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ON CONVOLUTION OPERATORS WITH SMALL SUPPORT
WHICH ARE FAR FROM BEING CONVOLUTION
BY A BOUNDED MEASURE

BY

EDMOND E. GRANIRER (VANCOUVER, BRITISH COLUMBIA)

TO MY UNCLE RUDOLF DONNERMANN,
A RIGHTEOUS GENTILE, WHO MADE THE DIFFERENCE

Let C'V,(F) be the left convolution operators on LP(G) with support
included in F' and M,,(F") denote those which are norm limits of convolution
by bounded measures in M (F'). Conditions on F' are given which insure that
CVy(F), CV,(F)/My(F) and CV,(F)/W are as big as they can be, namely
have £*° as a quotient, where the ergodic space W contains, and at times
is very big relative to M,(F'). Other subspaces of CV,(F) are considered.
These improve results of Cowling and Fournier, Price and Edwards, Lust-
Piquard, and others.

Introduction. Let G be a locally compact group with unit e, F' C G
closed and CV,(F') be the space of left convolution operators ¢ on LP(G),
1 < p < oo, with supp® C F, equipped with operator norm (see sequel).
Let M(F') denote the complex bounded Borel measures on F. If p € M(G)
let Ay € CV,(G) = CV,, be given by (Apu)(f) = p* f for all f € LP(G).
Define M, (F) = normcl A, (M (F')) (where cl denotes closure). Let PM ,(G)
be the ultraweak (u.w) closure in C'V,(G) of \,(M(G)) (where u.w is the
topology on CV,,(G) generated by the seminorms & — | >~ | (D f,,, g, )| with
fa € LP(G), gn € L (G) with 307 | fullpllgally < 00, 1/p+1/p' =1). As
is well known (see Herz [Hz1, 2]), if G is amenable or p = 2, and in many
other cases, PM,(G) = CV,(G). PM,(G) is the dual of the Banach algebra
A,(G) and (PM ,(G),w*) = (PM,(Q), u.w) (see [Hzl]). If G is abelian and
p =2 then Ay(G) = F(L*(G)) = A(G) where F denotes Fourier transform.
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Throughout this paper we sometimes omit G and instead of CV,(G),
PM,(G), Ap(G), etc. write C'V,,, PM,, A, etc.

Define PM,(F) = PM,(G) N CV,(F) and if P C CV, and z € G let
P, = norm c{® € P : supp @ is compact}, o(P) = {z € G : \)d, € P},
Ep(z) =norm c{® € P : x ¢ supp @}, and Wp(z) = CA\,d, + Ep(x).

It so happens that M, (F) C Wp_(x) for any x € o(P) if P C CV,, is any
u.w-closed Ap,-submodule with o(P) = F (P = CV,(F) is such).

There are many results in the literature which express the fact that
for some closed subset F' C G, CV,(F) ~ X\p(M(F)) # 0 (~ denotes set-
theoretical difference), i.e. that there are convolution operators with sup-
port included in F' which are not expressible as convolution by a bounded
measure.

An old result of M. Riesz expresses the fact that if T is the torus and
&y € PM,(T) = P is that element for which F*®y = 1+, then &y ¢
Ap(M(T)). It can in fact be shown that if p = 2, then &y ¢ Wp(1) (a fortiori
Do & M>(T)), hence P/Wp(1) # {0}.

Most of the results of this paper are concerned with such elements and in
fact with the question of when P/Wp(z) is big, for example for P = C'V,(F),
and in fact as big as it can be. Since for second countable G, CV,(G) is a
subspace of £°°, a way to express the above is: For which closed F' and for
which x € F, if P = CV,(F), does P/Wp(x) have (> as a continuous linear
image (i.e. have /> as a quotient).

If F' is too thin this cannot happen. In fact, if G is abelian and F is
compact and scattered (i.e. every closed subset has an isolated point) then
Loomis’s lemma [Lo] insures that P = CVa(F) = Wp(z) = Ma(F) for all
x €l

In improving theorems of B. Brainerd and R. E. Edwards [BE], Figa-
Talamanca and Gaudry [FGJ, J. F. Price [Pr], M. Cowling and J. Fournier
[CF] prove that for any infinite locally compact group G, if |1/q¢ — 1/2| <
|1/p — 1/2|, there is some @ € C'V,(G) such that @ € C'V,(G). Any such ¢
clearly cannot be in A\,(M(G)).

If p = 2 then Ching Chou has proved for P = CV5(G) using C*-algebraic
methods (which are not available if p # 2) that P/Wp(e) has (> as a
quotient, and P./Wp, (e) is not norm separable (see [Ch2], Thm. 3.3, Cor. 3.6
and also [Chl]), if G is nondiscrete and second countable.

A particular case of Theorem 6 of this paper implies that if G is second
countable nondiscrete, P = PM,(G) and 1 < p < oo, then for all z €
G, P./Wp,(x) and P/Wp(x) (a fortiori P./M,(G)) have £*° as a quotient,
improving results of [Gr2], p. 173.

The main contribution of this paper is, however, in controlling supports.
They seem to yield results which are new even for the torus T and the real
line R.
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Our main results improve substantially, in a sense, results of Edwards
and Price [EP] (for connections with existing results see Section II). They
imply, for second countable G, that if I is closed such that for some a,b € G,
and nondiscrete closed subgroup H C G, intomy(F) # 0 and P = CV,(F)
then P,/Wp, (z) (a fortiori P./M,(F)) has £*° as a quotient for all z €
int, gy (F) (inty (F) is the interior of F' in H). Furthermore, the same is the
case if G contains the real line R (or T) and S C R is an ultrathin symmetric
set and xS C F, provided p = 2. Moreover, our main results completely
avoid considering whether F' is a set of synthesis.

A combination of Theorems 6 and 12 yields

THEOREM. Let G be second countable. Let P and @Q be A,-submodules
of PM,(G) such that P is w*-closed, Q) is normed closed and P, C Q C P
and o(P) = F (P = PM,(F) is such).

(a) If H C G is a nondiscrete closed subgroup, a,b € G and x €
intopy(F), then Q/Wo(x) (a fortiori Qc/ M, (F) and CV,(F)/M,(F) if such
a,b,x, H exist) has {*° as a quotient and TIM g (z) contains the big set F.

(b) If p=2 and G contains R (or T) as a closed subgroup, S C R is an
ultrathin symmetric set and xS C F then Q/Wq(x) (a fortiori Q/Mz(F))
has £ as a quotient and TIM g(x) contains the big set F.

Here TIMq(z) = {0 € Q° : v(\di) = 1 = [0ll, ¥(Eq(x)) = 0}
(from topological invariant mean on @ at x, this being justified by Prop. 1
and Section 0). F C ¢°°* is the big set given by F = {n € (>* : 1 =
Inll = n(1), n(co) = 0} where ¢cg = {x = (x,) € £ : lim, oo x, = 0}
and 1 € £°° is the constant 1 sequence. We note that, as is well known,
F is a w*-compact perfect subset of £>°* which is as big as it can be, i.e.
card F = card £°°* = 2¢, where c is the cardinality of the continuum.

Remark. The onto operator ¢t : Q/Wg(xz) — £ constructed in this
theorem is such that the into w*-w* and norm isomorphism ¢* satisfies

t*(F) C TIM o(x).

We note that the Cantor middle third set F' is an ultrathin symmetric
set in R = G, thus for P = PMy(F), P/Wp(0), and a fortiori P/Ms(F),
has /°° as a quotient.

Yet, there exist perfect Helson S-sets ' C R™ (or T™) for n > 1, which
are continuous curves if n > 2 (or even smooth curves if n > 3) by results
of J.-P. Kahane [Ka2|. And for such, if P = PMy(F) then P = Wp(x) =
My(F) = Xo(M(F)) for all x € F.

Could it be that, if F' is a perfect Helson S-set, P = PMy(F') is not
big enough, hence P/Ms(F') cannot, by default, be big? Our Theorem I.1
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insures that this is not the case and this, for all G amenable as discrete, and
all 1 < p < co. We have

THEOREM I.1. Let G be amenable as a discrete group and P a w*-closed
Ap-submodule of PM,(G). If o(P) = F contains some compact perfect
metrizable set then P and P. have £°° as a quotient and P does not have
the WRNP.

That PMy(F') does not have the RNP if F' contains a compact perfect
set and G is arbitrary abelian is a known result (see F. Lust-Piquard [P2]
for much more). The fact that PM,(F') does not have even the WRNP is
a new result, even for G abelian second countable and p = 2. Moreover,
Theorem 1 cannot be much improved since P = PMy(T) is isometric to £°°.
If F C T is a perfect Helson S-set then PMy(F) = M(F') does not contain
£ (but only has ¢>° as a quotient).

If F C G is closed let PM,,(F) = w*-cllin{\,0, : x € F}, Cp(F) =
Cp(G) N PM,(F), Cp(F) = Cu(G) N PM . (F) where, following Dela-
porte [De2], let Cp(G) = {® € CV, : &' € PF, for &' € PF,} C PM,
where PF, = normcl \,(L'(G)). Furthermore, let PM,.(F) = PM,(F) N
(PM,(G))e and PM .o(G) = PM po (F) N (PM,(G))e.

COROLLARY A. Let G be second countable, F C G closed and Q) be any
of the eight spaces (PMp.(F))e C PMpo(F) C Cpu(F) C PMpy (F) or
(PMp(F))e C PMpo(F) C Cp(F) C PMy(F). If either (a) or (b) of the
main theorem hold for x and F then Q/Wg(x) has {>° as a quotient and
TIM g(z) contains F.

We next define, following Delaporte [Del] the 8 (strict) topology on
CVy(G) by &, — @ iff ||(Po — P)P'|| — 0 for all ¢’ € PF, and get

COROLLARY B. Let G be second countable, Q@ C C,(G) a (-closed Ap-
submodule of PM,, (Qg(®) = B-cl(Ay, - @) for & € C,(G) is such) and F =
o(Q). If (a) or (b) of the main theorem hold then Q/Wq(z) and Q./Wq. (x)
(a fortiori Qc/My(F')) has €°° as a quotient and TIM (x) contains F.

We further improve, in a sense, a result of R. E. Edwards and J. F. Price
about elements which belong to () {PM ¢(F) ~ Ag(M(F))}.

In the end we show an easy method to construct sets F' C G, for abelian
G, such that if P = PMy(F) then P/M>(F) has > as a quotient yet
P = Wp(x) for many x. We further note that Theorems 6 or 12 imply that
the function algebra A},(F') = A, /Py is not Arens regular for certain sets F.

The reader who will go through the proof of our Theorem 1.1 of [Gr2],
which is used in Theorem 6, and that of Theorem 12 will note our indebt-
edness to H. Rosenthal’s fundamental ¢! theorem (see [Ro]).

We have the following open questions:
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(a) Characterize closed sets in R™ (or T™) for which PM,.(F')/M,(F)
or PM,(F')/M,(F') have > as a quotient.

(b) A brilliant result of T. Korner [Ko] as improved by Saeki [S] shows
that every nondiscrete abelian G contains a compact Helson set F' which
disobeys synthesis. If P = PMo(F), does P/Wp(x) have £>° as a quotient
for some = € F?

(c) Do there exist perfect subsets F' of R or T such that if P = PM,(F)
then P/My,(F) (or P/Wp(z) for some x € F) is an infinite-dimensional
norm separable Banach space?

Many thanks are due F. Lust-Piquard for her kind advice on the editing
of this paper.

0. Definitions and notations

(a) Notations and remarks on locally compact groups. Throughout let
G be a locally compact group with identity e and fixed left Haar mea-
sure A\ = dz and LP(G), 1 < p < oo, the usual complex-valued function
spaces (see Hewitt-Ross [HR], Vol. I) with norm ||f|, = ([|f[? dx)'/P if
p < o0 and ||f|lec = esssup|f(z)|. If FF C G is closed let C.(F'), Co(F),
UC(F), C(F) denote the spaces of complex continuous functions on F:
with compact support, which tend to 0 at infinity, are bounded two-sided
uniformly continuous, are bounded, respectively (all equipped with || o
norm). WAP(G) C C(G) denotes the weakly almost periodic functions on
G. If f € C(G) then supp f = cl{z : f(x) # 0} where cl denotes closure (in
G in this case). C denotes the field of complex numbers.

If F is locally compact, M(F) denotes the space of complex bounded
measures on F' with variation norm [HR]. Thus M (F) = Cy(F)*, where X*
always denotes the dual of the normed space X. If FF = G we sometimes
suppress G and write C, Cy, C, L, etc. instead of C.(G), Co(G), C(G),
L?(G), ete.

If f,g are complex functions on G and pu € M(G) let: fV(z) = f(z™1),
f(x) = fla=h), (fxg)(x) = [gly ") f(y) dy, (uxf)(x) = [ fly~"z) du(y)
whenever these make sense as in [HR]. If U C G, 1y (z) = 1 or 0 according
asx € Uor x ¢ U, and A(U) is the Haar measure of U. Further, let
(Lo f)(y) = flzy) and (rof)(y) = f(yz) for z,y € G.

If F,H C G then inty(F) denotes the interior of F' in H. Thus z €
inty(F) iff : € UNH C F for some open set U in G. Set G ~U = {x €
G:x¢U}.

We follow all other notations on groups and convolutions from Hewitt—

Ross [HR].

(b) Notations and remarks on A,, PM,, CV,. We generally follow Herz
[Hz1, 2] for notations on A,, PM,, C'V, except when otherwise stated. For
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the reader’s benefit and in the interest of clarity we state below some defi-
nitions and results, some of which are stated in [Hzl, 2] in slightly different
form than needed here.

A,(G): For 1 < p < oo, let A, = A,(G) be, as in [Hzl|, the Banach
algebra of functions f on G which can be represented as f = > °_ | uy, *x v,
where u,, € L” (G) and v, € LP(G), with 32°% |Jup ||y lvnll, < o0, 1/p +
1/p" = 1, with norm |[|f[|a, being the infimum of the last sum over all
representations of f.

Sh(z): If x € G define S%(z) = {v € A, : v(z) = |v|]| = 1} and
S%(e) = S% (the set of “states” of A,) where ||v|| stands for ||v|4, or other
norms, obvious from the context.

If EC Gisclosed set Ip ={ve A, :v=00nFE} and Jg = {v €
A,NC:(G) : ENnsuppv = 0}. If J C A, is any closed ideal whose zero set
is Z(J) ={z € G:u(x) =0forallu € J} = E then Jg C J C Ig (see
[Hz1]).

CV,(G) (denoted by CONV,(G) in [Hzl]) is the algebra of bounded
convolution operators ¢ on LP(G) with operator norm. Thus if & € CV,,
then @(f xv) = (@f) *v for all f € LP and v € C.(G). If PM,(G) = u.w-
cl\,(M(G)) then A,(G)* = PM,(G) and (PM, u.w) = (PM,,w*) (i.e. the
u.w-topology restricted to PM, coincides with the w*-topology, see [Hzl],
p. 116, Pier [Pi], p. 94, Prop. 10.3). Furthermore, both PM, and CV, are
A,-modules (see [Hzl] and Derighetti [Der|, pp. 8-9) and if & € PM,, and
u,v € A, then (u-®,v) = (P,uv). If G is amenable or p = 2, and in many
other cases, PM,(G) = CV,(G).

If p € M(G) then A\, € PM,, is given by (Apu)(f) = p* f for f € LP.
We will omit p at times, and write A(n). If x € G, then §, € M(G) is the
point mass at x and we write d, instead of A,d, at times.

If & € CV,(G), define the support of ¢ ([Hzl], p. 116), supp P, by:
If w € LP then = ¢ suppu iff there is a neighborhood V of z such that
Juvdx =0 for all v € C, with suppv C V. Define supp® by: z= & supp @
iff there is a neighborhood U of e such that = ¢ supp®(u) for all u € C.
with suppu C U.

It is shown in [Hzl], p. 120, that for p € M(G), supp Appt = supp p (as
a measure) and (Apu,v) = [vdp for v € A,. Moreover, if v € A, and
¢ € CV, then suppu - @ C suppu Nsupp @ ([Hzl], p. 118).

Let P C CV,(G). Define

o(P)={z: )\, € P}, P.=ncl{® € P :supp® is compact}

and PM,. = PM,.(G) = (PM,(G))., where ncl denotes norm closure.
Clearly o(P) = o(P N PM,). Furthermore, let

Ep(z) =ncl{® € P:x ¢supp®}, Wp(z)=C\,d, + Ep(x).
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(Ep(x) is sometimes called the null-ergodic space of P at x.) Note that
P, C PM,(G) always holds. Indeed, if ¢ € C'V,, has compact support then
by [Hzl], p. 117, @ is the ultrastrong (hence u.w) closure of {\,(w) : w €
Ce(G), | Ap(w)]| < [|®]|} and PM,, is u.w-closed in C'V,.

For closed F' C G, define

CV,(F)={® € CV, :supp® C F},
PM,(F)={® € PM, :supp® C F},
PM . (F) = w*-cllin{\,6, : € F'},
M,(F) =ncl{\pp: p e M(F)}.
If P C CV,(G) is an Ap-submodule and z € o(P) let

TIMp(z) = {tp € P* : p(Npds) = 1 = |||,
Y(u-®) =(P) for all @ € P, u € Sh(x)}
and TIMp(e) = TIMp. (TIM from topologically invariant mean.) If p = 2

~

and G is abelian and P = PMo(G) with F*P = L*>(G), where F denotes

Fourier transform, then
TIMp(a) = F*{ € L(G)" : (k) = w((@f) D),
forall 0 < f € L'(G) with [ fdzr =1, and h € LOO(G)}.

We stress that we usually omit G and write PM,, PM,., CV,, etc.
instead of PM,(G), PM,.(G), CV,(G), etc.

(c) Some remarks on Banach spaces. Let £>° be the space of complex
bounded sequences x = (z,,) with ||| = sup |z,|. Define by ¢ (resp. ¢):
{z = (z,) € £ : lim,, z,, exists (resp. lim,, z, = 0)} C £>°.

Let F={F e(>**:F(1)=1=||F||, F=0oncp}.

Note that F is as “big” as it can be, since SN ~ N C F and card F =
2cardR — card (% where R denotes the real line. F is a convex w*-compact
perfect subset of (£°°%, w*).

Note that if G is second countable then CV,,(G) is isometric to a subspace
of £ (if {f,} and {g,} are norm dense sequences in the unit ball of LP(G)
and L” (G) respectively, then, for & € CV,, let (t®)(n,m) = (Pfpn,gm) €
(N x N) C £).

Hence the assertion “P/Wp(z) and P/M,(F') have {>° as a quotient”
means, since P C ¢°°, that these spaces are as big (and as complex) as they
can be. If Y is any norm separable Banach space, or any dual of such, then
since Y C ¢, there is some subspace X C P/Wp(z) which has Y as a
quotient.

We follow Rudin [Ru2] in notations for normed spaces. If X is a Banach
space and K C X* we say the K contains F if there is an onto linear
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bounded map t : X — £°° such that t* : /*°* — X* which is easily seen
to be a w*-w*-continuous norm isomorphism into (see sequel), satisfies in
addition t*(F) C K.

Let X,Y be Banach spaces, t : X — Y a bounded linear map (an
operator for short). ¢ is an isomorphism (into or onto) if for some a,b > 0,
allz|| < ||tz]] < bljz|| for all x € X. If t : X — Y is an onto operator then
X/t71(0) # Y (are isomorphic Banach spaces). Furthermore, if Yy C Y is
a closed subspace then X/t~ 1(Yy) ~ Y/Yp, since if s : Y — Y/Yj is the
canonical map then (st)~1(0) = ¢t=1(Yp).

Hence if ¢t : X — /°° is an onto operator then X has the quotient
X/t71(0) isomorphic to £*°, and conversely. In this case for any closed
subspace W C t71(0), X/W has X/t71(0) ~ ¢ as a quotient (X/W is
always equipped with the quotient norm).

If X C Y are Banach spaces and X has /*° as a quotient so does Y,
since any operator ¢t : X — £°° admits an extension operator t; : Y — ¢
by the injectivity of £*° (see [LT]).

If X is a Banach space and K C X* then w*-seqcl K = {y* € X* : y* =
w*-limz} for some sequence {z}} C K}. (y* = w*-lim, ) iff y*(z) =
lim,, z} (z) for all x € X.) This is the w*-sequential closure of K in X*.

If B ¢ X then ncl B is the norm closure of B in X; if B C X™* then
w*-cl B is the w*-closure of B in X*. lin B is the linear span of B.

I. When P has (> as a quotient. Let P C PM,(G) be a w*-closed
Ap-module with o(P) = F. If F' contains some compact perfect set then P
cannot be norm separable since ||[A,0; — A\pdy || > 1if z,y € F and = # y.
If G is second countable then P is the dual of the (norm) separable space
Ap,/J (where J = (P)y). By Stegall’s theorem ([DU], p. 195), P does not
have the RNP.

The dual X* of a Banach space X has the weak RNP (WRNP) iff X
does not contain an isomorph of £*. R. C. James has constructed separable
Banach spaces X which do not contain ¢! and such that X* is not norm
separable, i.e. X* has the WRNP but not the RNP ([DU], p. 214).

We will prove that if G4 (i.e. G with discrete topology) is amenable
and F' contains a compact perfect metrizable set then P cannot be a James
space, in fact P cannot have the WRNP, thus has £°° as a quotient. This
result, which is new even if p = 2 and G is abelian, cannot be much improved
since PM5(T) is isometric to £°°.

We use in the proof a beautiful result of E. Saab [Sa] which states that
the dual space X* has the WRNP iff for every w*-compact set M € X*,
the restriction of any z** € X** to (M, w™*) has a point of continuity.

THEOREM 1. Let G be amenable as a discrete, locally compact group. Let
P be a w*-closed Ap-submodule of PM ,(G). If o(P) contains some compact
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perfect metrizable set then P does not have the WRNP, and both P. and P
have £2° as a quotient.

Proof. Let K C o(P) be perfect, metrizable and compact and let
the countable set S7 C K be dense in K. Let H be the group generated
(algebraically) by S;. Then 1y is a positive definite function on Gg4 (which
is amenable). Hence the linear functional F' defined on the dense subspace
> Ny, o € C, € G, n > 1} of PFy(Gq) (with PM3(Gq)
norm) by (F,>, a;\05,) = > . o;lg(x;) is continuous and in fact || F|| =
1# By (cs) = 1. Thus

‘(F;a)\csgg)‘ < H ;amm

for all a; € C, x; € G, n > 1. Tt is, however, well known (see for example
[DR2], pp. 437-438) that

QWA gH QA
DILECE N DD

But Herz’s main theorem [Hz3] shows that the embedding PM, C PMs is
a contraction if GG is amenable. It follows that

(.3 )| = | antuen)| < | i,
i=1 =1 i=1

Thus F can be extended as a continuous linear functional Fy on P. Consider
now Fy restricted to the w*-compact set Kp = {A\J, : x € K}, a subset
of the unit ball of P. (Recall that z — \,0, from G to (PM,,w*) is
bicontinuous and one-to-one.) Then, if S = H N K, for each z € K we have
(Fo,\dz) = (FyAdz) = 1g(z). The set S is a countable dense subset of K,
since S7 C S. And by the known remark that follows this proof, K ~ S is
also dense in K. Hence 1g, as a function on K, has no point of continuity.
Consequently, the functional Fj restricted to the w*-compact set (Kp,w™*)
has no point of w*-continuity. By Theorem 1 of E. Saab [Sa] the Banach
space P does not have the WRNP. (Since P is w*-closed, it is the dual of
the Banach space A,(G)/J where J = {v € A, : (?,v) =0 for all € P}.)
Hence by a well known theorem of H. Rosenthal, A,/.J contains a subspace
L isomorphic to £* ([Ro], p. 808). Thus L* is isomorphic to £*°. Let now
t : P — L* be the restriction map (t@,z) = (®,z) for all x € L. Then ¢
is an onto continuous linear map. Clearly PM,.(K) C P, and PM,,(K)
(hence by injectivity P.) has £>° as a quotient. m

PF>(Gq)

PFy(G)

PM,(G)

Remarks. 1. If K is locally compact with no isolated points and
S C K is countable then K ~ S = S is dense in K. If not, K ~clS; # 0 is
open and K ~clS; C K~ 51 =5. Thus K ~ cl 5] is countable and locally
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compact. By Baire’s theorem there is some xg € K ~ ¢l .57 which is open in
K ~ ¢l Sy, hence in K. But K has no isolated points.

2. It can be shown that if G is not metrizable and o(P) contains any
nonvoid Baire set in G (as in [HR], (11.1)) and Gq4 is amenable then P does
not have the WRNP.

3. (a) If F C G is a perfect Helson S-set then PMo(F') does not contain
an isomorph of ¢°°, since M (F') and all its closed subspaces are (while £*°
is not) weakly sequentially complete. Yet PMo(F') has £ as a quotient.
PM(F) is not, though, a quotient of ¢*° since by H. Rosenthal’s theorem
([DU], p. 156), PMo(F') would be reflexive, hence by a theorem of Glicksberg
F would be finite.

(b) If F C R is an ultrathin symetric set (see Thm. 12) then ¢y C
PMy(F) by Y. Meyer’s theorem (see [P3], p. 201) hence £ C PMy(F') (see
[DU], p. 23).

II. When P/Wp(x) has {> as a quotient

(a) The case that 1 < p < oo. The main result of this section is Theo-
rem 6. We need in its proof some properties of norm closed A,-submodules
P of CV, = CV,(G) (or of PM,, = PM,(G)) and of the null-ergodic sub-
spaces of P at x, Ep(x).

PROPOSITION 1. Let P be a norm closed A,-submodule of CV,(G) and
a € G. Let S C S%(a) have the property that for any neighborhood V' of a
there is some v € S such that suppv C V. Then Ep(a) = ncl{® —u - P :
uwe Sa), € P} =nc{® —u-d :uec S, & e P} Consequently,
TIMp(a) = {¢ € P* : ¢(0a) = 1 = [|¥], ¥(Ep(a)) = 0}.

Remark. If G is amenable then S = 5% (a) C S%(a) satisfies the above
condition.

Proof of Proposition 1. If ® € P and a & supp® let v € S be
such that supp® Nsuppv = (. Then by [Hzl], Prop. 10, p. 118, suppv - &
=(. But v-® € PM,. Thus v-® =0 by [Hzl], p. 101, and d =P — v - .
Thus Ep(a) Cnc{® —u-P:ue S, &€ P}.

Let now @ € P and u € S%(a). Let v € A, NC; be such that v =1 on a
neighborhood V' of a. Then for any w € A, with suppw C V one has

(e-—u-P)—v- (P—u-P),w)=(P—u-P,w—ovw)=0

since v = 1 on supp w. It follows by [Hzl], p. 101, that a ¢ supp[® —u - P —
v+ (@ —u-P)|. Thus if we show that (v —uv)-® € Ep(a) it will follow that
¢—u-¢ € Ep(a). Now (v—uv)(a) =0 and v—uv € A,. Since points are sets
of synthesis ([Hzl], pp. 91-92), there is a sequence v,, € A, N C, such that
v, = 0 on a neighborhood V,, of a and such that |jv, — (v — uv)|| — 0. But
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then a & v, -® ([Hzl], p. 118), v,,- @ € Ep(a), and ||v,- P — (v—uv)-P| — 0,
since C'V, is an A,-module. Thus (v —wv) - @ € Ep(a). =

PROPOSITION 2. Let P be a norm closed Ap-submodule of CV,,. Then
Ep (a) = ncl{® € P:a ¢ supp®, supp® is compact}.

Proof. By definition Ep (a) = ncl{® € P, : a & supp®}. It is thus
enough to show that any &g € P. such that a & supp @g can be approximated
in norm by elements @ € P with compact support such that a & supp ®.

Since &y € P,., there are @, € P, with compact support such that
||@,, — @|| — 0. Let vy € A, N C. satisfy vg = 1 on a neighborhood of a and
supp vg Nsupp Py = 0. Thus supp vy - Po =  ([Hzl], p. 118) and vy - Py €
PMp. Thus Vo - @0 =0.

Let now v, € A,NC. be such that v,, = 1 on a neighborhood of supp ¢,,U
supp vg. Then v, -®,, = &,, and (v,,—vg)- Py, = P, —vo- Py, — Po—vo- Py = Do,
in norm. But a ¢ supp(v, — vp), hence a & supp(vy, — vg) - Pp,. m

PROPOSITION 3. Let P,Q be A,-submodules of PM,(G) such that P is
w*-closed, @Q is norm closed and P. C QQ C P. Let F = o(P). Then for any
a € F, M,(F)CCA, ® Eg(a), and the sum is direct.

Proof. It is enough to prove that for any probability measure pu €
M(F), \v = Xy — p{a}d,) belongs to Ep, (a) C Eg(a) (we write A instead
of A\,). Let ¢ > 0. There is by regularity a compact K C F ~ {a} such that
lv—vi|lamry < € where v (B) = v(KNB) for all Borel subsets B C G. But
then [|A(v — vk )llpym, < ||V —vi||mr) < €. Since supp Avg = supp vk (as
a measure), a & supp AVg. It is hence enough to show that \vg € P. It will
then follow, since supp A\vk is compact, that Avg € P, hence A\vg € Ep, (a).

Let vg = v(K) lvg. There is a net v, of convex combinations of {4, :
z € K} C P such that [vdv, — [vdy for all v € Co(G), a fortiori for
v € Ap. Thus Avy — Ay in (PM,,w*). Thus Avy € P since P is w*-closed
and \vg € P.

To show that CAé, @ Eg(a) is a direct sum let V,, be a base of neighbor-
hoods at a and v, € A, be such that supp v, C V, and ||v,] =1 = v4(a).
Then [jvy - @|| — 0 for any ¢ € P such that a ¢ supp®, hence for any
¢ € Ep(a), and a fortiori for any @ € Eg(a). Yet vy - Adg = Ag. m

Remark. It follows that CAd, @ Eg(a) is a norm closed subspace of Q.

The crux of the proof of the main Theorem 6 is in fact included in the
proof of the next:

THEOREM 4. Let G be a second countable locally compact group. Let P,
Q be Ap-submodules of PM ,(G) such that P is w*-closed, @ is norm closed,
and P, C Q C P. Let Sp and Sq be separable linear subspaces of P and
Q respectively, and define Wp = ncl(Ep + Sp), Wg = ncl(Eq + Sg) and
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F =o(P). If e € inty(F) for some closed nondiscrete subgroup H C G,
then P/Wp and Q/W¢q have £ as a quotient and both TIMp and TIM ¢
contain F.

Remark. The main part of Theorem 4 is the Q/W¢ part. To prove it
we need first to prove the P/Wp part and using this, we show that Q/Wg
has /°° as a quotient.

Proof of Theorem 4. Let
J=(P)y={ved,: (v,0) =0 for all € P}.

Then by duality P = (A4,/J)* and J is a closed ideal whose zero set is
F =o(P). (Thus Jp C J C Ip, see [Hzl], p. 101.)

IfveA,setv =v+J e A,/J with quotient norm |[v'|| = inf{||v —u] :
u € J}. If & € P then (@,v") = (P, v) is well defined and |(&,v")| < ||@||]]v']].
Let ve S§ ={ve A, :1=|v|| =v(e)}. Then for any u € J, since e € F,
1=wv(e) +ule) < |lv—ul.

Thus 1—v(e) <inf{||jv— ul|:ue J}=||v'|| <||v]|=1 and v'(e)= 1= [|v'|,
where we define for x € F, v'(x) = (A, V") =v(z). (For z € F, v — w'(x)
is a multiplicative linear functional on the Banach algebra A,/J.

Since S% is a convex set, it follows from the above that (S%) = {v
S%} is a convex subset of the unit sphere of A,/J.

Since P C PM,(G) and also P = (A,/J)*, both algebras A, and A,/J
(which is a function algebra on F') act on P, namely:

(W, ®,w") = (B,0'w') = (P,vw) = (v-P,w) forv,w € A, and & € P,

the last two expressions being independent of which representatives v, w of
v',w’ (resp.) we chose, since @ € P. Thus v/ - & = v - @ as elements of
(Ap/J)*, which is identified with P C PM,, and [[v" - @| < [|v'||||®]|.

By our Theorem 5 on p. 123 and the remark on p. 122, both of [Grl],
there is some 1y € w*-clS% C PM such that 1 = (9, Ad.) = [[¢bo]| and
(Y0, u - @) = (o, P) for all u € S and ¢ € PM, (we consider A, C PMy).
The restriction 1§ of 1y to P will satisfy, since Ad, € P and |[¢d] < 1,
that 1 = (¥, \0e) = ||d]] and (i, u - @) = (Yo, v’ - @) = (P}, ®) for all
ue SY (e v € (5%)) and & € P. Now, considering (5%)" C P*, we have
Yi € wr-cl(Sh) C P*. In fact, if v, € S are such that (¥, v,) — (1o, P) for
all ® € PM,, then for & € P and u, € J, we have (@,v),) = (D,vq + Uqa) =
(4571104) - (lbO’@) = Wé;@)

Considering (S%)" C P* define A = {¢p € w*-cl(S4)" : v/ - ¢ = ¢ for all
u € (8%)'} € P* where (v -9, ®) = (,u - P) for & € P, u' € A,/J and
Y € P*.

Clearly A # 0 since 1§ € A. Now G is second countable, hence A,
(a fortiori A,/J) is norm separable (since LP(G) is such). Thus S% and
a fortiori (S%)’ is norm separable. We stress that we only need the norm

/

U E
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separability of (S%)" in A,/J, and not the fact that G is second countable,
in the proof.

Let hence a,, € S% be such that {a],} is dense in (S4)". If v/ € (S4)
and |a;,, —u'[| — O then [/(a;, —u)- @[ — 0 for any & € P. Hence if
Y € P* and a), - ¢ = ¢ for all n then v’ -9 = ¢ for all v’ € (S%)’. This
shows that A = {¢p € w*-cl(S4)" : al, - = for all n} = {¢ € w*-cl(SH)" :
Sx*(¢) = 0 for all n} where S, : A,/J — A,/J are the operators defined
by S,(v') = a, v —v'.

We will need in the proof the following which we state as “Claim 5” for
further use:

CLAIM 5. Under the above assumptions, A Nw*-seqcl(S%) = 0.

Proof. Assume that ¢); € A is such that for some sequence v,, € S%,
we have (v),,®) — (¢1,9P) for all & € P. Let r : A,(G) — A,(H) be the
restriction map (rv)(z) = v(x) for all x € H. Then by Herz [Hzl], p. 92,
Theorems la and 1b, r is onto, ||r|| < 1 and r* : A,(H)* — PM,(H) is an
into isometric inclusion (where PM,(H) = {® € PM,(G) : supp® C H};
see [Hz1], Theorem A, p. 91, and note that H need not be a set of synthesis).

Let Vo,U be open in G such that clVy is compact, H NclVy C F,
U=U"1 andeec U CU3CVy. Let vg = ANU) 1y x 1y € Ap(G). Then
vo(e) = 1 = |lvgll, vo = 0 off U2, thus suppvy C clU? C U3 C V and
Vo € Sﬁ

We claim that the sequence r(vgv,,) is a weak Cauchy sequence in the
Banach space A,(H). Let in fact T € A,(H)* and w € J. Then (v -
r*T,w) = (T,r(vow)) = (T,0) = 0, since w = 0 on F' and suppr(vow) =
supp(rvo)(rw) C Vo N H C F. Thus r(vow)(z) =0 for all z € H.

But then vy - 7*T € J° = {& € PM,(G) : ($,v) = 0 forallv € J}.
However, J = (P)g and J° = ((P)o)? = P since P is w*-closed. Hence
vo - r*T € P for any T € A,(H)*. It follows that for any such T,

(T, r(vovn)) = (vo - 7T, v,) = (v - 7*T,v),) — (V1,00 - 7°T).

Hence r(vgvy,,) is a weak Cauchy sequence in the closed subspace of A,(H)
given by A% (H) = ncl{v € A,(H) : suppv C K} where K = HNclVj is
compact.

But A% (H) is weakly sequentially complete by a joint result of ours
and M. Cowling ([Grl], p. 131, Lemma 18) (proved by F. Lust-Piquard
for compact groups H and K = H, [P1], p. 265, Theorem 4). It follows
that there is some uy € A% (H) C A,(H) such that for all T € A,(H)*,
(T, up) «— (T, r(vovy)) = (vo - 7T, v,) — (1,00 - r*T'). Thus

(%) (T,uo) = (Y1,v9 - 7*T) forall T € A,(H)".

But if in addition r*T € P then, since vy € S§ and ¢1 € A, (¢1,v0 -
rT) = (1,04 - r*T) = (Y1, 7*T).
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Let nowa € FNH and T = 9§, € Ay(H)* (a slight abuse of notation).
If v € Ay(G) then (r*04,v) = (dq,7v) = v(a). Thus, r*é, = A, € P, since
a € F = o(P). Hence by (x),

(o) (1,7784) = (1,00 - 7%82) = (Abasuo) = uo(a) ifaec FNH.

Thus up(e) = (¢1,v0 - 7°0.) = lim(de, r(vovy)) = 1 since vov, € S4.
But if a # e and a € F N H, there is some w € S% such that a & supp w.
Thus w - 70, = 0, by pairing with any v € A,(G). Hence by (xx), 0 =
(Y1, w - 1r*8,) = (Y1,7"0,) = ug(a). It follows that ug is not a continuous
function, since H is not discrete by assumption. Yet ug € A,(H) C Co(H),
which is a contradiction. This proves Claim 5.

Continuing the proof of Theorem 4 we first show that P/Wp has £>° as
a quotient. Let {®,} be a dense sequence in Sp. Clearly ¢ € A = {9 €
w*-cl (SR)" = Si*yp = 0 for all n} where S, (v') = al, v’ —v' if v/ € A,/J.
Let 3, = (¥}, ®,) and Ag = {¢p € A : (¢,9,,) = (3, for all n}. Then
g € Ag. Thus A # 0 and AgNw*-seqcl(Sh)" =0, since Ay C A. Clearly
Ay C w*-cl(Sh).

We apply now our Theorem 1.4 of [Gr2], p. 158 (see introduction), to
conclude that there exists an onto operator ¢t : P — £ such that if S =
nellin{(J;~; Si: P} then ¢(S + Sp) C ¢ = {a = (a,) € £ : lima, exists}
and t* : £°°* — P* is a w*-w*-continuous norm isomorphism into such that
t*(F) C Ay. The operator t : P — £ is given by (t®)(n) = (@, u,) where
{ul,} C (S%) is a particular sequence, which is isomorphic to a canonical ¢!
basis. If Xy = nellin{u,,} in A,/J then X, is isomorphic to ¢! and ¢ = i*,
where ¢ : Xy — A,/J is the embedding map.

Note that S}® = a;, - ® — & for & € P and if u € S} and ||a;,, —u'|| = 0
then ||(v'- & — @) — (a],, - & —P)|| — 0. Hence S = ncllin{v' - & - & :u € 5%,
® € P}. But as was seen above, u-® = u/-®if ¢ € P = (A,/J)* and u € S4.
Applying now Proposition 1 we see that S = Ep, hence t(Ep + Sp) C ¢, i.e.
Ep+ Sp C t_l(c).

Thus Wp = ncl(Ep + Sp) has the property that P/Wp has P/t7!(c) ~
¢ /¢ (norm isomorphism) as a quotient (see Section 0). But as is well
known, ¢°°/c contains an isometric copy Y of £>° (by folklore, or see [Gr2],
p. 161). The identity map io : Y — Y has (since ¢*° is injective, [DU],
p. 155) a linear bounded extension i; : £*°/c — Y. Hence P/t~!(c), and a
fortiori P/Wp, has £>° as a quotient.

We now prove the Q/Wg case. Since Sg C Q C P we will choose
in the above proof Sg = Sp and let {®,} C Sg be dense in Sg. Let
t : P — (° be the onto operator constructed above such that t(Ep+Sg) C c,
t* 1 £°°* — P satisfies t*(F) C Ag and P/t~1(c) ~ £>°/c is isomorphic. Let
IT : (> — (> /c be the canonical map. Then for any u € S% and ¢ € P,
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It(u - & — &) = 0, thus ITt(u - ) = IItd. Now u-P € P. C @ since
A, N C,(G) is dense in A,(G). It follows that ITt(Q) = ITt(P) = (> /c.

Let now p be the map IIt restricted to ). Since Eg C Ep we have
o(Eq) C Ht(Ep) = {0}. Also, since Sg C Q, 0(Sg) = {0}. Hence Eq +
Sg C 071(0), and Wg C 071(0). But o(Q) = £>/c, hence Q/o~*(0) ~
£ /c. But, as above, £>°/c contains a copy of £>° and thus has £*° as a quo-
tient. It follows that Q/Wg has Q/0~'(0), and a fortiori £°°, as a quotient.

Define now i : @ — P as the inclusion map, i® = &. Clearly o(®) =
ITti(@) if @ € Q. Let TIp = {¢p € P* : w- = for all u € SH} (T1 for
topologically invariant), and let T'Ig be defined similarly.

We claim that ¢* restricted to T'Ip is a w*-w*-continuous isometry such
that ¢*(T'Ip) C Tlg and i*(TIMp) C TIM g. To show this let ¢ € T'Ip and
Dy € P, ||®o|| = 1, such that (¢, Do) > ||¢|| —e. Let u € S% N Ce(G). Then
w- € Po C Q, |[u-y| < |@ol] = 1 and (", u- o) = (1, u-Bg) = (16, B).
But [|i*|| < 1. Thus [|i*¢| = ||¢|| if ¥ € TIp. Let now ¢ € Tlp, u € S%
and @ € Q. Then (i*¢Y,u-P) = (Y, u-P) = (P, P) = (¢, iP) = (i*¢, P), and
i*(Tlp) C Tlg.

If now ¢ € TIMp, then (¢,d.) =1 = [[¢y||. But \é. € P. C Q. Hence
(%10, Ade) = (¥, Noe) = 1 = ||¥|| = ||i*)]|, which proves our claim.

Recall now that {&,} is dense in Sg C Q and (¥}, ®,) = B,. If ¢ €
TIMp and (®,) = B, for all n, then (i*¢,®,) = (¢, P,) = [,. Hence
i*{Y € TIMp : (¢, P,) = By, for all n} C {¢Y € TIM ¢ : (¢,P,,) = 3, for
all n}.

But ¢* : £°°* — P* was a w*-w*-continuous norm isomorphism into such
that t*(F) C Ag C {¢ € TIMp : (3, ) = By, for all n}.

It follows that i*¢* restricted to the linear span of F (which coincides with
cg C £°°* and is hence w*-closed) is a w*-w*-continuous norm isomorphism
into T'1g such that i*t*(F) C {¢ € TIM g : (¢, P,) = (3, for all n}. m

Remark. If we make use of the full force of Theorem 1.6 of [Gr2] we
can see that even /W, has £>° as a quotient where W, is a much larger
space than Wgq (where even W(,/Wq has (°° as a quotient). In fact, if
AC =Cl@ncllin{f — f, : f € £>°, n > 1} C £>° where f,(k) = f(n+ k)
for k > 1, then W, = 01 (AC/c) and Q/o Y (AC/c) ~ £°/AC and this
last has ¢>° as a quotient (see details in [Gr2], p. 162). Here g : QQ — £ is
defined in the above proof.

One of the main results of this section is Theorem 6. The reader will
note that the crux of its proof is contained in Theorem 4.

THEOREM 6. Let G be a second countable locally compact group. Let P
and @ be Ap,-submodules of PM,(G) such that P is w*-closed, Q is norm
closed, P, C Q C P and o(P) = F. Let Sp and Sq be separable linear
subspaces of P and Q respectively, and define Wp(d) = ncl(Ep(d) + Sp)
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and Wq(d) = ncl(Eg(d) + Sg) for d € F. Let H C G be a nondiscrete
closed subgroup, and a,b € G. Then for any d € intemy(F), Q/Wo(d),
P/Wp(d) and CV,(F)/Wp(d) have £> as a quotient, and TIMp(d) and
TIM g(d) contain F. Consequently, P./M,(F), Q/My(F), P/M,(F) and
CVy(F)/M,(F) have £> as a quotient if such a,b,d, H exist.

Remarks to Theorem 6. 1. The onto operator ¢t : Q/Wq(d) — £
constructed is such that the into w*-w* and norm isomorphism t* satisfies
t*(F) C TIM g(d). This also applies to Theorem 12.

2. The fact that Q/Wg(d) has £ as a quotient is a strictly stronger
fact than that Q/M,(F') has such, since even Wg(e)/M,(G) has > as a
quotient if G is abelian, p = 2 and @ = PM3.(G) by C. Chou [Chl]. More
such examples are given at the end of this section.

3. The fact that P./Wp_(d) and P/Wp(d) have £>° as a quotient does
not imply, directly from the injectivity of ¢°°, that Q/Wg(d) has £>° as
a quotient. In fact, if G is abelian and F : L'(G) — Ay(G) is Fourier
transform, let P = PM5(G) and Q = F*~1(C(G)). Then P. C Q C P and
P. # Q # Pif G is not discrete or compact, since UC(G) # C(G) # L>(G).
Furthermore, F*(Ep,(e)) = ncllin{f — I.f : z € G, f € UC(G)} and

F*(Eg(e)) = ncllin{f —®x f: f € C(G), 0 < & € L'(G), [Ddx = 1}
where ncl is in L°(G) norm. Then F*(Ep,(e)) # F*(Eg(e)) (see [LR]).
Let Wg = CAde @ Eq(e), Wp, = CAo. @ Ep,(e). Then Wp, # W¢ and the
fact that P./Wp, has > as a quotient does not imply the same for /Wy,
directly from the injectivity of ¢°°. This is the reason that we phrased
Theorem 6 in terms of the module () with P, C ) C P.

4. The space Wg(d) is not usually w*-closed. In fact, if Q = PM2(G)
then Wg(e) = CAé. & Eg(e) satisfies w*-clWg(e) = @ if G is not discrete,
as can be easily seen from the fact that L>(G) does not admit invariant
means which belong to L*(G).

5. It has been proved by H. Rosenthal that if some operator T': C(K) —
X is not weakly compact where K is Stonean compact Hausdorff and X a
Banach space then X contains a copy of ¢ (see [DU], p. 156, Thm. 10,
p. 180, for W*-algebras, and p. 23, Cor. 6). One may hence be tempted to
show that the canonical map ¢ : Q@ — Q/Wg is not weakly compact and
apply Rosenthal’s theorem. Unfortunately, ) = P. may be very different
from an L*° space or a W*-algebra.

Even in the case that G is abelian and p = 2 and we take P = PMy(G)
then P, ~ UC(G) (are isometric, via F*). Thus P, is not even a dual
Banach space if G is not discrete. Furthermore, if G =R and F = {reR:
0 <z <1} then F*(PM2(F)) C UC(R) is not even a pointwise subalgebra
of UC(R).
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But moreover, if p # 2 and even if G is abelian, then PM ,(G) is strikingly
different from PM2(G). It has been shown by Y. Benyamini and P. K. Lin
in [BL] that if G, Gy are compact abelian and PM,(G1), PM,(G2) are
isometric as Banach spaces then G, Gy are isomorphic (while PM2(G) is
isometric to £*° for any infinite abelian compact metric group G).

6. All our results express the fact that QQ/W¢g and P/Wp have £ as a
quotient. In this connection R. Haydon has constructed in [Ha] a Banach
space C(K), K compact Hausdorff, which has ¢°° as a quotient, does not
contain an isomorph of £>° and yet has the Grothendieck property (i.e. w*-
convergent sequences in C'(K)* converge weakly). See also Talagrand [T].

Proof of Theorem 6. For a € G, let r4,l, : A, — A, be defined
by (rev)(x) = v(za) and (l,v)(x) = v(azx). Then l,,r, are isometric algebra
isomorphisms of A, ([Hzl], p. 97). To see that, note that by [HR], Vol. I,
p. 292, Iy (v* 1) = (Iv) * @ and 74 (v * %) = v * (r,1), where u(z) = u(z™1).
But (raw)” = lo-ru. Thus [[leoflyully = ol llulp = [Jollylla-rull, =
|l |(ra@)¥ ||, for any uw € LP, v € LP. Hence |[lqw]a, < [lw|a, and
rawlla, < |lw|la,. Using this for [,-: and r,-1 we get equality for all
w € Ap. Also clearly, for all a,b € G, rply = lary, loly = lpe and 7474 = Tgp-

It is readily checked, and known, that if J = (P)o = {v € 4, : (P,v) =
0 for all € P} then Z(J) = F and Z(l,r,J) = 2~ 'Fy~'. Furthermore,
if for I C A, we define I = {& € PM, : (®,v) = 0 for all v € I} then
(lyryJ)? = l;-ary—1(P). Since (@, l;ryv) = 0 forallv € Jiff [Frid € Jo=r
ift € r;_ll;‘c_lP =l P (Clearly the last is w*-closed since r%, [}
are w*-w*-continuous isometries onto.) Thus

(%) a 'Fbt = Z(lyryd) = o((larp)?) = a(li—irf-1 P).
Clearly 75(Xo;z) = Aoz and [}(Ady) = Adgs. Also, for any v € A, and
& € PM,, one has [}rj(v-®) = (lo-1rp-1v) - (Iir;®), thus rf R is an Ap-
submodule if R is such. To check this for 7, let u € A,,. Then (r}(v-®),u) =
(@,v(rpu)) = (D, rp((rp-1v)u)) = ((rp-1v) - 7P, u). This readily implies that
(x%) supp(l;r;®) = a(supp®)b  for all € PM,,.
In fact, if z € supp @ and v, - @ — AJ, in w*, then A(dgzp) < 57} (vg - D) =
(lg—1rp=1vg) - (IZrp®), and by [Hzl], pp. 119-120, axb € supp({ir;®). If
y € supp(liry®) then = a 'yb~! € supp(l*_,r;_ lir;®) = supp P and
y = axb.

We now claim that [lr; P, = (Iir; P). C Uir;Q C Uir; P and that
(%) lary Er(z) = Eizrzr(axdb)  if R= P, P or Q.

In fact, if & € P then = ¢ supp @ iff axb ¢ a(supp ®)b = supp(lir;P)
by (#x). Clearly supp @ is compact if supp(lZr; @) = a(supp @)b is compact.
Thus () follows.
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Assume first that d = s € inty (F) and let t = s=1. Then s € sVNH C F
for some neighborhood V of e. Thus e € VN H C tF = o(l; P) by (xx).

Apply now Theorem 4 to the w*-closed A,-module [;P (since e €
inty (tF)). We deduce that Ry = Iy P/lf (Wp(d)) and Ry = I[Q/l;(Wgq(d))
have (> as a quotient since by (xx), I} (Wr(d)) = ncl(Ei:r(e) + I} Sgr) for
R = P or @, and [} SR is separable.

Also, TIM» g contains F if R = P or Q.

Now, again since [} : PM, — PM, is a w*-w*-continuous isometry
onto, we see that R; and Ry are norm isomorphic to U}y P /U5l Wp(d)
= P/Wp(d) and Ul;Q/lLl;Wq(d) respectively. Hence P/Wp(d) and
Q/Wq(d) have £>° as a quotient.

Now [3* is also a w*-w*-continuous norm isometry of PM, onto PM .
Thus (I3*)"'(TIM:r) = I;*(TIM:g) contains F. But since ¢t = s,
I7* TIMy = TIMy(s) = TIMg(s) if U = IR where R = P or R = Q,
since if 1 € TIMy then (I7*, \ds) = (¥, \0.) = 1, and ;5% = Sh(s) =
{ve A, :v(s)=1=|v||}. Hence TIMp(s) and TIM g(s) contain F.

This proves the theorem if d € int gy (F).

Assume now that d € int,pp(F). Let V be a neighborhood of e such
that d € dV NaHb C F. Then a='db~! € a 'dVb' N H C a 'Fb1L.
Hence a=1db™! € inty(a='Fb~'). But by the first part with s = a=1db~!
and since by (), a ' Fb~! = o(I*_,r}_, P), we see that U = I* _,r;_,R/Wg
has ¢*° as a quotient for R = P or @, where we apply (x+*) with z = a1,
y=>b"1and Wg = ncl(Ey s r(zdy) + [3rySr) = nclly vy (Er(d) + Sr).
Also TIMy (zdy) contains F, where V = [;r:R with R = P or Q). Now
since [, r; are w*-w*-continuous isometries onto, by taking images by [;r;
we get R/UryWgr ~ U, hence R/U;r;Wp has £*° as a quotient with R = P
or @, since I;r;Wg = ncl(Er(d) + Sg) = Wg(d), as follows readily from
(#xx). Thus P/Wp(d) and Q/W¢ have £>° as a quotient.

If now L is any normed space such that R/Wgr(d) C L (with R = P or Q)
then by the injectivity of £°°, L has £*° as a quotient. Since Q C P C CV,(F)
we see that CV,(F)/Wg(d) has £*° as a quotient with R = P or Q.

If we apply the theorem with Sp = Sg = CAd4 then by Proposition 3,
M,(F) C CA\oq ® Eq(d) = Wg(d). Since Q/Wg(d) has £°° as a quotient so
does Q/M,(F), hence so do P/My,(F), CV,(F)/M,(F) and (since @ = P,
is allowed) P./M,(F).

Now the argument above for TIMp(s) and TIM g(s) carries over by
taking images by I*_,7;_,. Hence we conclude that TIMp(s) and TIM g(s)
contain F. m

Remark. We have in fact also proved that if {®,,} C Sg is dense in Sg
and Yo € TIM g(d) and (Yo, Py,) = [, then even the set {¢p € TIM g(d) :
(¢, ®,,) = By, for all n} contains F (see the proof of Theorem 4). The reader
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should also note the remarks after the statement of Theorem 4.

The norm closed A,-submodules of PM, in the next corollary are defined
in the introduction.

For the rest of the paper denote for simplicity Wp(z) = CA\pd, + Ep(x).

COROLLARY 7. Under the assumptions on G, H, a, b, as in Theorem 6,
let ' C G be closed and let Q) be any of the eight spaces (PM,.(F)). C
PM pue(F) C Cou(F) C PMp.(F), (PM,(F))e C PM,(F) C Cy(F) C
PM,(F). Then for any d € intomqp(F), Q/Wq(d) (a fortiori Q/M,(F) and
CVy(F)/My(F) if such a,b,d, H ezist) has {>° as a quotient and TIM g(d)
contains F.

Remark. If G is amenable then PM o (F) = (PM,(F)). and PM .. (F')
= (PMp.(F))e.

Our next corollary deals with the case that P C CV,(G) (which may
properly include PM,(G)).

COROLLARY 8. Under the assumptions as in Theorem 6 except that
P C CVy(G) is an ultraweakly closed A,-submodule ([Hzl], p. 116, [Der],
pp. 9-10), the conclusions of Theorem 6 hold for P,.

Proof. Clearly P. C PM,. Let Q = P N PM,. Since PM, is ultra-
weakly closed ([Hzl], p. 91) so is . And since (PM,, w*) = (PM,,u.w), Q
is a w*-closed Ap-submodule of PM,, ([Pi], p. 95). Clearly P, C @ C P and
Q. = P.. Now F = o(P) = 0(Q). We apply our Theorem 6 to Q. m

We apply next our results to 3 (strictly) closed A,-submodules of PM,
(with a view to further applications).

DEFINITION. Following the beautiful thesis of Delaporte [Del] we define
the g (or strict) topology on CV,(G) by: &, — @ in S iff ||(Po—P)P'|| — 0 for
all &' € PF,(G), where PF,(G) and C,(G) are defined in the introduction.

It is shown in [Del], Thm. 2.1, that C,(G) is a norm closed subalge-
bra and an Aj,-submodule of C'V,(G) and PM,.(G) C C,(G) C PM,(G).
Furthermore, (CONV ,(G), 8) and (C,(G), 3) are complete and if W,(G) is
the dual of (PF,(G), norm) then W,(G) can be identified with the dual of
(Cp(G), B) in analogy with the well known theorems of Buck for the abelian
case. (To be consistent with [Del] we note that right and left can be inter-
changed by [Del], p. 8.)

LEMMA 9. Let Q@ C Cp(G) be a [3-closed A,-module (if ¢ € Cp(G) then
Qp(P) = B-cl(A, - @) is such). If P = w*-clQ then P, C Q C P, hence
o(Q) = o(P).

Proof. Let ® € P, C C,(G) have compact support. Let u € A,NC.(G)
be such that u-® = &. Let @, € Q, o, — @ in w* and let w € W,(G) =
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(Cp(G), B)" (the dual of (Cp(G), B) by [Del], Thm. 2.8). Then (w,u - (P —
®)) — 0. Hence & = o(C,, W,)-limu - &,. Now & € P, C C,(G). Hence
¢ € [-cl(A, - Q) C Q (by duality). Hence P. C @ (since norm > 3, Q is
also norm closed).

As for Qp(®) let f-limuy - ¢ = ¥, with u, € Ay. Let w € W,(G) =
(Cp(G),B) and v € Ap(G). Then (w,u(ua® — ¥)) = (wu,u,® — ¥) — 0.
Since u-¥ € Cp(G) we get u-¥ € o(Cp, Wy)-cl(4, - P) = [-cl(A, - @) (since
Cy(G) is B-closed in PM,,, -cl(A, - @) C C,(G), and by duality). =

Remark. If G is in addition amenable then Delaporte has shown in
[Del], Cor. 4.4, that Q = P N Cy(G).

COROLLARY 10. Let G be second countable, H C G a closed nondiscrete
subgroup, and a,b € G. Let Q C C,(G) be a B-closed A,-submodule and
0(Q) = F. Then for any d € intemp(F), Q/Wo(d) and Q./Wq.(d) (a
fortiori Q./M,(F) if such a,b,d, H exist) have {>° as a quotient and both
TIM g(d) and TIM g (d) contain F.

Proof. Let P=w*-clQ. Then P. C Q C P and P. = @), by Lemma 9.
The rest is just Theorem 6. m

Are there any (many) elements which belong simultaneously, for all 1 <
p < 00, to PM,(F) ~ A\,(M(F))? We improve, in a sense, Theorem 5.7 of
Edwards and Price [EP] (see sequel) in the next corollary.

If G is amenable then Herz’s Theorem C [Hz3] allows one to conclude that
PM,(G) C PM,(G)ifl <p<g<2or2<q<p< oo, with contraction of
norms. Furthermore, if ® € PM, then by the definition of support, supp ¢
in PM,(G) is the same as supp @ in PM ,(G). Thus PM,(F) C PM,(F) if
p,q are as above. Consider in the sequel PM ,(G) for all 1 < p < oo to be a
subset of PMs(G). The above observations will now yield

COROLLARY 11. Let G be amenable and second countable, a,b € G, and
H C G a closed nondiscrete subgroup. If F is closed and intgpgp(F) # 0
then, for 1 <p < 2,

(PMp(F))e ~ Ap(M(F)) = (1) {(PMy(F))e ~ A (M(F))},
p<q<2
has cardinality c, and the same conclusion holds for 2 < p < oo with the

intersection taken over 2 < q < p.

Proof. Our main theorem shows that card(PM,(F)). ~ My(F) = ¢
since (PM,(F))c./Mp,(F') has £>° as a quotient and card PM ,(G) = ¢. Since
Ap(M(F)) = Ag(M(F)) for all p, g, the rest follows. =

Remark. Gaudry and Inglis have proved in [GI] that PM ,(T) is not
norm dense in PM ,(T)if 1 <p<gq<2.
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Connections with existing results. In improving theorems of B. Brainerd
and R. E. Edwards [BE], Figa-Talamanca and Gaudry [FG| and J. F. Price
[Pr] (see also [DR]) have proved that if G is noncompact abelian or G is
any compact group, then there exists an operator @ in PM,(G) for all
1 < p < oo which is not convolution by a bounded measure. Furthermore,
Cowling and Fournier prove in [CF], p. 65, that for any locally compact G, if
lgt =271 < |p~! — 27! there is some @ € CV,(G) such that & ¢ CV,(G).
Any such @ clearly cannot be convolution by a bounded measure. Cowling
and Fournier are even able to control, in a sense, the support of @ (see
further remarks).

Furthermore, it has been proved by J. Dieudonné ([Pi], p. 85, Thm. 9.6)
that if G is a nonamenable group then for every 1 < p < oo there exists
a positive unbounded Radon measure p on G such that the convolution
operator (Ap)(f) = p=* f for f € L? is in CV,(G). Clearly A\u ¢ A(M(Q)).

All the above constructed operators belong to PM ,.(G) (some even to
M,(G)). If we apply our Theorem 6 with P = PM ,(G) we get a much more
powerful result, in a sense, namely that if G is second countable nondiscrete
then PM,.(G)/CA,0, @ Ep, (x) for all z € G (a fortiori PM,. /M,(G)) has
even (the nonseparable) /> as a quotient. Hence {& € PM,.(G) : & ¢
M,(G)} is big. This also improves Ching Chou’s result in [Ch2] who shows
that if G is second countable and P = CV,2(G) then P/CA2d. + Ep(e)
has ¢ as a quotient and P./C\3d. + Ep_(e) is not norm separable (see
[Ch2], Thm. 3.3 and Cor. 3.6). Chou uses C*-algebra methods which are
not available if p #£ 2.

As for controlling the supports of elements ¢ € C'V,(G) such that ¢ ¢
MM (G)), the following should be noted:

If G is any locally compact group and U C G is any open set with
F = clU compact, R. E. Edwards and J. F. Price construct in [EP], p. 269,
norm separably many elements ¢ € PM,.(G) such that supp® C F and
P ENM(QG)), provided U admits a Rudin-Schapiro (URS) sequence ([EP],
p. 267). In fact, moreover, part of their Theorem 5.7 shows that there are
in this case k, € C.(G) with suppk, C U and there is a continuum of
sequences w = (wy,) €} such that the series Y 7, wyA(ky) =D, € PM,(F)
(convergence in PM,, norm for every 1< p< o0), yet @, ZAX(M(G)). If G
is abelian, URS sequences exist for all open sets U. But if GG is arbitrary,
necessary and sufficient conditions for the existence of URS sequences for a
given open set U seem to be unknown (see [EP], p. 267 and pp. 288-293).

Furthermore, Cowling and Fournier are even able to control the support
of the elements @ € C'V,, @ ¢ CV,, mentioned above by showing that supp ¢
can be chosen in any symmetric Cantor set ([Ka3], p. 35) if G = T (the
torus), or if G is not unimodular supp @ can be chosen in the kernel of the
modular function.
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If we restrict ourselves to fixed p, and G second countable, then our
Theorem 6 yields a much more powerful result, in a sense. We only assume
that F' is closed and int,g, F # 0 for some nondiscrete closed subgroup
H, and some a,b € G (which holds e.g. if int FF # (J; note that we need
no Rudin—Schapiro sequences at all), and we get the existence of plenty
(PM po(F)/Mp(F') is not even separable) of elements in PM p,.(F") which do
not belong to A(M (F')). Our results, however, do not cover the case that G
is discrete or that F' C T is a Cantor symmetric set unless p = 2.

In regard to Theorem 1, it has been shown by Lust-Piquard [P2] that if
G is abelian and F' C G contains a perfect set then CV,(F') does not have
the RNP.

(b) The case that p = 2. If p=2 and F contains an “ultrathin symmet-
ric” (see sequel) subset of R or T then the result of Theorem 6 remains true.
Thus F' can be much thinner in this case. We use in the proof a powerful
result of Y. Meyer ([Me], p. 246), namely:

THEOREM (Y. Meyer). Let G = R, and S C R an ultrathin symmetric
compact set. If fr € Aa(S) is such that || fxl|a,s) = 1 for all k > 1 and
| frll 4z () — O for all compact K C S not containing 0, then {fi} contains
a subsequence equivalent to a canonical £ basis.

Here A3(F) = A2(G)/IF is the usual quotient algebra, for any closed
FCAdG.
We do not know if Y. Meyer’s theorem is true if p # 2. The proof of
Theorem 12 works for all 1 < p < oo for which Y. Meyer’s theorem holds.
We thank F. Lust-Piquard for pointing out to us Y. Meyer’s result (also
used in [P3], p. 200).
o0

DEFINITION. Let t; > 0, for j > 1, be such that ¢, > >°.2 ., t; for all
n > 1. Let S be the compact set of all reals t = Z;’il gjt; where e; = 0
or 1. S is then called a symmetric set. If in addition Y po | (tx+1/tx)? < 00
then S is called an wltrathin symmetric set ([Me] or [GMc], p. 333). Clearly
any symmetric set contains an ultrathin symmetric subset.

THEOREM 12. Let G be an arbitrary locally compact group and let P,Q C
PMs(G) be As(G)-modules such that P is w*-closed, @ is norm closed,
P, C Q C P and o(P) = F is metrizable. Assume that R, the real line,
s a closed subgroup of G, S C R is an ultrathin symmetric set and a € G.
If aS C F or Sa C F, then Q/Wq(a) (a fortiori Q/My(F)) has £ as a
quotient and TIM g(a) contains F.

Proof. Clearly S C RNa 'F and if b = o' then o(l;P) = bF and
l;Wp(a) = Wiz p(ba) = Wiz p(e) by the proof of Theorem 6. Hence by the
same proof we can assume that S C RN F, o(P) = F and a = e.
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Let V,, be a sequence of neighborhoods of e such that Vn2+1 C Vp, clV,
is compact for all n, and V,, N F is a neighborhood base in F' of e. Let
vp, € A(G) (we omit 2 and write A(G) = A2(G) and PM+o(G) = PM(G))
such that suppv, C V,, and v,(e) =1 = |jv,||.

Let J = {v € A(G) : (&,v) =0 for all € P}; thus P = (A(G)/J)*. Let
A'(F) = A(G)/J. Then A'(F) with quotient norm is a function algebra on
F which acts on P. In fact (as in the proof of Theorem 4), if v € A(G) and
v/ =v+ J with [[v/| = inf{|jv+u| : w € J} then for € P, v-® =0 -
and [[o/ - @] < [/|[|@]]. Also v} (e) = 1 = [[o.

If ® € P and e & supp @ then v}, - @ = 0 if n is such that V,, Nsupp @ = ()
(see [Hzl], p. 118). Thus |[v], - @|| — 0 for all € Ep(e).

We first show, using Y. Meyer’s theorem, that {v/,} contains a sub-
sequence equivalent to a canonical ¢! basis. Let 7 : A(G) — A(R) be the
restriction map, i.e. (rv)(xz) = v(x) for x € R. Then r is onto and ||r|| < 1 by
[Hz1], Thm. 1 (which holds for all 1 < p < 00). Thus ||rv,| =1 = (rv,)(e)
and supp rv, C V, NR.

For closed L C G, let I, = {v € A(G) : v = 0 on L}; similarly, for
LCR,If ={ve AR):v=_0o0n L} These are the biggest ideals in
A(G) and A(R) respectively whose zero set is L. Let A(L) = A(G)/Ir and
AR(L) = A(R) /TR

Let ¢ : A(R) — A®(S) be the canonical map. Then grv,(e) = 1 =
llgrv,|| (see Thm. 4). If K C S is compact and e ¢ K then V, N K = ()
for n > ng, thus |lgron || azx) = 0. Hence ||grv, || az(x) — 0 for all compact
K C S such that e ¢ K. It now follows from Y. Meyer’s result that there is
a subsequence n; and some ¢ > 0 such that

k k
| astaron)| ., 2 D Il
J=1 1

for all k£ and complex aq, ..., ak.

Now if v € A(G) then ||v'||4(py = inf{[|v +u|| : v € J} > inf{|Jv + ul| :
u € Ig} (since J C Ip C Ig) > inf{|rv+ru| : v € Ig} > inf{||rv + w]| :
w € I§} (since rIs C I§) = |lqrvl| az(s)-

It now follows that for all £k > 1 and a4, ..., a; € C we have

k k
!
v, >c ol
HZ 3 gy Z €2 N
Jj=1 Jj=1

We now construct an onto operator ¢t : P — £°° as follows:

If ¢ € Plet (tP)(j) = (P,vy,). Since [lvy, || =1 = vy (e) for all j,
t(P) C £, ||t]| < 1 and t(A20.) = 1 (the constant one sequence in ¢*°, by
abuse of notation). But ¢ is onto since if b = (b,,) € ¢°° with norm ||b||, define

the linear functional on lin{v;, :j > 1} by FQ(Z?:I vy, ) = Zle bjc.
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Then

k k k
B (D o, )| < 10l Yl < IBlL/0)|| S el |
j=1 j=1 j=1

By the Hahn-Banach theorem there is an extension @y € (A(G)/J)* = P
of Fy. Thus (t®9)(j) = (Po,vy,,) = bj, i.e. tPo =b and t is onto.

We now claim that ¢(Ep(e)) C ¢o C €°°, thus t(Wp(e)) C ¢ C £>°. Let
vg € AN C.(G) satisfy vg = 1 on V; be fixed. If & € Ep(e) then (t®)(j) =
(P, vy,,) = (D,vn;) = (D,0n;00) = (vy,, - P,vg) — 0 since [lv, - | — 0 by
the above. Since t(A20.) = 1 we have t(Wp(e)) C c.

We now show that if v € A(G), v(e) =1, and @ € P then t(v-®)—t(P) €
co. We first prove that for all v € A(G), [[v'v),, — v(e)v, || — 0. Indeed, if
w = vvg —v(e)vg then w(e) = 0 and [[vv,, —v(e)vy, || = [[v,,w]. If € > 0 let
wg € ANC.(G) be such that wy = 0 on a neighborhood of e and ||Jwg—w|| < €
(points are sets of synthesis by [Hzl]). But since suppv,; C V,; there is
some ¢ such that if j > i then v,;wo = 0 on F. Hence [lv;, w'[| — 0. If now
¢ € P and v € A(G) with v(e) = 1 then

tv- @ = @)(j) = (@, 0'v,, — vy )| < [|2][[[v"vy,, =], | =0,

thus t(v - @) — t(P) € ¢p.

We now show that t*(F) C TIMp(e). In fact, if ) € £°°* satisfies 1) =0
on ¢g C £* and v € A(G), v(e) = 1, & € P one has (t*¢,v - P) =
(Y, t(v-P)) = (¢, tP) (by the above claim) = (t*¢, ®). By our Proposition 1,
t*i(Ep(e)) = 0. If in addition (¢, 1) = 1 = ||¢|| then ||t*¢| <1 since ||t|| <1
and (t*, \2d.) = (¢, t(A20.)) = (¢,1) = 1 by the above. Thus t*F C
TIMp(e). Clearly t* : £°°* — P* is a w*-w*-continuous norm isomorphism
into (directly or by [Ru2], (4.14)). The rest of the proof is the same as the
end of the proof of Theorem 4 with Sg = Sp = CA26. (the line containing
A20c). m

Remarks. 1. By using Theorem 2.7.6 in Rudin [Rul] one can see that
Y. Meyer’s powerful theorem used above holds true if R is replaced by the
torus (see [P3], p. 200), hence R can be replaced by T in Theorem 12.

2. Corollaries 7, 8, 10 and 11 to Theorem 6 hold true for p = 2 with the
condition on F being replaced by that of Theorem 12.

3. It has been proved by J.-P. Kahane in [Ka2| that if n > 2 [resp.
n > 3] there exists a continuous [resp. smooth] curve F' C T™ which is a
Helson S-set, i.e. PMy(F) = Xo(M(F')). A fortiori, if Q = PMo(F) then
for all x € F, Q = Wg(x) = Ma(F) = Xo(M(F)) and TIM g(z) contains
a unique element. The explicit construction of such curves has been done
by O. C. McGehee in [Mc]. If n > 2k there exist Helson sets which are
k-dimensional manifolds ([Mc|, p. 236). Any infinite compact abelian G
contains a perfect Helson S-set ([Kal], [Rul]).
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F. Lust-Piquard mentioned to us that if G is abelian and F' C G is a Hel-
son S-set for p = 2 it is such for all 1 < p < oo since PMo(F) = MM (F)) C
PM,(F) C PMy(F), thus A(M(F)) = PM,(F). Any infinite compact
abelian G contains a perfect Helson S-set F'. For such F', PM ,(F) = M(F)
does not have the WRNP. R

4. Let G be abelian second countable and let F : L'(G) — A(G) and Fs :
M(G) — B(G) be Fourier and Fourier-Stieltjes transforms respectively. If
1€ M(G) then F*(Aop) = Fs(p). If P = PMy(F) let F*(P,) = UC(G, F),
F*(My(F)) = Bo(G, F) = ncl Fs(M(F)), with ncl in L>(G). Omit F if
F = G (thus for example F*M(G) = Bo(G)).

Assume that e € F, thus 1 € UC(G, F), and let Ap = {f € UC(G, F) :
P1(f) = a(f) for any 1,92 € IMp} where IMp is the set of invariant
means on UC(G, F) omit F if F = G; sce [Pa]. Let A = Ag.

It can be seen that if P = PMy(F) and Wp_(e) = CA2d,. + Ep,(€), then
F*(Wp,(e)) = Ap. Thus By(G, F) C Ap.

As is well known, UC(G)/A (a fortiori UC(G)/Ba(G), see [Chl]) has
€7° as a quotient and I'M contains F if G is infinite. Our result is much
stronger in that it allows one to localize to the set F'. Thus UC(G, F)/Ar (a
fortiori UC(G, F)/By(G, F)) has £ as a quotient if e € int,z (F) for some
nondiscrete closed subgroup H and a € GG, and I Mg contains the big set F.

If in addition G contains R or T and F' only contains an ultrathin sym-
metric set S, then the same remains true.

These results are new even if G = R or T and improve substantially [P3],
p- 201, Ex. 3. Moreover, the result on the largeness of I M cannot be proved
by the conventional methods which use properties of finite intersections
of translates of subsets of G (see [Pa]) since F*(PM2(F)) need not be a
pointwise subalgebra of L>(G) (take G =R, F = [0, 1]).

5. A closed set F' C G is p-ergodic if, for Q = PM,(F), PM,(F) =
CA; @ Eq(z) for all x € F'. 2-ergodic sets for abelian G have been studied
by Woodward in [Wol, 2, 3]. It is clear from [Wo2] that if F' contains an
open set U C G then for any € U, PMy(F) # C\o, @ Eq(z). It does not
follow from [Wo2] that PM ,(F)/CAé, & Eg(x) has £°° as a quotient even
in this case (p = 2).

Important examples of perfect 2-ergodic sets F' C R whose every closed
subset obeys synthesis and yet every “portion” of which is not a Helson set
are the “Sigtuna” sets of I. Katznelson (see [GMc], p. 394). (The closed set
E is a “portion” of F if for some open interval I of R, E = INF.) Could,
for such F', (PMy(F))./My(F') have £*° as a quotient?

6. We now give examples of w*-closed As-submodules P C PMy(G),
G abelian, for which P/Ms(F) has {> as quotient where F' = o(P), yet
P/CX20, & Ep(z) = {0} for many z € F.
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Let G be abelian, p = 2, F' = F1UF, C G, F1, F5 compact disjoint, where
Fy is a perfect Helson synthesis set, and F is also of synthesis. Clearly P =
PMy(F) = PMo(Fy)® PMo(F,) since if v1,v2 € A2(G) are such that v; = 1
on a neighborhood O; of F; such that 01 NOy = ) and v1(O2) = v2(01) =0
then for any @ € PMo(F), ® = v - ®+vy-P and v; - € PMo(F;). The sum
is direct since any ¢ € PMy(Fy) N PMs(F») has void support, hence ¢ = 0.
Since F; is a Helson S-set, PMo(Fy) = Ao(M(F1)) = CA2d, @ Ep, (x) for all
x € Fy where P; = PMy(F;). Since any @ € P, satisfies ¢ € supp @ if x € F
it follows that Ep(z) D Ep,(xz) + P,. Hence for x € Fi, P = P, ® P, C
Ch2d, ® Ep, (l‘) @ P, C Chd, @ EP($) C P. Thus P = Ch\y0; @ EP(CC) for
all x € Fy.

If now int, g (F2) # 0 for some nondiscrete closed subgroup H C G and
a € G then by our main theorem, P/My(F') has (> as a quotient. In
fact, moreover, even P/CA3d, @ Ep(x) has £ as a quotient for all z €
int, g (Fa) C intey (F) (similarly if F5 contains xS where S is an ultrathin
symmetric subset of R C G).

7. If P/Wp(d) has ¢ as a quotient where d € o(P) and P is as in
Theorem 6 or 12 then the function algebra A} (F) = A,/J where J =
{u € A, : (P,u) = 0 for all & € P} is not Arens regular. Indeed, if
WAPp = {® € P : {u-® : [ulla, < 1} is weakly relatively compact}
then @ € WAPp iff {u-®:u e AL(F), |ullayr) < 1} is weakly relatively
compact. But WAPp C Wp(d) as in [Grl], p. 125. Hence P/Wp(d) # {0}
by Theorems 6 or 12, a fortiori (A, (F))* = P # WAPp, which implies the

result.
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