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1. Introduction. The following result is due to Schneider [10, Theo-
rem 2].

Theorem A. If E is a second category subset of [0, 2π), then there is
no harmonic function h on C such that r−µh(reiθ) → +∞ as r → +∞ for
all θ ∈ E and all µ > 0.

It is essential that E is second category: Bagemihl and Seidel [5, pp. 187–
190] showed that if E is first category and M : [0,+∞) → (0,+∞) is increas-
ing, then there exists a harmonic function h on C such that h(reiθ)/M(r) →
+∞ as r → +∞ for all θ ∈ E. However, using elementary techniques, we
shall show that the hypotheses of Theorem A can, in some respects, be
relaxed.

If f is an extended real-valued function on C and µ is a positive number,
then we define

L(f, µ) = {θ ∈ [0, 2π) : lim
r→+∞

r−µf(reiθ) = +∞}
and

U(f, µ) = {θ ∈ [0, 2π) : lim sup
r→+∞

r−µf(reiθ) = +∞}.

Theorem 1. Let E be a second category subset of [0, 2π). There is no
harmonic function h on C such that

(1) lim inf
r→+∞

h(reiθ) > −∞

for all θ ∈ E and such that E ⊆
⋂

µ>0 U(h, µ).

Note that in Theorem 1 there is no a priori supposition that there is
even one value of θ such that

lim sup
r→+∞

r−µh(reiθ) = +∞

for all positive µ. A similar remark applies to Theorems 2 and 3, below.
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Theorem 1 is false with “superharmonic” in place of “harmonic”.

Proposition 1. There exists a superharmonic function u on C such that

lim inf
r→+∞

u(reiθ) > 0

for all θ ∈ [0, 2π) and such that
⋂

µ>0 U(u, µ) is a residual subset of [0, 2π)
(and hence

⋂
µ>0 U(u, µ) = [0, 2π]).

We give two alternative ways of modifying the hypotheses of Theorem 1
so that it becomes valid for superharmonic functions. In the first of these
we simply replace U(u, µ) by L(u, µ). Recall that a function u on a domain
is called hyperharmonic if either u is superharmonic or u ≡ +∞.

Theorem 2. Let E be a second category subset of [0, 2π). If u is hyper-
harmonic on C,

(2) lim inf
r→+∞

u(reiθ) > −∞

for all θ ∈ E, and E ⊆
⋂

µ>0 L(u, µ), then u ≡ +∞.

Note that Theorem 2 implies that Theorem A holds for superharmonic
functions.

Our second superharmonic version of Theorem 1 involves a strengthening
of the condition E ⊆

⋂
µ>0 U(u, µ). This latter condition means that every

open interval I which meets E also meets U(u, µ) for each µ. In the following
theorem we require more: each such interval I must meet each set U(u, µ)
in a set which is not too small.

Theorem 3. Let E be a second category subset of [0, 2π). If u is hyper-
harmonic on C and (2) holds for all θ ∈ E, and if {eiθ : θ ∈ I ∩U(u, µ)} is
a non-polar subset of C for each positive µ and each open interval I such
that E ∩ I 6= ∅, then u ≡ +∞.

For the notion of polar set, we refer to Helms [9, pp. 126–130].

2. An elementary lemma. We shall use the following lemma in the
proofs of Theorems 1–3.

Lemma 1. Let E be a second category subset of [0, 2π). Let φ : C →
(−∞,+∞] be lower semi-continuous and fine continuous on C. If

(3) lim inf
r→+∞

φ(reiθ) > −∞

for all θ ∈ E, then there exists an open interval J such that E ∩ J 6= ∅ and
φ is bounded below on the sector {reiθ : r > 0, θ ∈ J}.

The fine topology is discussed, for example, in [9, Chapter 10].
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The first step in our proof of Lemma 1 is to show that the function Φ,
defined by

Φ(z) = inf{φ(rz) : r > 0} (z ∈ C),
is fine upper semi-continuous on C\{0}. It suffices to work at a point z such
that Φ(z) < +∞. If A > Φ(z), then there exist a positive number r0 and a
fine neighbourhood ω of r0z on which φ < A. The set {r−1

0 ζ : ζ ∈ ω} = Ω,
say, is a fine neighbourhood of z, and if w ∈ Ω, then r0w ∈ ω, so that
Φ(w) ≤ φ(r0w) < A. Hence Φ is fine upper semi-continuous at z, as re-
quired.

Next we show that Φ is upper semi-continuous with respect to the usual
topology on C\{0}. Suppose that this is not the case. Then there exist
z ∈ C\{0}, a number A > Φ(z), and a sequence (zn) such that zn → z and
Φ(zn) > A for all n. For each n, let Ln = {rzn : r > 0}. Then Φ = Φ(zn)
on Ln, and hence Φ > A on

⋃∞
n=1 Ln = L, say. Since Φ is fine upper

semi-continuous at z, there exists a fine neighbourhood ω0 of z on which
Φ < A. Now C\ω0 is thin at z (see, for example, Brelot [6, p. 90]), but L is
not thin at z, since every circle of centre z clearly meets L (see, for example
[9, p. 216]). These conclusions are contradictory, since Φ > A on L and
hence L ⊆ C\ω0.

It now follows that the function θ → Φ(eiθ) is upper semi-continuous on
[0, 2π], so that if

Bn = {θ ∈ [0, 2π] : Φ(eiθ) ≥ −n} (n = 1, 2, . . .),

then each Bn is closed, and hence ∂Bn is nowhere dense. Since, for each
θ, the function r → φ(reiθ) is lower semi-continuous on [0,+∞), it follows
since (3) holds for all θ ∈ E, that Φ(eiθ) > −∞ for all θ ∈ E, and hence E ⊆⋃∞

n=1 Bn. It now follows that E∩B◦
m 6= ∅ for some m; otherwise E would be

a subset of the first category set
⋃∞

n=1 ∂Bn. Since φ(reiθ) ≥ Φ(eiθ) ≥ −m
for each r > 0 and each θ ∈ Bm, the conclusion of the lemma will hold if we
take J to be an open interval such that J ⊆ B◦

m and E ∩ J 6= ∅.

3. Proof of Theorems 1–3. We shall use the following form of a
classical theorem of Ahlfors and Heins [1].

Lemma 2. Let u be positive and superharmonic in the sector S = {reiθ :
r > 0, θ ∈ J}, where J is an open interval of length l ∈ (0, 2π].

(i) For all θ ∈ J ,

(4) lim inf
r→+∞

r−π/lu(reiθ) < +∞.

(ii) For all θ ∈ J\P , where {eiθ : θ ∈ P} is a polar subset of C,

(5) u(reiθ) = O(rπ/l) (r → +∞).
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(iii) If , further , u is harmonic on S, then (5) holds for all θ ∈ J .

In the case where l = π, parts (i) and (ii) are weak versions of the
results (B) and (A) respectively, given in [1, p. 341], and (iii) is an easy
consequence of the half-plane Poisson integral representation of a positive
harmonic function (see, e.g., Tsuji [11, pp. 149–151]). Lemma 2 for arbitrary
l can be obtained from the special case where l = π by application of a
conformal mapping.

Now suppose that u is a hyperharmonic function on C satisfying (2) for
all θ belonging to a second category subset E of [0, 2π). By Lemma 1, there
exists an open interval J such that E ∩ J 6= ∅ and u is bounded below on
the sector S = {reiθ : r > 0, θ ∈ J}. We may suppose that J is of length
l, where 0 < l < 2π, and by adding a constant to u we may suppose that
u > 0 on S.

To complete the proof of Theorem 1, suppose further that u is harmonic
on C and E ⊆ U(u, π/l). Since E ∩J 6= ∅, we have J ∩U(u, π/l) 6= ∅, which
says that there exists θ ∈ J such that (5) fails, contrary to Lemma 2(iii).

If the hypotheses of Theorem 2 are satisfied, then J ∩ L(u, π/l) 6= ∅, so
that (4) fails for some θ ∈ J . By Lemma 2(i), u cannot be superharmonic
on C; hence u ≡ +∞.

If the hypotheses of Theorem 3 are satisfied, then {eiθ : θ ∈ J∩U(u, π/l)}
is a non-polar set, and by Lemma 2(ii), this is impossible if u is superhar-
monic on C. Hence u ≡ +∞.

4. Proof of Proposition 1. We start by constructing an example in the
half-plane D = {x+ iy : y > 0}. Let F be a countable dense subset of (0, π).
The set Q = {neiθ : n = 1, 2, . . . ; θ ∈ F} is a countable, hence polar, subset
of D. Let v be a Green potential on D such that v = +∞ on Q, and let

Fn = {θ ∈ (0, π) : v(neiθ) = +∞} (n = 1, 2, . . .).

For all positive integers m and n, the set {θ ∈ (0, π) : v(neiθ) ≤ m} is
relatively closed and nowhere dense in (0, π), so that each set Fn is residual
in (0, π), and hence so also is

⋂∞
n=1 Fn = F ∗, say. Note that v(neiθ) = +∞

for all positive integers n and all θ ∈ F ∗.
Now let

Ω1 = {x + iy : |y| ∈ [0, 2) ∪ (3,+∞)}
and

Ω2 = {x + iy : |y| ∈ [0, 1) ∪ (4,+∞)}.
Define w on Ω1 by

w(x + iy) =

 v(x + iy) (y > 3),
0 (|y| < 2),
v(x− iy) (y < −3).
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Clearly w is superharmonic on Ω1. Also, there exists a superharmonic func-
tion u on C such that u = w + 1 on Ω2 (see, for example, [2, Theorem 2]).
It is easy to verify that u has the required properties.

5. Higher dimensions. Lemma 2 has a generalization in which the
sector S is replaced by a cone in RN and the exponent π/l is replaced by a
positive constant depending on the angle of the cone (see Azarin [4]), but
Lemma 1 has no straightforward generalization to RN (N ≥ 3). Hence our
proofs of Theorems 1–3 do not generalize to higher dimensions, and we shall
show that natural analogues of Theorems 2 and 3 are indeed false in RN

when N ≥ 3. However, since harmonic functions are continuous, the use
of Lemma 1 is not essential to the proof of Theorem 1, and Theorem 1 is
easily generalized. We note that Armitage and Goldstein [3, Theorem 2]
have generalized Theorem A to RN .

Let Σ denote the unit sphere in RN .

Theorem 1′. Let E be a second category subset of Σ. There is no
harmonic function h on RN such that

(6) lim inf
r→+∞

h(rζ) > −∞

for all ζ ∈ E and such that for each positive number µ the closure of the set

{ζ ∈ Σ : lim sup
r→+∞

r−µh(rζ) = +∞}

contains E.

We indicate the proof. Suppose that there exists a harmonic function
h with the properties described. The continuity of h and the hypothesis
that (6) holds for all ζ ∈ E imply that h is bounded below on some open
cone K, with the origin as vertex, such that E ∩K 6= ∅ (cf. [3, Lemma 1]).
By hypothesis, it follows that for each µ > 0 there exists ζµ ∈ K such
that

lim sup
r→+∞

r−µh(rζµ) = +∞.

For values of µ larger than some critical value, depending on the angle of
K, this contradicts the N -dimensional version of Lemma 2(iii).

Now we justify the remark that Theorems 2 and 3 fail in RN when N ≥ 3.

Proposition 2. Let M : [0,+∞) → (0,+∞) be an increasing function.
There exist a subset E of the unit sphere Σ of RN , where N ≥ 3, and a
superharmonic function u on RN such that

(i) E is a residual subset of Σ,
(ii) E has full surface area measure,
(iii) u(rζ)/M(r) → +∞ as r → +∞ for each ζ ∈ E.
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Proposition 2 clearly shows that the straightforward generalization of
Theorem 2 to RN is false. The same remark applies also to Theorem 3,
for the condition that E has full measure implies that G ∩E is a non-polar
subset of RN for each non-empty relatively open subset G of Σ.

To prove Proposition 2 we use the following lemmas.

Lemma 3. Let M : [0,+∞) → (0,+∞) be an increasing function. There
exist a subset E1 of Σ and a harmonic function h on RN such that E1 has
full surface area measure and

h(rζ)/M(r) → +∞ (r → +∞)

for each ζ ∈ E1.

In the case where N = 2 this lemma is a special case of the result of
Bagemihl and Seidel [5] cited in §1; for the case where N ≥ 3, which we
require here, we refer to [3, Example 6].

Lemma 4. Suppose that N ≥ 3. There exist a residual subset E2 of
Σ and a positive superharmonic function v on RN such that v(rζ) = +∞
whenever r > 0 and ζ ∈ E2.

To prove Lemma 4, we show first that if ζ ∈ Σ, then there exists a
positive homogeneous superharmonic function w on RN such that w(rζ) =
+∞ for all r > 0. It suffices to deal with the case where ζ = (1, 0, . . . , 0).
In the case where N ≥ 4 we may take w to be the potential given by

w(x1, . . . , xN ) = (x2
2 + . . . + x2

N )(3−N)/2,

which is homogeneous of degree 3−N . In the case N = 3 we take w to be
the potential given by

w(x1, x2, x3) =
∞∫

0

t−1/2{(x1 − t)2 + x2
2 + x2

3}−1/2 dt.

It is easy to verify that w = +∞ on the positive x1-axis, that w 6≡ +∞, and
that w is homogeneous of degree −1/2.

Now let {ζ1, ζ2, . . .} be a countable dense subset of Σ. For each j let wj

be a positive superharmonic function on RN such that wj(rζj) = +∞ for all
r > 0 and wj is homogeneous of degree −1/2 or 3−N , according as N = 3
or N ≥ 4. Let y ∈ RN be such that wj(y) < +∞ for each j, and define v
on RN by

v =
∞∑

j=1

2−jwj/wj(y).

Then v 6≡ +∞, since v(y) = 1. Hence v is superharmonic on RN . From
the homogeneity of the functions wj it follows that v is homogeneous. Let
E2 = {ζ ∈ Σ : v(ζ) = +∞}. Then E2 contains the dense set {ζ1, ζ2, . . .},
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and hence for each positive integer n the closed set {ζ ∈ Σ : v(ζ) ≤ n} is
nowhere dense in Σ, so that E2 is a residual subset of Σ. By the homogeneity
of v, we have v(rζ) = +∞ for each r > 0 and each ζ ∈ E2.

To complete the proof of Proposition 2, we take h and E1 as in Lemma 3
and v and E2 as in Lemma 4 and define u = h + v and E = E1 ∪ E2. It is
clear that u and E have the properties described.

It would be interesting to determine whether or not it is possible to have
E = Σ in Proposition 2.

6. Theorems 1–3 for sectors. With obvious modifications, our main
results hold for functions harmonic or superharmonic on sectors. An easy
way to see this is to use extension and approximation theorems. Theorems 2
and 3 can be generalized to sectors by observing that if u is superharmonic
on a sector S0 = {reiθ : r > 0, |θ| < θ0}, where 0 < θ0 ≤ π, and if
0 < θ1 < θ0, then there exists a superharmonic function ũ on C such that
ũ = u on the set S1 = {reiθ : r > 1, |θ| < θ1} (see, for example, [2,
Theorem 2]). Theorem 1 can be similarly generalized by using the fact that
if h is harmonic on S0, then there exists a harmonic function h̃ on C such
that |h̃−h| < 1 on S1 (see Gauthier et al . [7, Theorem 4]). A generalization
of this harmonic approximation result to higher dimensions (see Gauthier
et al. [8, Theorem 1]) allows a corresponding generalization of Theorem 1′

for harmonic functions on cones.
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