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EQUIVALENT CHARACTERIZATIONS OF BLOCH FUNCTIONS
BY

ZHANGJIAN HU (HUZHOU)

In this paper we obtain some equivalent characterizations of Bloch func-
tions on general bounded strongly pseudoconvex domains with smooth
boundary, which extends the known results in [1, 9, 10].

1. Introduction. Let D be a bounded strongly pseudoconvex domain
in C™ with smooth boundary 9D, and p(z) be a defining function of D.
By H(D) we denote the family of all holomorphic functions on D, and
by K(-,-) and f(-,-) the Bergman kernel and the Bergman distance on D
respectively. For z in D and r positive, E(z,7) = {w € D : f(w, z) < r}. Let
|E(z,7)| = fE(Z’T) dm, where dm is the Lebesgue measure on C™ = R?™.

In what follows, C' will denote a positive constant depending only on
p,Ty..., but not on f € H(D). Its value may change from line to line. The
expression “A and B are equivalent” (denoted by A ~ B) means C 1A <
B < CA.

Following Krantz and Ma [4], we define the Bloch space on D to be

B(D) ={f € H(D) : sup |f«(2) - £|/Fx (2,§) < o0},

where the sup is taken over all z € D and 0 # £ € T.(D), f.(z) : T.(D) —
Tt(z)(C) is induced by f : D — C and Fg(z,§) is the infinitesimal form of
the Kobayashi metric form. Similarly, we define the little Bloch space ([5])
to be

Bo(D)={f € HD) : |fc(2)-&] = 0o(Fk(z,£)) as z — 0D for all £ € T,(D)}.

For f € H(D), let
2\ 1/2
of of -
Viz)=(=—,...,=— and |V f(z)| = .
1) = (o viel= (3
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We set
1flls(p) = sup{|Vf(2)[e(2)] : z € D}.
It is proved in [4] that f € B(D) if and only if || f||z < oo. By analogy, it is
easy to prove that f € By(D) if and only if |V f(2)||e(2)| — 0 as z — ID.
The Bloch space on the unit disc D = {z € C: |z| < 1} has been studied
extensively. For example, S. Axler in [1] got a series of equivalent definitions
and in [9] Axler’s results were generalized by Stroethoff to the following

THEOREM A. Let 0 < p < 00,0 < r <1, andn € N. Then for f € H(D)
the following quantities are equivalent:

(A) Ifllspy = sup |f'(2)|(1 = [2]?);
z€D

1 (n) R (k)
(®) sup S dnw) 3 lO)

z€D |D(Z’T)|1inp/2 D(z,r)

/ n—1

© sup ([ 1P~ Py am@) "+ 3 15O0))
zeD D(z.r) k=1

1/p

(D) Slelg( f ’f(”)(w)’pﬂ - ‘w’2)np72(1 _ ’¢Z(w)|2)2 dm(w))

n—1
+> 1 #(0).
k=1

THEOREM B. Let 0 < p < 00, 0 < r < 1, andn € N. Then for f € H(D)
the following conditions are equivalent:

(A) f € Bo(D);

N (n) . .
(B) ’D(Z,T’)Il_”p/Q D(Zj;ﬂ) ‘f (w)‘p dm(w) 0 as ’z‘ 17;
(C) f ’f(n) (w)’p(l - |w’2)np—2 dm(w) — 0 as |Z| — 1_;

D(z,r)
(D) [ £ )P (1= [w*)" > (1= |p=(w)[*)* dm(w) — 0 as [z] — 17
D

In Theorems A and B, ¢,(w) = (w—z)/(1 — Zw) is the M&bius function
and D(z,r) is the pseudo-hyperbolic disc with centre z and radius r. We
have D(z,r) = E(z,r’') for some r’ > 0, and vice versa. Stroethoff also
obtained the analogue of Theorems A and B on the unit ball of C™ in [9].
What was crucial to both [1] and [9] is the transitive group of Mobius func-
tions. The purpose of the present work is to extend the results in [9, 1]
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to bounded strongly pseudoconvex domains with smooth boundary. Since
there is no nontrivial holomorphic automorphism for such a domain gener-
ally, our theory is more subtle.

For a multi-index a = (ou,..., ), @; > 0 an integer, we write |a| =

Z;n:l a;, and for f € H(D),
ololf ololf

0z% 020" .. Oz

Here are the main results of this paper.

THEOREM 1. Let D be a bounded strongly pseudoconvexr domain in C™
with smooth boundary, o(z) be its defining function, 0 < p < 00, 0 < r < 0,
n € N and zg € D fized. Then for f € H(D) the following quantities are
equivalent:

(A) IfllB(Dy;
(B) sup

1
z€D <|E(z,r)|1—np/(m+1) f Z

E(z,r) |al=n

e (w)'pdmw))l/p

'8l
> |G
1<|Bl<n
anf P np—(m+1) e
© s [ X |G|l dnw)
z€D E(z,r) |al=n z
o8l
Z 87[{(0;
1<|Bl<n
on p K (w, 2 1/p
o swp ([ 3 |5 L) e B )
z€D \ p la|=n z (Z7Z)
o8l
> 87;(20);
1<|Bl<n
am GIE
® s 3 |7 @@+ Y |5 )
<P laj=n 1<|8]<n

THEOREM 2. Let D be a bounded strongly pseudoconvexr domain in C™
with smooth boundary, o(z) be its defining function, 0 < p < 00, 0 < 1 < 00,
n € N. Then for f € H(D) the following conditions are equivalent:

(A) f € Bo(D);



102 Z. HU

1 p
B) |E(z,r)|t—ne/(m+1) f Z )' dm(w) — 0 asz— 9OD;

E(z'r) |a]=n
© | X

E(z,r) |a\—n

(w)["P~ "D dm(w) — 0 as z — ID;

82“

o K (w,2)P |
f g:n aza (w)] de(w) —0 as z— OD;
(E) Z ng(z) )" —0 asz— ID.

|a|=n

2. Proof of Theorems 1 and 2. Since two defining functions must be
equivalent on D [8, 5], we can fix in the sequel a defining function o(z) to be

(2) = —d(z,0D), ze€D,
oE) = d(z,0D), zeC™\D,
where d(z,0D) is the Euclidean distance from z to 0D.

For § > 0 we set Dy = {z € D: o(z) > —d}. It is well known [3, 8] that
when § is small enough and z € Ds, then there is a unique point 7(z) which
is closest to z on OD. Let n¢ be the unit inner normal vector at ¢ € dD.
Then
(2.1) z=7(z) — 0(2)nr;y whenever z € Ds

(see [5, p. 382]). For z € D, we will use P(z,71,r2) to denote the polydisc
centered at z with radius r; in the complex normal direction and radius 75
in each of m — 1 complex tangential directions (see [3, 4] for details).

LEMMA 1. For each r > 0, there are A, B > 0 such that for all z € D,

(1) Pz, Alo(2)], Ale(2)['/?) € E(z,7) € P(z, Ble(2)], Blo(2)|"/?),

(2) le(2)|"/C < |B(z,7)] < Clo(2)™ .

The lemma appears in [6]. All those results were proved for the
Kobayashi metric in [5]. Since the Bergman metric and the Kobayashi met-

ric are equivalent on a bounded strongly pseudoconvex domain with smooth
boundary, it follows that the results are true for the Bergman metric.

LEMMA 2. Let zg € D and o > 0. Then for f € H(D),

(2.2) sup [V f(2)] o(2)[*™ < Csup | f(2)]]o(2)]*
z€D z€D
and
(2.3) sup | f(2) — f(z0)|[o(2)|* < Cysup [V f(2)|]o(2)]* T,
z€D z€D

where the constant Cy in (2.3) depends on zo and «.
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This is a well-known fact. For completeness we sketch the proof.

The estimate (2.2) can be proved as in [7, pp. 104-105] and [3, pp.
324-325]. To prove (2.3), we let § be so small that zy € D\ Ds and (2.1) is
valid. Then we have two constants R and M such that for each z € D\ Dy, 2z
and zg can be joined by smooth curve I" located in the compact set E(zg, R)
with length less than M. Therefore

) = ol = | [ VIT@) - T'dt| <M s [Vf(w).
r

weE(zo,R)

Then since |o(2)|* < C|o(w)|*™ (2,w € E(z0, R)), we have

(2.4) [f(2) = f(z0)lle(x)|* <CM  sup |V f(w)]|e(w)|*".
weE(zo,R)

For z € D;, define 2’ = 7(2) + dn(z). Then 2’ € 9Ds. Hence

d(z,0D)

(25) 1fE) ~ N =| [ VIEE) + ) nao dt]
é

é

< sup |V/(w)l|e(w)|*" [ tethar
weDs

d(z,0D)
< Clo(2)[7 sup [V f(w)]]o(w)[**.
weDs
Now (2.3) comes from (2.4) and (2.5).
LEMMA 3. For a > 0 and f(z) € H(D),

(2.6) [f(2)[le(2)[* =0 as z— 0D

if and only if

(2.7) IVF(2)|]o(2)|*Tt — 0 as z— 9D.

Proof. If f(z) satisfies (2.6), it is trivial that f(z) must satisfy (2.7)
[3, 7]. Now if f satisfies (2.7), for € > 0 we fix 0 small enough such that for
z € Dg,

IVf(2)]lo(2)[*F! < ae.
Then by (2.5), |f(2) — f(2")[]e(2)|* < e. Hence

[F ()l e(2)[* <e+( sup [f(2)])]e(2)[".

ZED\D5
This implies |f(z)] |o(2)|* < 2¢ if |o(z)| < §1. The lemma is proved.
We are now ready to prove the theorems.

Proof of Theorem 1. The proof is divided into five steps.



104 Z. HU

1) (A)~(E). For n = 1, there is nothing to prove. If n > 1, by Lemma 2
we have

8nf an 1f

n n—1
)l < Cp 5 o),
This yields
(2.8)  sup Z ‘ 2)|" < C'sup Z an 1f lo(2)|™ "t
' zED ZED ‘

On the other hand, another application of Lemma 2 glves

anflf anflf 1
5 () = )| lele) <c§ggllzn @)l
Then
6n_1f ‘ 1 { ’ on— lf }
<O " :
57 (2)| le(2) sup ; lo(2)" + (20)
Hence
an 1f 1
2.9 "
(2.9) jgg Z )| lo(2)|
anflf
< n g 7 .
C{ftelglz Fpa 'I )"+ 62—1 5.7 (Zo)}
Now (2.8) and (2.9) give
an 1f 1
W o62)
’ ’ Z n—lf
o | " B (20)
zED a 18l=n—1 z
By induction, we have
|3
. olblf
leb, Z ‘ A+ D |G )|

1<|8l<n—1

This is the desired result.
2) (C) < C - (D). For r > 0, we have § > 0 such that if z € Dy then

l0(2)| 7"V /C < K (2,w)] < Clo(2)| ") for w € B(z,7)
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(for details see [5, Theorem 12]). Then for z € Ds,

(2.10) [ >

E(z,r) |al=n

|np (m+1)dm( )

2L lotw

<c [ X gttt G anw)
E(zr)  |al=n ’
<c [ ¥ gL lewr Bt ang)

To get the estimate for z € D\ Ds, we set E* = | cp\p, £(z,7). Then
E* C D is compact, and for 2 € E* we have r7(z) > 0 such that

|K(z,w)| > $K(2,2) >0 for w € E(z,7(2)).
Select finitely many points 21, ..., zx (k depends only on ¢) such that

k
U (25,7
Then, for z € D\ D,

(2.11) 1l Z

E(z,r) |al=n

= f ’aza )‘p!@(w)ln”‘(m“>dm(w)

] 0(w) "=+ i ()

0"/ <w>’ L0w) "~ dim ()

IA

> X

J=1 B(z5,r(2;))  |al=n

k
f ‘ n ’K(Zjvw)|2
=C o lo(w)|"P ———"—— dm(w)
a'; E(zj,L)) |az=n o= Kz %)
k on ‘ 9
<03 [ %[5 letwi B )
j=1 D J|al=n Jr*J
O f 7y B 20
=Cop | Elj g2 (©)] o) 228 dim(w),

From (2.10) and (2.11) we see that the quantity (C) is less than or equal to
C' times the quantity (D).



106 Z. HU

3) (C) ~ (B). For r > 0 fixed and f(z,w) < r, by Lemma 1,
lo(2)" T < CIE(z,7)| < ClE(w, 2r)| < Clo(w)|™ .
Hence
(2.12) 0(2)]/C < [o(w)] < Clo(z)]  if Bz, w) <.
Now by Lemma 1 again, together with (2. 12)
|E(z,r)|11”p/(m+1) f Z ;i f

E(z,r) |al=n

~ Clo(z) ) Z]f;;,fw\ dm(w)

E(z,r) |a|=n
~o [

E(z,r) |a|=n

dm(w)

S ) etw) P ()

4) (E) < C-(B). By Lemma 1 and the plurisubharmonicity of ‘ 5oa ( w)‘p
we get

2.

lee|=n

sl <elim, J, Z [t}

E(z,r)

Hence

2.

loa=n

Lot

1
= C{ ’E(Z’T)|lfnp/(m+l) f Z

E(z,r) |al=n

aza 'p (w)}l/p'

5) (D) < C - (E). By the reproducing property of the Bergman kernel
K(z,w), we have

IZ

loe|=n

K (2 w)l”
K(z,z)

< (sup Z Lo 1erm) J KD )

z€D Z, %
Gzo‘ ’ o >

This implies that (D) can be dominated by (E).
The proof is complete.

(w)["

dm(w)

§C’<sup

z€D
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Proof of Theorem 2. Applying the method used in the proof of
Theorem 1, we can easily prove that (A) and (E) are equivalent and that
(D) implies (C), (C) implies (B) and (B) implies (E). To complete the proof
we need only show that (E) implies (D).

Suppose [ satisfies (E). Then

M(f) = sup { > e

p
lo(2)|"P: z € D} < 00,

and given € > 0, there is § > 0 such that

S (e[ o <c forzes
Hence o
Iy ot @ et B
) (D\£5 ’ D{ >|az::n gzz(w)‘p\g(w)\npwdmw)
< M(f) D\a& de(w)—i—gp[ wdm(w)
<M(f) [ de(w)—ka

D\Ds

Since D \ Ds is compact, we know from [2] that K(z,w) is bounded for
(z,w) € D x (D \ Ds). Then by [5, Theorem 12| we have

Z,w 2
[ Ve dmw) < CloG [ G dm()
D\Ds ’ D\Ds

— 0 asz— 0D.
Therefore if |o(z)| < 61 then

o K(z,w)|?
Dj‘ ; 87£(w> | ( )|

o)

dm(w) < 2e.

This ends the proof.
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