COLLOQUIUM MATHEMATICUM

VOL. LXVII 1994 FASC. 1

DOUBLY WARPED PRODUCTS WITH HARMONIC WEYL
CONFORMAL CURVATURE TENSOR

BY

ANDRZEJ GEBAROWSKI (RZESZOW)

1. Introduction. An n-dimensional (n > 4) Riemannian manifold
(whose metric g;; need not be definite) is called conformally symmetric [4]
if its Weyl conformal curvature tensor

1
(1) Chijk = Rhiji — m(gz’thk — gikRnj + gniRij — gnjRik)

R
+ m(gijghk — 9ik9hj)
is parallel, i.e., if Cpi i, = 0.

Here and in the sequel we denote by Rp;jr, R;; and R the curvature
tensor, Ricci tensor and scalar curvature, respectively, while the comma
stands for covariant differentiation with respect to g.

Clearly, the class of conformally symmetric manifolds contains all locally
symmetric as well as all conformally flat manifolds of dimension n > 4.

It is easy to check that for every conformally symmetric manifold the
condition

(2) Rij i — Rik,j = (R r9ij — R jgir)

1
2(n—1)

holds.

A Riemannian manifold is said to have harmonic curvature respectively
harmonic Weyl (conformal curvature) tensor if the divergence of its curva-
ture tensor (respectively Weyl tensor) is identically zero, i.e. R";jr, = 0,
respectively C";;i» = 0 ([2], p. 440). The second Bianchi identity implies
that Rrijkﬂ« = Rij,k — Rik,j and

n—3 1

Cijir = 5 | Rije = Rikj — =1 (R k9ij — R jgir) |-
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74 A. GEBAROWSKI

Including the case n = 3 in our considerations we say that M has har-
monic conformal curvature if the tensor

_r
2(n — 1)

is Codazzi on M, i.e. satisfies condition (2).

Now it is clear that any conformally symmetric manifold as well as
manifolds with harmonic curvature have harmonic conformal curvature.
Moreover, a Riemannian manifold has harmonic conformal curvature if and
only if C"jjk, = 0 in case n > 4 or if it is conformally flat in case
n =3.

In the paper [12] an n-dimensional (n > 3) Riemannian manifold sat-
isfying condition (2) was called nearly conformally symmetric. (M™,g) is
FEinstein it R;; is proportional to g;;. It is well known that every surface
is Einstein and that an Einstein space satisfying C";;, = 0 is a space of
constant curvature.

The aim of this paper is to give a description of the local structure of
doubly warped products with harmonic conformal curvature.

2. Definition and basic formulas. Let (M,g) and (]\Z,é) (dim M
=, dim]\? =n —r,1 <r < n) be Riemannian manifolds and let f : M —
R* and h : M — R* be positive C*°-functions. The Riemannian manifold
M = M x ]\*4 furnished with the metric tensor

g = (hoo)*m*(g) + (f o m)*a™ (),

where 7 : M x M — M and o : M x M — M are the natural projections,
will be called a doubly warped product and denoted by M X ¢ M [6].
If in particular h or f is constant, then the doubly warped product
reduces to a (singly) warped product [3] (or semi-decomposable space [10]).
The doubly warped product is the special case of the so-called conformal

product (g = hg® kg, where h and k are functions defined on M x M ) inves-
tigated by Yano [14] and Wong [13]. Some theorems on conformally sym-
metric, Ricci-symmetric and Ricci-pseudosymmetric doubly warped prod-
ucts can be found in [8] and [9]. Lorentzian doubly warped products have
been studied by Beem and Powell [1].

By similar considerations to [11], §2, we obtain

THEOREM 1. An n-dimensional doubly warped product M = M j,x M
(dimM = r, 1 < r < n) fibers into two mutually orthogonal (n — r)- and
r-codimensional Riemannian foliations, the leaves of each being totally um-
bilical in M and pairwise (locally) homothetic.
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Let {U xV:zt,. ... 2", 2" =yl ..., 2" = 4" "} be a product chart
for M x M. The local components of the metric g = g5, x ¥ g with respect
to this chart are

h%*g,, ifi=aandj=>,
(3) Gij = 2003 fi=aand j=0
9ap J 5
0 otherwise,
where a,b,c,d,e € {1,...,7}, a,8,7,0,e € {r+1,...,n} and i,5,k,l €
{1,...,n}. We assume that each object marked with a dash is formed
from g, and those marked with a star come from g, 3. Moreover, the period

_— *
and semicolon in subscripts denote covariant differentiation in M and M,
respectively. The local components I of the Levi-Civita connection on

ij
thfMare

1 1

Fl?czigc’ gb:hhaég’ Fga:ffaég’
* 1
(4) Fgw = Fg'w ab = _Ehagaba
a 1 a
aB — ?f Gap,

where f, = (0/0z%)f, ho = (0/0x*)h, f* = g*°f. and h* = g“®h..
The local components
Rl = akFilj — 0,y + FiZ'Frlk — I} T}

ry

. J— *
where 0; = 0/0x7, of the curvature tensor of M jx ¢ M, which in general
do not vanish identically, are

— Aih
R%ecq = R%ped — (hlz)(ﬁgbc — 0cGbd)
1
R” cd — 7 ¢ h* c h* c ;
bed hf( fage )
1
Rz = E(hsfagm — hyf%gps),
(5) 1 1
R%cp = — ?5gfbc - Ehggbc,
R _ léah o lfa
Byd — h d'By f dgﬁvv

R%g,5 = R%gys5 — 7(55 9py — 65 98s),

Where (Alh) = ga’@hahg, (Alf) = gabfafb, hij = hz’,j and fij = fi,j-
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The local components R;; = R";;, of the Ricci tensor of M X f ]\*4 are

_ — Arh 1
Rab = Rab - %fab - (T - 1)( h12 )gab - ﬁ(hi;s)galﬁ
n—2
(6) Rad - Whafda
X r (Alf) 1 e
Raﬁ = RQB — Ehaﬁ — (n -7 — 1) f2 Jap — }(f.e)gaﬁ

where
(h%) = g°°hap and  (£%) = g fab.

The scalar curvature R of the metric g, x g satisfies

(7) R = %—FE— r(rh; D (Arh) — <n_T)<?2_T_1)(Alf)

f2
ey _ 2(” — 7’) e
(h7) 7 e

2r
h
By straightforward computations we establish the following three lem-

mas.

LEMMA 1. In a doubly warped product M ;X ¢ ]\*4,

1 1
ha:*Ah ab haa:_*ahcw ha :ha'a
b= 5 (A1h)gay ff 3 %
1 1
fab = fa.b7 faa = - Efahaa faﬁ = ?(Alf)goe,ﬁ“

LEMMA 2. Let M = M px ¢ M. Then

2

0u(Aih) = = F(AI) e, 05(Arh) = 2,

0u(A1]) = = 7 (AiDhas 0A1S) = 2ffuc

Oehag =0, 0.(15) = = S0
0 far = 0, O(f) = — 2 (fhy.

LEMMA 3. In N % M,
hoes = — 2 fohos + —=(A1h) fuges + —= Fohah
acll — f cllag hf 1 cGap hf cltalls,

2 1 1
fa'yb = - ﬁhvfab + W(Alf)h'ygab + hiffafbhw
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gabfabc - (fe) (A h)fa

E(Alf)hw

gaﬁh‘lﬁ"/ = a’Y(hEE) - f2

where fijk = fi,jk and hijk = h@jk.

On the other hand, the Ricci formula gives

| r—1
gabfabc = gabfacb - 7feRec + T(Alh)fm
(8) n—r—1
gaﬁhaﬁ’y = gaﬁha'yﬁ f2 h RE T(Alf)h’y

Differentiating the local components of the Ricci tensor covariantly and
taking into account (4), (6) and Lemmas 1 and 2, we get

— n—r
Rab,c = Rab‘c - Tfabc f2 fcfab
2(r—1) Be
+ T(A 1h) feGab + W( =) feGab
+ L2 (AR (fogoe + Fagie)
h2f 1 b9ac adbc)s
1 n—2 2(n —2)
Rab,c = - EhaRbc + hf hafbc - hf2 hafbfc
1
*hs aeYbes
+ h R gdb
P/ — 2n—r
Rab,'y = - Eh'yRab + (hf)h’yfab
(9)
2(r — 1 1, .
+ (hg)(Alh)h’Ygab + ﬁ(h.e)hwgab
2 -1
- ( f )fafbh h2 gaba (Alh)
1
- Egaba (h ),
* r 2(n—r—1)
= — 7 T r —(A cYa
Rap.c ffcRaﬁ + hffchaﬁ + 73 (Arf)feas
1., 2(n — 2)
+ ﬁ(f,e)fcgaﬁ - Tfhahﬁfc
n-—r

-1 1
_ Tgaﬁac(ﬂlf) - ?Qaﬁac(f.ee)v
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1 n—2 2(n—2)
Rapy = — ?faRﬁw + Tffahﬁw T TEF

1
+ ?feRaegﬁ'w

* T r
(9) Raﬁ,v - Raﬁw - Ehaﬁv + ﬁhvhaﬂ

[cont.]

fah,@hv

20n—r—1 2
+ W(Alf)hwgaﬁ + h*f(f.i)hwgaﬁ
n—r

-2
+ TQ(AJ)(hﬁgay + hagsy)-
Moreover, from (7) we find

13 2 x 2r(r—1)
R,c - 7R.c FRfc + Tf

h2 (Alh)fc
2(nfr)(nfr71)(A1f)fc_

n—r)(n—r—

f2 1) ac(Alf)

_l’_

4r 2(n—r)

+M@ﬂ+fz<ﬁmr?“‘”@wa

f
2 _ 1 = 2r(r—1)
2n—r)(n—r—1)
hf?
2r 2r 4(n —r
2, — 50, 05) + 0 ron,
3. Doubly warped products with harmonic Weyl tensor and

an r-dimensional factor (1 < r < n—1). Let M = M pxs M with
n =dim M > 4. We can now prove the following results.

(A1 f)hy

LEMMA 4. If M % ¢ M has harmonic Weyl tensor and r = dim M > 2,
n—r= dim]\Z > 2, then

_ . -2 R -2,
( 1) Rab + TTfab - ?gab - rrif(f?e)gab =0

on M, where (f&) =g fa.p, and

*

* * n—r—2 R . n—r—2 x__,
11 R, ——————hop— ——Gap— ———(h%)gap =0
(11) g+ —p 6= o 9ap (n_r)h(.)gﬁ

on 1\2, where (;255) = 9 ha.p.
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Proof. From (2), taking all the subscripts 4, j, k from the same range
1,...,rorr+1,...,n and substituting suitable formulae (9), we get

(T) Rab.c - Rac b + f feReabc f_QT (fcfab - fbfac)
n—2r Ak
hf( ) (feGab — foGac) — Tf( 1h)(feGab — fvac)
1
= m(R,cgab - R,bgac)
and
(1*2) éaﬁw - écw;ﬁ + %haésa,@v h2 (h haﬁ hﬁhow)
2
hf —(f)(h v9aB — hﬂga’y) + hf2 (Alf)( ~v9aB — hﬂga'y)
1
= W(R,wgaﬁ — R ggay)-

Applying contractions to (12) and (1*2), and making use of (10) and
Lemma 2, we obtain

2(7“ -1 R (n -1)

@) pRe=—"r— f3fc S,
e =2 - 2 Yo
2D g RS D Ay,
A= e T = D,
and
() gy =- 20D, Ml e
o — nrh;l— =2y a2 e Do he)
e
B 4(r — 1)75}7sz— r—1) (F)h, + 2(r — 1)(}:;— r—1) (Arh)hs.

From (2), first taking ¢ = «, j = (3, k = ¢ and remembering that the “mixed”



80 A. GEBAROWSKI

components of the metric tensor are zero, we have

Raﬂ,c - Rac,,@ = )R,cgaﬁ7

b
2(n—1
which, in view of (9), (10) and (13), yields

fel = n—r—2 ﬁ " n—r—2 %,
1R, hap — s — "2 g | = 0.
2 R 6= o 9ap (n_r)h(.s)gﬁ

The last result together with the non-constancy of f implies (1*1). In the
same way, putting i = a, j = b, k = v in (2), we get

Rab,*y - Raw,b = )Rrygaba

b
2(n—1
which, in view of (9), (10) and (1*3) yields similarly

hy | 5 r—2 R r—2 -

- Ra ab — 77(1 - ee 7(1 :0’

N b+ffb ~Jab Tf(f.)gb

and consequently (11) by the assumption about h. This completes the
proof.

Remark 1. We observe that for M (resp. M ) two-dimensional, the
condition (11) (resp. (11)) is identically satisfied. For higher dimensions

_— *
Lemma 4 states that in a doubly warped product M , x ; M with harmonic
Weyl tensor, the Hessian of f (resp. h) is proportional to the metric tensor g

(resp. ¢) if and only if M (resp. M ) is an Einstein manifold.
Remark 2. If in particular h = const, then the doubly warped product
reduces to a warped product and (11) shows that M is an Einstein manifold

(see also [7], Lemma 3).

We are now in a position to prove

THEOREM 2. Let M ,x ¢ M be a doubly warped product with harmonic
Weyl conformal curvature tensor. Then

(i) M has harmonic conformal curvature if and only if its curvature
tensor and the function f satisfy

(1 ) feEeabc + L]];(fcfab - fbfac) = ril{fe(Rngab - Eebyac)

1

+[U9ﬁ—fmww—[umn—fﬁmw}

| =
~

where f* = g% f., and
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*
(i) M has harmonic conformal curvature if and only if its curvature
tensor and the function h satisfy

1
E (hwhaﬁ - hﬁhtm)
1

= {he(Ravﬁaﬁ — R 3gar)

(14)  heRag, +

n—r—1

* N 1 _ _ "
(20 = Bl = 0500 — Dl

b\’i

where h® = 7%he.

Proof. To prove (i), by calculating R from (13) and substituting the
result to (10) one obtains

— n—1 — 2n —1)(n —r —
(15) R,c - W‘R ((7‘ — i§h2f )feRec
(n—l)(n ) 2(n—1)(n —2r)
( 1)f2 ( lf) h2f (Alh)fc
20D g+ 202D g

(r=1)f2

which, in view of (12), yields

Rab.c - Rac b + f |:feReabc }(fcfab - fbfac):|
1 s s
= m(R.cgab — Rgac)

n—r

1 _ _
. (R°.G., — B3
+ [ r—1 {f ( Yab bgac)

[(fe )fc - fefec]gab - 1[(f.ee)fb - fefEb]gac}'

f

kﬁ‘)—‘

Therefore
1

2(r—1)

is equivalent to (14). Next, by the same argument as above, we conclude
(ii) from the star formulas. This completes the proof.

Rab.c - Rac.b = (R‘cgab - R‘bgac)

Remark 3. It is easy to verify that if the Hessian of f (resp. h) is pro-

portional to the metric tensor g (resp. ¢), then the condition (14) (resp. (1*4))
is satisfied.
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Remark 4. By making use of Lemma 4 it is not difficult to show
that for a doubly warped product with harmonic Weyl conformal curvature

tensor the conditions (14) and (1*4) are equivalent to

(16) R upe + }(fcfab ~ fofae)

= r(rﬁil)(fcgab — foGac) +

1
f

|:72a(f€e)fb - fefeb:l gac

[i(f.ee)fc - fefec:| gab

1
f

and

* L 1
(16)  heRapy + E(hvhaﬂ — hghay)

*

R * * ]. 2 *6 *6 %
- (n—r)(n—r—-1) (hygap — hpgor) + h [n _ T(h.e)h’Y — h®hey | Gap
]. 2 *5 *5 %
T hln— T,(h.e)hﬁ —h haﬂ:| Javy,

respectively.

THEOREM 3. A doubly warped product M X ¢ M has harmonic Weyl
conformal curvature tensor if and only if the conditions (12), (11), (1*2) and
(11) are satisfied.

Proof. The necessity follows from the harmonicity of the Weyl tensor
and Lemma 4. To prove the sufficiency it suffices to check the condition (2)
in the cases when i, j, k are

(a) a, b, c,

(b) o, B, 7,
(c) a, b, 7,
(d) o, B, c.

From (12), (1*2)7 (9) and the Ricci formula, the cases (a) and (b) are
evident. To verify the case (c), besides (11) we need the condition (13),
which follows (as shown in the proof of Lemma 4) from (12). Therefore,
relations (11), (13), (9) and Lemmas 1-3 give (c¢). Analogously, we check
the case (d). This completes the proof.

Differentiating (11) covariantly in M and taking into account the Ricci
formula, we get

— = = r—2, -, r—2
(17) Rab.c - Rac.b - 7feR abc T2

f - f (fcfab _fbfac)
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1 = — -2,
= ;(R.cgab - R.bgac) - Tr?(ffze)(fcgab - fbgac)
r—2 - Z

+ F [Gap0c(fS.) = TacOs(f%)]-

It is worth remarking that we may use (17) and the analogous formula

(1*7) to obtain some relations equivalent to (12) and (1*2).

LEMMA 5. Suppose that M pX ¢ M has harmonic Weyl conformal curva-
ture tensor. Then

(i) for r = dim M > 2,

— 1 R, r(r=1)[ 1, r—1_
(]—8) iRc + ?fc - f2 |:f fec T(f.e)fc:| ac(f.e))
(ii) forn —r = dim M > 2,
> 1 x R (n—r)(n—r—1)[* 1 x
(18) iR;v + Ehv = h2 h=hey — m(h.s)hv
n—r—1_, =x
-0, (),
Proof. Contracting (17) with g*°, we get, for r > 2,
— 1 = 1, = 1 - 1 -
1 o c:_*eec 7666_7 y c
r—1_. 2
- ’rf 6C(fe)
On the other hand, transvecting (11) with f¢, we obtain easily
— — _R r—2_, r—2,
(20) feRc—?fc f f fec+ T‘f (f.e)fc'

Together with (19), this yields (i). The assertion (ii) follows from the analo-
gous argument via the “star way” instead of the “dash way”. This completes
the proof.

COROLLARY 1. Suppose that M ,x ¢ M has harmonic Weyl conformal
curvature tensor. If the Hessian of f (resp. h) is proportional to the metric
tensor g (resp. g) then

(i) for r =dim M > 2,
Rfe+ (r —1)0:(f%) = 0,
(ii) form —r = dim M > 2,
Rhoy + (n— 1 — 1)0,(h%.) = 0.
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LEMMA 6. Suppose that M p X ¢ M has harmonic Weyl conformal curva-
ture tensor. Then for r > 2,

n—2 o2nr —r2 —2n

(Rab.c - Rac.b)

(R-Cgab - R-bgac)

r—2 :27‘(r—1)(7‘—2)
e = 18 + " (P e — i)
T(T — 1)f cHab b9ac ng e)\Jcab b9ac
nf_ r(fefecgab - fefebgac) + %(gabac(fﬂiz) - gacab(f.ee))

on M, and the corresponding relation holds on M.

Proof (for the dash formula). Calculating f.R®upc + %(fcfab — fofac)
from (17), and substituting the result to (12), together with (15) and (20),
we get our assertion.

Since on a two-dimensional manifold the condition (2) is identically sat-
isfied, we conclude from Lemmas 5 and 6 the following

THEOREM 4. If a doubly warped product M px ¢ M has harmonic con-

formal curvature, then so do the factor manifolds M and M.

4. Doubly warped products with harmonic Weyl tensor and
a 1-dimensional factor. Let dimM = 1. In a suitable product chart

1

t=a,22,..., 2" for M x M, puttinggzghxfﬁ, we have

g1 =1 91a =0, Gag = f*Gap,
_ 1 1
Fh:Fh:O, F}nzﬁhm %1:?70/5%,

1 *
= =hh® Top==japfgas Ty =15,

Here and in the sequel «, 3, v run through {2,...,n}, the prime stands for
d/dt, while the I'’s (resp. I"s) are Christoffel symbols of g (resp. of g with
respect to the chart z2,... 2" of M).

Furthermore,
Rll = - nglf// - h(hss)7 Ral = nh_f2f/hou
s 1 1 " f/ 2
(21) Rap = Rap = phap = 75 [f +(n— 2)( f) }gaﬁv
_ ﬁ 2 € n—1 " (f/)Q
R= g5 =300~ [Qf =) ]
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Hence in this case

Rusgy = 20D g e — 202 e,
— hd,(h%),
Ripa = 2022 g 0, - 2022 o,
h c 1 n—2 N2
fghR — 50,(A1h) — e (f)"hy,
x 2 2(n — 2
Raﬁ,l = - ?f/Raﬂ + Wf/haﬂ + (hgfg)(fl)ggaﬁ
2(n—2) ,, 2n—5 ,, Lo
—(Zfﬁwmw—;ﬁff&w—mf ot
22 -2,
( ) Ral,ﬁ = - ff Raﬁ+ f f haﬁ+ h2f3 (f )Sgaﬁ
1 2
—hfm;v@w—-“;f)fhhﬁ s
2(n—1)(n—2)
R,l f3 Rf & h2f§b (f )3
2(n—1)(n-3) ,, ; 2n—1) .,
- e ff+hf( )f*wf,
2(n—1)(n—2) e
R, = F@R "hwg Q)h+thm
2 € 4( _1) "
_an(h.s)+ ?;LSf fhy.

LEMMA 7. If M pxs M has harmonic conformal curvature and r =
dmM=1,n-1= dim]\*J > 2, then

*

* n—3 R . n—3 x_ .

23 Ra ——hap — af — h%.)gap =0
(23) g+ ——hap = ——70ap (n—l)h( 2)Jap
on M. Moreover, for n > 3,

1 R (n—1)(n—2) [« 1
(@4 SRy = S ey — —— (R

n—2 o
h 87(h5)

Proof. Takingi=j =1 and k =~ in (2), we get

1
Rll,w - Rl'y,l = mR,’ygllv
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which, in view of (22), yields
1

. 1
(25) f2h R e fza R+ 5702 (A1h)
n—2 - 1 -
- n— 167(}1‘5) - (Tl _ 1)h(h’€)h7

On the other hand, taking i = «, 7 = f and k = 1 in (2), we have

1
Rap1— Ror,p = mR,wa,@,

which, in view of (22), yields

A n—3 R X n—3 ,x
— R, ———hag— ——Gog — ————(h%)gag| = 0.
7 | Fas + =5 has = 7 das (n_l)h( 2)Jap

Together with the non-constancy of f, this implies (23). Now, from (23),
(25) and Lemma 2, we get (24) by the same argument as in the proof of
Lemma 5. This completes the proof.

By proceeding as in Section 3, in the case dim M = 1, from Lemma 7
one can easily obtain the following theorems.

THEOREM 5. Let dim M =1 and n>3. A doubly warped product M j, X ¢

*

M

has harmonic conformal curvature if and only if the conditions (23) and
(12) are satisfied.

THEOREM 6. Let dim M = 1 and n > 3. If a doubly warped product
M X f M has harmonic conformal curvature, then so does M.

5. Examples of doubly warped products with harmonic Weyl
tensor. In this section we construct our examples using some ideas from
the paper [5] (see Examples 1 and 3).

EXAMPLE 1. Assume that M (dim M > 2) is an open subset of R" —
{(07’0)}7 Gab = dab, a,b € {L"'ar}v

F= ) = 2 (0 6m2).

a=1

and M (dim]\;[ > 2) is an open subset of R"™" — {(0,...,0)}, Jus = dugs,
a,fe{r+1,...,n}, and

h=h(z",. .. 2") = g(ag:_l(gga)?);
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with positive constants A and B. It is then easy to verify that

. N 2Bf 2Ah
fo=Bat, ha=Az®, (Af)=T50 (M) =T
fab = BYay, hap = AJap, (fo)=rB, (%) =(n—r)A
and
2(n—1)r 2(n—1)(n—r)
= — A— B .
R e n2f # const

Therefore, by Theorem 3, we conclude that the doubly warped product
M j,x s M has harmonic Weyl conformal curvature tensor but it does not
have harmonic curvature (since R # const).

EXAMPLE 2. Let M = {(z,y) € R? : y > 0} with the metric tensor g
defined by

(o 9N_. (0 9\ 1 (o 0\
Noz o)~ ’gay’ay v’ g@x’@y -

where u = u(z), v = v(y) are smooth functions not vanishing at any point
on M. Next let f = f(y) =y, and M = {(z,t) € R? : t > 0} with ¢ defined

by
(0 0N _ (0 0N _1 (9 0)_,
Nozaz) P Navar) ¢ Noza) ™

where p = p(z), ¢ = ¢(t) are smooth functions not vanishing at any point
*

on M, and h = h(t) = t. Then the only non-zero components of the
Christoffel symbols I'f, and curvature tensor Rgp.q are

_ 1 _ 1 = 1
F%l = %awuv F%Q == %(%v, F%l = _§U1)8y’l},
— 1 — 1
2
F22 = —%6?!?], R1212 = iuayyv.

Moreover,
v

leO, f2:]—7 (Alf) t727 R:_ yy U,

1 _
fab = 5(8yv)§abﬁ (f.ee) = 8yv

and we have analogous formulae on M. The conditions (12) and (1*2) take
the form

ygayyyv + y28yyv —2y0,yv +2v = —t20uq + 2t0yq — 2q
and
3 0ueq + t204q — 2t0yq + 2 = —y*Dyyv + 2ydyv — 2v,



88 A. GEBAROWSKI

respectively. Therefore, if we take the solutions v(y) = c1y + c2y? — ¢,
q(t) = 1t + Yot? + ¢, where c1,c2,71,72, ¢ € R, then, by Theorem 3, the

doubly warped product M j,x y M has harmonic Weyl conformal curvature.
It is easily checked that

2 2 lea 1m
R: _12<y2+t2+2ytz+2y2t> 7’5(30118'67

N *
so M j,x s M does not have harmonic curvature.

EXAMPLE 3. Let M (dimM = 2) and f be as in Example 2, and
M (dim M = n—2 > 2) and h be as in Example 1. Then (12) and (1*2) take
the form

n—3 2(n — 3)

2(n—3
ayyyU + Tayyv — ?31,11 + u

" v=20
and
h

2 2
h—; <8yyv — gﬁyv + y2v> =0,
respectively. Taking a solution v(y) = c1y+c2y?, c1, co € R, we get a doubly

warped product M j x ¢ M which has harmonic Weyl conformal curvature.
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