COLLOQUIUM MATHEMATICUM 1994

FASC. 2

VOL. LXVII

ON THE CLASS OF FUNCTIONS HAVING INFINITE LIMIT ON A GIVEN SET

BY J. TÓTH AND L. ZSILINSZKY (NITRA)

Introduction. Given a topological space X and a real function f on Xdefine

$$L_f(X) = \{x \in X : \lim_{t \to x} f(t) = +\infty\}.$$

According to [1] for a linear set A there exists a function $f: \mathbb{R} \to \mathbb{R}$ such that $A = L_f(\mathbb{R})$ if and only if A is a countable G_{δ} -set. Our purpose is to prove a similar result in a more general setting and to investigate the cardinality and topological properties of the class of functions $f: X \to \mathbb{R}$ for which $L_f(X)$ equals a given non-empty, countable G_{δ} -set.

We will need some auxiliary notions and notations. Denote by \overline{E} and $E^{\rm c}$, respectively, the closure and the set of all condensation points of a subset E of a topological space, and by card E its cardinality. Denote by \mathcal{F} the space \mathbb{R}^X .

A topological space X is called a *Fréchet space* if for every $E \subset X$ and every $x \in \overline{E}$ there exists a sequence in E converging to x (cf. [2]). Every first-countable space is a Fréchet space ([2], p. 78), but there exists a Fréchet space that is not first-countable ([2], p. 79).

A topological space X is said to be *hereditarily Lindelöf* if for each $E \subset X$ every open cover of E has a countable refinement. A well-known property of these spaces is as follows ([4], p. 57):

LEMMA 1. If X is a hereditarily Lindelöf space, then $E \setminus E^{c}$ is countable for each $E \subset X$.

Main results. Using Lemma 1 it can be shown similarly to [1] that for a Hausdorff, hereditarily Lindelöf space X having no isolated points, $L_f(X)$ is a countable G_{δ} -set for every $f \in \mathcal{F}$. We will be interested in the reverse problem, namely to find, for every non-empty, countable G_{δ} -set $A \subset X$, a function $f \in \mathcal{F}$ for which $L_f(X) = A$.

[177]

¹⁹⁹¹ Mathematics Subject Classification: Primary 54C30.

In what follows X will be a Fréchet, Hausdorff, hereditarily Lindelöf space such that $X = X^{c}$. Let A be a given non-empty, countable G_{δ} -subset of X. Define

$$\mathcal{S} = \{ f \in \mathcal{F} : L_f(X) = A \}.$$

THEOREM 1. The set S is non-empty.

Proof. Let $A = \{a_1, a_2, \ldots\} \subset X, A = \bigcap_{n=1}^{\infty} G_n$ where $G_1 = X, G_n$ is open in $X, G_{n+1} \subsetneq G_n \ (n \in \mathbb{N})$. We can assume that $F_n = G_n \setminus G_{n+1}$ is uncountable for each $n \in \mathbb{N}$. Put $H = \bigcup_{n=1}^{\infty} (F_n \cap F_n^c)$. According to Lemma 1 the set $B = (\bigcup_{n=1}^{\infty} F_n) \setminus H$ is countable, since

According to Lemma 1 the set $B = (\bigcup_{n=1}^{\infty} F_n) \setminus H$ is countable, since $B \subset \bigcup_{n=1}^{\infty} (F_n \setminus F_n^c)$. Write $B = \{b_1, b_2, \ldots\}$. Observe that $A \cap \bigcup_{n=1}^{\infty} F_n = \emptyset$, so

$$X \setminus H = \left(A \cup \bigcup_{n=1}^{\infty} F_n\right) \setminus H = A \cup B.$$

Therefore $B \subset \overline{H}$ (since $B \subset X^c$), hence for each $k \in \mathbb{N}$ there exists a sequence $c_i^{(k)} \in H$ $(i \in \mathbb{N})$ converging to b_k . Set $C = \bigcup_{i,k \in \mathbb{N}} \{c_i^{(k)}\}$. Define a function $f \in \mathcal{F}$ as follows:

$$f(a_k) = k \quad \text{for all } k \in \mathbb{N},$$

$$f(c_i^{(k)}) = k \quad \text{for all } i, k \in \mathbb{N},$$

$$f(x) = n \quad \text{for all } x \in F_n \setminus C, \ n \in \mathbb{N}$$

We will prove that $L_f(X) = A$.

First choose $x \in X \setminus A$. Then either $x \in B$ or $x \in H$. If $x \in B$ then $x = b_k$ for some $k \in \mathbb{N}$, and consequently $x \notin L_f(X)$ since $\lim_{i \to \infty} f(c_i^{(k)}) = k$. If $x \in H$ then $x \in F_m^c$ for some $m \in \mathbb{N}$, so there exists a directed set Σ and a net $\{x_{\sigma} : \sigma \in \Sigma\}$ in $F_m \setminus C$ converging to x. Thus again $x \notin L_f(X)$ since $\lim_{\sigma} f(x_{\sigma}) = m$.

Finally, suppose $x \in A$. Take an arbitrary $n \in \mathbb{N}$. Then $x \in G_n$. The space X is Hausdorff, so there is a neighbourhood S_1 of x which contains no member of the sequence $\{c_i^{(k)}\}_{i=1}^{\infty}$ for all $1 \leq k \leq n$ (notice that $c_i^{(k)} \rightarrow b_k \notin A$ as $i \rightarrow \infty$). Further, there exists a neighbourhood S_2 of x containing none of a_1, \ldots, a_n except possibly x. It is now not hard to see that $f(t) \geq n$ for each $t \in G_n \cap S_1 \cap S_2$, $t \neq x$, whence $x \in L_f(X)$.

R e m a r k 1. If X is a Hausdorff, second-countable, Baire space with no isolated points (in particular, if X is a separable, complete metric space with no isolated points) then Theorem 1 holds. Indeed, in this case every non-empty open subset of X is uncountable (see [3], Proposition 1.29) and thus $X=X^c$; further, second-countable spaces are Fréchet and hereditarily Lindelöf.

THEOREM 2. We have card $\mathcal{S} = \operatorname{card}(\mathcal{F} \setminus \mathcal{S}) = 2^{\operatorname{card} X}$.

Proof. Let $f \in \mathcal{S}$ (see Theorem 1). Using the notation of Theorem 1 put $\alpha_n = \operatorname{card}(X \setminus G_n)$ $(n \in \mathbb{N})$ and $\alpha = \operatorname{card}(X \setminus A) = \operatorname{card} X$ (X is uncountable). Then $\{\alpha_n\}_{n=1}^{\infty}$ is a non-decreasing sequence of infinite ordinals converging to α (in the order topology; see [4]). Fix $n \in \mathbb{N}$. For every $M \subset X \setminus G_n$ define the function $f_M = \max\{1, f\} \cdot \chi_{X \setminus M}$, where $\chi_{X \setminus M}$ is the characteristic function of $X \setminus M$.

It is not hard to see that $f_M \neq f_N$ and $f_M, f_N \in \mathcal{S}$ for any different subsets M, N of the closed set $X \setminus G_n$. Thus $\operatorname{card} \mathcal{S} \geq 2^{\alpha_n}$. Since α is a limit ordinal we have $\operatorname{card} \mathcal{S} \geq \sup\{2^{\alpha_n} : n \in \mathbb{N}\} = 2^{\alpha} = 2^{\operatorname{card} X}$. On the other hand, making allowance for the uncountability of X we get $\operatorname{card} \mathcal{S} \leq$ $\operatorname{card} \mathcal{F} = (\operatorname{card} \mathbb{R})^{\operatorname{card} X} = 2^{\operatorname{card} X}$.

To show that $\operatorname{card}(\mathcal{F} \setminus \mathcal{S}) = 2^{\operatorname{card} X}$ it suffices to notice that $\chi_B \in \mathcal{F} \setminus \mathcal{S}$ for any $B \subset X$. Hence $2^{\operatorname{card} X} \leq \operatorname{card}(\mathcal{F} \setminus \mathcal{S}) \leq \operatorname{card} \mathcal{F} = 2^{\operatorname{card} X}$.

To be able to investigate S from the topological point of view introduce the sup-metric d on \mathcal{F} :

$$d(f,g) = \min\{1, \sup_{x \in \mathbb{R}} |f(x) - g(x)|\}, \quad \text{where } f, g \in \mathcal{F}.$$

It is known that (\mathcal{F}, d) is a complete metric space.

THEOREM 3. The class S is simultaneously open and closed in F.

Proof. If $f, g \in \mathcal{F}$ and d(f, g) < 1 then $L_f(X) = L_g(X)$. So if $f \in \mathcal{S}$ (resp. $f \in \mathcal{F} \setminus \mathcal{S}$) then the open 1-ball around f is in \mathcal{S} (resp. in $\mathcal{F} \setminus \mathcal{S}$).

THEOREM 4. Both S and $\mathcal{F} \setminus S$ are of second category in \mathcal{F} .

Proof. According to Theorems 2 and 3, S and $\mathcal{F} \setminus S$ are non-empty open sets, and consequently they are of second category in the complete metric space (\mathcal{F}, d) .

R e m a r k 2. In the light of Theorems 2 and 4 it is worth noticing that neither S nor $\mathcal{F} \setminus S$ is dense in \mathcal{F} . Actually, if, say, S were dense in \mathcal{F} then in view of Theorem 3 it would be a residual set in \mathcal{F} and hence $\mathcal{F} \setminus S$ of first category in \mathcal{F} .

THEOREM 5. We have $\mathcal{S} \subset \mathcal{S}^{c}$ and $\mathcal{F} \setminus \mathcal{S} \subset (\mathcal{F} \setminus \mathcal{S})^{c}$.

Proof. Let $f \in \mathcal{F}$ and $0 < \varepsilon < 1$. For $0 < \eta < \varepsilon$ define $f_{\eta}(x) = f(x) + \eta$ $(x \in X)$. Then $d(f, f_{\eta}) = \eta < \varepsilon$ for all $\eta \in (0, \varepsilon)$; furthermore, $f_{\eta} \in S$ if and only if $f \in S$ $(0 < \eta < \varepsilon)$.

 $\operatorname{Remark} 3$. It is easy to see that the set

$$\mathcal{S}' = \{ f \in \mathcal{F} : \lim_{t \to \infty} f(t) = -\infty \text{ if and only if } x \in A \}$$

also has the properties established in Theorems 1–5 for S.

REFERENCES

- R. Bumcrot and M. Sheingorn, Variations on continuity: sets of infinite limit, Math. Mag. 47 (1974), 41-43.
- [2] R. Engelking, General Topology, PWN, Warszawa, 1977.
- [3] R. C. Haworth and R. A. McCoy, *Baire spaces*, Dissertationes Math. 141 (1977).
- [4] J. L. Kelley, General Topology, Springer, New York, 1975.

DEPARTMENT OF MATHEMATICS COLLEGE OF EDUCATION FARSKÁ 19 94974 NITRA, SLOVAKIA E-mail: ZSILI@UNITRA.SK

Reçu par la Rédaction le 5.7.1993