εj = 0

or 1. S is then called a symmetric set. If in addition
∑∞

k=1(tk+1/tk)2 <∞
then S is called an ultrathin symmetric set ([Me] or [GMc], p. 333). Clearly
any symmetric set contains an ultrathin symmetric subset.

Theorem 12. Let G be an arbitrary locally compact group and let P ,Q ⊂
PM 2(G) be A2(G)-modules such that P is w∗-closed , Q is norm closed ,
Pc ⊂ Q ⊂ P and σ(P ) = F is metrizable. Assume that R, the real line,
is a closed subgroup of G, S ⊂ R is an ultrathin symmetric set and a ∈ G.
If aS ⊂ F or Sa ⊂ F , then Q/WQ(a) (a fortiori Q/M2(F )) has `∞ as a
quotient and TIMQ(a) contains F.

P r o o f. Clearly S ⊂ R ∩ a−1F and if b = a−1 then σ(l∗bP ) = bF and
l∗bWP (a) = Wl∗

b
P (ba) = Wl∗

b
P (e) by the proof of Theorem 6. Hence by the

same proof we can assume that S ⊂ R ∩ F , σ(P ) = F and a = e.
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Let Vn be a sequence of neighborhoods of e such that V 2
n+1 ⊂ Vn, clVn

is compact for all n, and Vn ∩ F is a neighborhood base in F of e. Let
vn ∈ A(G) (we omit 2 and write A(G) = A2(G) and PM 2(G) = PM (G))
such that supp vn ⊂ Vn and vn(e) = 1 = ‖vn‖.

Let J = {v ∈ A(G) : (Φ, v) = 0 for all Φ ∈ P}; thus P = (A(G)/J)∗. Let
A′(F ) = A(G)/J . Then A′(F ) with quotient norm is a function algebra on
F which acts on P . In fact (as in the proof of Theorem 4), if v ∈ A(G) and
v′ = v + J with ‖v′‖ = inf{‖v + u‖ : u ∈ J} then for Φ ∈ P , v · Φ = v′ · Φ
and ‖v′ · Φ‖ ≤ ‖v′‖‖Φ‖. Also v′n(e) = 1 = ‖v′n‖.

If Φ ∈ P and e 6∈ suppΦ then v′n ·Φ = 0 if n is such that Vn ∩ suppΦ = ∅
(see [Hz1], p. 118). Thus ‖v′n · Φ‖ → 0 for all Φ ∈ EP (e).

We first show, using Y. Meyer’s theorem, that {v′n} contains a sub-
sequence equivalent to a canonical `1 basis. Let r : A(G) → A(R) be the
restriction map, i.e. (rv)(x) = v(x) for x ∈ R. Then r is onto and ‖r‖ ≤ 1 by
[Hz1], Thm. 1 (which holds for all 1 < p <∞). Thus ‖rvn‖ = 1 = (rvn)(e)
and supp rvn ⊂ Vn ∩ R.

For closed L ⊂ G, let IL = {v ∈ A(G) : v = 0 on L}; similarly, for
L ⊂ R, IR

L = {v ∈ A(R) : v = 0 on L}. These are the biggest ideals in
A(G) and A(R) respectively whose zero set is L. Let A(L) = A(G)/IL and
AR(L) = A(R)/IR

L .
Let q : A(R) → AR(S) be the canonical map. Then qrvn(e) = 1 =

‖qrvn‖ (see Thm. 4). If K ⊂ S is compact and e 6∈ K then Vn ∩ K = ∅
for n ≥ n0, thus ‖qrvn‖AR(K) = 0. Hence ‖qrvn‖AR(K) → 0 for all compact
K ⊂ S such that e 6∈ K. It now follows from Y. Meyer’s result that there is
a subsequence nj and some c > 0 such that∥∥∥ k∑

j=1

αj(qrvnj
)
∥∥∥

AR(S)
≥ c

k∑
j=1

|αj |,

for all k and complex α1, . . . , αk.
Now if v ∈ A(G) then ‖v′‖A′(F ) = inf{‖v + u‖ : u ∈ J} ≥ inf{‖v + u‖ :

u ∈ IS} (since J ⊂ IF ⊂ IS) ≥ inf{‖rv + ru‖ : u ∈ IS} ≥ inf{‖rv + w‖ :
w ∈ IR

S} (since rIS ⊂ IR
S ) = ‖qrv‖AR(S).

It now follows that for all k ≥ 1 and α1, . . . , αk ∈ C we have∥∥∥ k∑
j=1

αjv
′
nj

∥∥∥
A′(F )

≥ c
k∑

j=1

|αj |.

We now construct an onto operator t : P → `∞ as follows:
If Φ ∈ P let (tΦ)(j) = (Φ, v′nj

). Since ‖v′nj
‖ = 1 = v′nj

(e) for all j,
t(P ) ⊂ `∞, ‖t‖ ≤ 1 and t(λ2δe) = 1 (the constant one sequence in `∞, by
abuse of notation). But t is onto since if b = (bn) ∈ `∞ with norm ‖b‖, define
the linear functional on lin{v′nj

: j ≥ 1} by F0(
∑k

j=1 αjv
′
nj

) =
∑k

j=1 bjαj .
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Then ∣∣∣F0

( k∑
j=1

αjv
′
nj

)∣∣∣ ≤ ‖b‖ k∑
j=1

|αj | ≤ ‖b‖(1/c)
∥∥∥ k∑

j=1

αjv
′
nj

∥∥∥.
By the Hahn–Banach theorem there is an extension Φ0 ∈ (A(G)/J)∗ = P
of F0. Thus (tΦ0)(j) = (Φ0, v

′
nj

) = bj , i.e. tΦ0 = b and t is onto.
We now claim that t(EP (e)) ⊂ c0 ⊂ `∞, thus t(WP (e)) ⊂ c ⊂ `∞. Let

v0 ∈ A ∩ Cc(G) satisfy v0 = 1 on V1 be fixed. If Φ ∈ EP (e) then (tΦ)(j) =
(Φ, v′nj

) = (Φ, vnj ) = (Φ, vnjv0) = (v′nj
· Φ, v′0) → 0 since ‖v′nj

· Φ‖ → 0 by
the above. Since t(λ2δe) = 1 we have t(WP (e)) ⊂ c.

We now show that if v ∈ A(G), v(e) = 1, and Φ ∈ P then t(v ·Φ)−t(Φ) ∈
c0. We first prove that for all v ∈ A(G), ‖v′v′nj

− v(e)v′nj
‖ → 0. Indeed, if

w = vv0−v(e)v0 then w(e) = 0 and ‖vvnj −v(e)vnj‖ = ‖vnjw‖. If ε > 0 let
w0 ∈ A∩Cc(G) be such that w0 = 0 on a neighborhood of e and ‖w0−w‖ < ε
(points are sets of synthesis by [Hz1]). But since supp vnj ⊂ Vnj there is
some i such that if j ≥ i then vnjw0 = 0 on F . Hence ‖v′nj

w′‖ → 0. If now
Φ ∈ P and v ∈ A(G) with v(e) = 1 then

t(v · Φ− Φ)(j) = |(Φ, v′v′nj
− v′nj

)| ≤ ‖Φ‖‖v′v′nj
− v′nj

‖ → 0,

thus t(v · Φ)− t(Φ) ∈ c0.
We now show that t∗(F) ⊂ TIMP (e). In fact, if ψ ∈ `∞∗ satisfies ψ = 0

on c0 ⊂ `∞ and v ∈ A(G), v(e) = 1, Φ ∈ P one has (t∗ψ, v · Φ) =
(ψ, t(v ·Φ)) = (ψ, tΦ) (by the above claim) = (t∗ψ,Φ). By our Proposition 1,
t∗ψ(EP (e)) = 0. If in addition (ψ, 1) = 1 = ‖ψ‖ then ‖t∗ψ‖≤1 since ‖t‖≤1
and (t∗ψ, λ2δe) = (ψ, t(λ2δe)) = (ψ, 1) = 1 by the above. Thus t∗F ⊂
TIMP (e). Clearly t∗ : `∞∗ → P ∗ is a w∗-w∗-continuous norm isomorphism
into (directly or by [Ru2], (4.14)). The rest of the proof is the same as the
end of the proof of Theorem 4 with SQ = SP = Cλ2δe (the line containing
λ2δe).

R e m a r k s. 1. By using Theorem 2.7.6 in Rudin [Ru1] one can see that
Y. Meyer’s powerful theorem used above holds true if R is replaced by the
torus (see [P3], p. 200), hence R can be replaced by T in Theorem 12.

2. Corollaries 7, 8, 10 and 11 to Theorem 6 hold true for p = 2 with the
condition on F being replaced by that of Theorem 12.

3. It has been proved by J.-P. Kahane in [Ka2] that if n ≥ 2 [resp.
n ≥ 3] there exists a continuous [resp. smooth] curve F ⊂ Tn which is a
Helson S-set, i.e. PM 2(F ) = λ2(M(F )). A fortiori, if Q = PM 2(F ) then
for all x ∈ F , Q = WQ(x) = M2(F ) = λ2(M(F )) and TIMQ(x) contains
a unique element. The explicit construction of such curves has been done
by O. C. McGehee in [Mc]. If n > 2k there exist Helson sets which are
k-dimensional manifolds ([Mc], p. 236). Any infinite compact abelian G
contains a perfect Helson S-set ([Ka1], [Ru1]).
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F. Lust-Piquard mentioned to us that if G is abelian and F ⊂ G is a Hel-
son S-set for p = 2 it is such for all 1 < p <∞ since PM 2(F ) = λ(M(F )) ⊂
PM p(F ) ⊂ PM 2(F ), thus λ(M(F )) = PM p(F ). Any infinite compact
abelian G contains a perfect Helson S-set F . For such F , PM p(F ) = M(F )
does not have the WRNP.

4. LetG be abelian second countable and let F : L1(Ĝ)→ A(G) and FS :
M(Ĝ) → B(G) be Fourier and Fourier–Stieltjes transforms respectively. If
µ ∈M(G) then F∗(λ2µ) = FS(µ). If P = PM 2(F ) let F∗(Pc) = UC(Ĝ, F ),
F∗(M2(F )) = B2(Ĝ, F ) = nclFS(M(F )), with ncl in L∞(Ĝ). Omit F if
F = G (thus for example F∗M2(G) = B2(Ĝ)).

Assume that e ∈ F , thus 1 ∈ UC(Ĝ, F ), and let AF = {f ∈ UC(Ĝ, F ) :
ψ1(f) = ψ2(f) for any ψ1, ψ2 ∈ IMF } where IMF is the set of invariant
means on UC(Ĝ, F ) omit F if F = G; see [Pa]. Let A = AG.

It can be seen that if P = PM 2(F ) and WPc(e) = Cλ2δe + EPc(e), then
F∗(WPc(e)) = AF . Thus B2(Ĝ, F ) ⊂ AF .

As is well known, UC(Ĝ)/A (a fortiori UC(Ĝ)/B2(Ĝ), see [Ch1]) has
`∞ as a quotient and IM contains F if G is infinite. Our result is much
stronger in that it allows one to localize to the set F . Thus UC(Ĝ, F )/AF (a
fortiori UC(Ĝ, F )/B2(Ĝ, F )) has `∞ as a quotient if e ∈ intaH(F ) for some
nondiscrete closed subgroup H and a ∈ G, and IMF contains the big set F.

If in addition G contains R or T and F only contains an ultrathin sym-
metric set S, then the same remains true.

These results are new even if G = R or T and improve substantially [P3],
p. 201, Ex. 3. Moreover, the result on the largeness of IMF cannot be proved
by the conventional methods which use properties of finite intersections
of translates of subsets of G (see [Pa]) since F∗(PM 2(F )) need not be a
pointwise subalgebra of L∞(Ĝ) (take G = R, F = [0, 1]).

5. A closed set F ⊂ G is p-ergodic if, for Q = PM p(F ), PM p(F ) =
Cλδx ⊕EQ(x) for all x ∈ F . 2-ergodic sets for abelian G have been studied
by Woodward in [Wo1, 2, 3]. It is clear from [Wo2] that if F contains an
open set U ⊂ G then for any x ∈ U , PM 2(F ) 6= Cλδx ⊕EQ(x). It does not
follow from [Wo2] that PM p(F )/Cλδx ⊕ EQ(x) has `∞ as a quotient even
in this case (p = 2).

Important examples of perfect 2-ergodic sets F ⊂ R whose every closed
subset obeys synthesis and yet every “portion” of which is not a Helson set
are the “Sigtuna” sets of I. Katznelson (see [GMc], p. 394). (The closed set
E is a “portion” of F if for some open interval I of R, E = I ∩ F .) Could,
for such F , (PM 2(F ))c/M2(F ) have `∞ as a quotient?

6. We now give examples of w∗-closed A2-submodules P ⊂ PM 2(G),
G abelian, for which P/M2(F ) has `∞ as quotient where F = σ(P ), yet
P/Cλ2δx ⊕ EP (x) = {0} for many x ∈ F .
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Let G be abelian, p = 2, F = F1∪F2 ⊂ G, F1, F2 compact disjoint, where
F1 is a perfect Helson synthesis set, and F is also of synthesis. Clearly P =
PM 2(F ) = PM 2(F1)⊕PM 2(F2) since if v1, v2 ∈ A2(G) are such that vi = 1
on a neighborhood Oi of Fi such that O1∩O2 = ∅ and v1(O2) = v2(O1) = 0
then for any Φ ∈ PM 2(F ), Φ = v1 ·Φ+v2 ·Φ and vi ·Φ ∈ PM 2(Fi). The sum
is direct since any Φ ∈ PM 2(F1)∩PM2(F2) has void support, hence Φ = 0.
Since F1 is a Helson S-set, PM 2(F1) = λ2(M(F1)) = Cλ2δx⊕EP1(x) for all
x ∈ F1 where Pi = PM 2(Fi). Since any Φ ∈ P2 satisfies x 6∈ suppΦ if x ∈ F1

it follows that EP (x) ⊃ EP1(x) + P2. Hence for x ∈ F1, P = P1 ⊕ P2 ⊂
Cλ2δx ⊕EP1(x)⊕ P2 ⊂ Cλ2δx ⊕EP (x) ⊂ P . Thus P = Cλ2δx ⊕EP (x) for
all x ∈ F1.

If now intaH(F2) 6= ∅ for some nondiscrete closed subgroup H ⊂ G and
a ∈ G then by our main theorem, P/M2(F ) has `∞ as a quotient. In
fact, moreover, even P/Cλ2δx ⊕ EP (x) has `∞ as a quotient for all x ∈
intaH(F2) ⊂ intaH(F ) (similarly if F2 contains xS where S is an ultrathin
symmetric subset of R ⊂ G).

7. If P/WP (d) has `∞ as a quotient where d ∈ σ(P ) and P is as in
Theorem 6 or 12 then the function algebra A′p(F ) = Ap/J where J =
{u ∈ Ap : (Φ, u) = 0 for all Φ ∈ P} is not Arens regular. Indeed, if
WAPP = {Φ ∈ P : {u · Φ : ‖u‖Ap ≤ 1} is weakly relatively compact}
then Φ ∈ WAPP iff {u · Φ : u ∈ A′p(F ), ‖u‖A′

p(F ) ≤ 1} is weakly relatively
compact. But WAPP ⊂ WP (d) as in [Gr1], p. 125. Hence P/WP (d) 6= {0}
by Theorems 6 or 12, a fortiori (A′p(F ))∗ = P 6= WAPP , which implies the
result.
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