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RADIAL LIMITS OF SUPERHARMONIC FUNCTIONS
IN THE PLANE

BY

D. H ARMITAGE (BELFAST)

1. Introduction. The following result is due to Schneider [10, Theo-
rem 2].

THEOREM A. If E is a second category subset of [0,2m), then there is
no harmonic function h on C such that r—*h(re?) — +o00 as r — +oo for
all € E and all p > 0.

It is essential that F is second category: Bagemihl and Seidel [5, pp. 187—
190] showed that if E is first category and M : [0, +00) — (0, +00) is increas-
ing, then there exists a harmonic function h on C such that h(rei®)/M (r) —
400 as r — o0 for all § € E. However, using elementary techniques, we
shall show that the hypotheses of Theorem A can, in some respects, be
relaxed.

If f is an extended real-valued function on C and p is a positive number,
then we define

L(f,pn)={0€]0,27m) : TEI—‘yI-lOO 1 f(re’?) = 400}

and
U(f,n) = {6 €[0,2n) : limsupr *f(re?’) = +o0}.
r——+400
THEOREM 1. Let E be a second category subset of [0,2m). There is no
harmonic function h on C such that

(1) limlnf h(re) > —oco

for all 0 € E and such that E C (., U(h, p).

Note that in Theorem 1 there is no a priori supposition that there is
even one value of 6 such that

limsup r~*h(re??) = +oo
r—400

for all positive u. A similar remark applies to Theorems 2 and 3, below.
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Theorem 1 is false with “superharmonic” in place of “harmonic”.
PROPOSITION 1. There exists a superharmonic function u on C such that

liminf u(re®) >0
for all 0 € [0,2m) and such that (5, U(u, p) is a residual subset of [0,2m)

(and hence (= U(u, p) = [0, 27]).

We give two alternative ways of modifying the hypotheses of Theorem 1
so that it becomes valid for superharmonic functions. In the first of these
we simply replace U(u, ) by L(u, ). Recall that a function u on a domain
is called hyperharmonic if either u is superharmonic or u = 4o00.

THEOREM 2. Let E be a second category subset of [0,2m). If u is hyper-
harmonic on C,

(2) lim inf u(re?) > —oo
r—+00

forall0 € E, and E C (o L(u, p), then u = +o0.

Note that Theorem 2 implies that Theorem A holds for superharmonic
functions.

Our second superharmonic version of Theorem 1 involves a strengthening
of the condition £ C (1,5, U(u, ). This latter condition means that every
open interval I which meets E also meets U (u, p1) for each p. In the following
theorem we require more: each such interval I must meet each set U (u, )
in a set which is not too small.

THEOREM 3. Let E be a second category subset of [0,2m). If u is hyper-
harmonic on C and (2) holds for all 0 € E, and if {®:0 ¢ INU(u,u)} is
a non-polar subset of C for each positive u and each open interval I such
that ENT # (), then u = +oo.

For the notion of polar set, we refer to Helms [9, pp. 126-130].

2. An elementary lemma. We shall use the following lemma in the
proofs of Theorems 1-3.

LEMMA 1. Let E be a second category subset of [0,2m). Let ¢ : C —
(—o00, +00] be lower semi-continuous and fine continuous on C. If

(3) liminf ¢(re??) > —oco

r—-400

for all 0 € E, then there exists an open interval J such that ENJ # 0 and
¢ is bounded below on the sector {re® :r > 0,0 € J}.

The fine topology is discussed, for example, in [9, Chapter 10].
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The first step in our proof of Lemma 1 is to show that the function @,

defined by

&(z) =inf{o(rz):r >0} (z€C),

is fine upper semi-continuous on C\{0}. It suffices to work at a point z such
that &(z) < +oo. If A > @(z), then there exist a positive number ry and a
fine neighbourhood w of 79z on which ¢ < A. The set {r; ¢ : ¢ € w} = 2,
say, is a fine neighbourhood of z, and if w € {2, then rqw € w, so that
d(w) < ¢(row) < A. Hence @ is fine upper semi-continuous at z, as re-
quired.

Next we show that @ is upper semi-continuous with respect to the usual
topology on C\{0}. Suppose that this is not the case. Then there exist
z € C\{0}, a number A > &¢(z), and a sequence (z,) such that z, — z and
&(zy,) > A for all n. For each n, let L, = {rz, : r > 0}. Then & = &(z,)
on L,, and hence & > A on |J,—, L, = L, say. Since & is fine upper
semi-continuous at z, there exists a fine neighbourhood wy of z on which
@ < A. Now C\wy is thin at z (see, for example, Brelot [6, p. 90]), but L is
not thin at z, since every circle of centre z clearly meets L (see, for example
[9, p. 216]). These conclusions are contradictory, since & > A on L and
hence L C C\wy.

It now follows that the function § — ®(e*) is upper semi-continuous on
[0, 27], so that if

B,={0c0,2r] : ®(e") > -n} (n=1,2,...),

then each B, is closed, and hence 0B, is nowhere dense. Since, for each
6, the function r — ¢(re'’) is lower semi-continuous on [0, +00), it follows
since (3) holds for all § € E, that ®(e??) > —oc for all § € E, and hence E C
U~ By It now follows that EN By, # 0 for some m; otherwise E would be
a subset of the first category set | J7—, dB,,. Since ¢(re') > ®(e?) > —m
for each r > 0 and each 6 € B,,, the conclusion of the lemma will hold if we
take J to be an open interval such that J C B, and ENJ # 0.

3. Proof of Theorems 1-3. We shall use the following form of a
classical theorem of Ahlfors and Heins [1].

LEMMA 2. Let u be positive and superharmonic in the sector S = {rem :
r >0, 0 € J}, where J is an open interval of length [ € (0,27].

(i) For all 0 € J,

(4) lim inf 7~/ u(re’) < +oo.

r——+00
(ii) For all 6 € J\P, where {e'® : 0 € P} is a polar subset of C,
(5) u(re’®y = 0™ (r — 400).
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(iii) If, further, w is harmonic on S, then (5) holds for all 6 € J.

In the case where [ = m, parts (i) and (ii) are weak versions of the
results (B) and (A) respectively, given in [1, p. 341], and (iii) is an easy
consequence of the half-plane Poisson integral representation of a positive
harmonic function (see, e.g., Tsuji [11, pp. 149-151]). Lemma 2 for arbitrary
[ can be obtained from the special case where [ = 7 by application of a
conformal mapping.

Now suppose that u is a hyperharmonic function on C satisfying (2) for
all § belonging to a second category subset E of [0,27). By Lemma 1, there
exists an open interval J such that ENJ # () and u is bounded below on
the sector S = {re? : r > 0, 6 € J}. We may suppose that J is of length
[, where 0 < [ < 27, and by adding a constant to v we may suppose that
u>0onS.

To complete the proof of Theorem 1, suppose further that u is harmonic
on C and E C U(u,7/l). Since ENJ # (), we have JNU (u,7/l) # 0, which
says that there exists § € J such that (5) fails, contrary to Lemma 2(iii).

If the hypotheses of Theorem 2 are satisfied, then J N L(u,7/l) # (), so
that (4) fails for some § € J. By Lemma 2(i), v cannot be superharmonic
on C; hence u = +oo.

If the hypotheses of Theorem 3 are satisfied, then {e? : § € JNU (u,7/1)}
is a non-polar set, and by Lemma 2(ii), this is impossible if u is superhar-
monic on C. Hence u = +o0.

4. Proof of Proposition 1. We start by constructing an example in the
half-plane D = {z+iy : y > 0}. Let F be a countable dense subset of (0, 7).
The set Q = {ne? :n=1,2,...;0 € F} is a countable, hence polar, subset
of D. Let v be a Green potential on D such that v = +o00 on @), and let

F,={0€(0,7):v(ne"?) =400} (n=1,2,...).
For all positive integers m and n, the set {# € (0,7) : v(ne®) < m} is
relatively closed and nowhere dense in (0, 7), so that each set Fj, is residual
in (0,7), and hence so also is (-, F,, = F'*, say. Note that v(ne?) = 400
for all positive integers n and all § € F*.

Now let

and
2 ={z+iy: |yl €[0,1) U (4,+00)}.
Define w on §2; by
v(z+iy) (y>3),
wlz+iy) =90 (<2,
v(r —iy) (y < —=3).
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Clearly w is superharmonic on {2;. Also, there exists a superharmonic func-
tion u on C such that u = w + 1 on 25 (see, for example, [2, Theorem 2]).
It is easy to verify that u has the required properties.

5. Higher dimensions. Lemma 2 has a generalization in which the
sector S is replaced by a cone in R and the exponent 7/ is replaced by a
positive constant depending on the angle of the cone (see Azarin [4]), but
Lemma 1 has no straightforward generalization to RY (N > 3). Hence our
proofs of Theorems 1-3 do not generalize to higher dimensions, and we shall
show that natural analogues of Theorems 2 and 3 are indeed false in RY
when N > 3. However, since harmonic functions are continuous, the use
of Lemma 1 is not essential to the proof of Theorem 1, and Theorem 1 is
easily generalized. We note that Armitage and Goldstein [3, Theorem 2]
have generalized Theorem A to R,

Let X denote the unit sphere in RY.

THEOREM 1'. Let E be a second category subset of X. There is no
harmonic function h on RN such that

(6) hminfh(r() > —00
for all ¢ € E and such that for each positive number u the closure of the set
{¢C € X : limsupr "h(r{) = +oo}
r——+4o0o

contains E.

We indicate the proof. Suppose that there exists a harmonic function
h with the properties described. The continuity of h and the hypothesis
that (6) holds for all ¢ € E imply that h is bounded below on some open
cone K, with the origin as vertex, such that E N K # () (cf. [3, Lemma 1]).
By hypothesis, it follows that for each p > 0 there exists ¢, € K such
that
limsup r~*h(r¢,) = +oc.
r——+00
For values of p larger than some critical value, depending on the angle of
K, this contradicts the N-dimensional version of Lemma 2(iii).
Now we justify the remark that Theorems 2 and 3 fail in R™Y when NV > 3.

PROPOSITION 2. Let M : [0,400) — (0,400) be an increasing function.
There exist a subset E of the unit sphere X of RN, where N > 3, and a
superharmonic function u on RN such that

(i) E is a residual subset of X,
(ii) E has full surface area measure,
(iii) w(r¢)/M(r) — 400 as r — +0o0 for each € E.
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Proposition 2 clearly shows that the straightforward generalization of
Theorem 2 to RY is false. The same remark applies also to Theorem 3,
for the condition that E has full measure implies that G N E is a non-polar
subset of RY for each non-empty relatively open subset G of X.

To prove Proposition 2 we use the following lemmas.

LEMMA 3. Let M : [0, +00) — (0,+00) be an increasing function. There
exist a subset By of X and a harmonic function h on RN such that E, has
full surface area measure and

h(r{)/M(r) — 400 (r — +00)
for each ¢ € E.

In the case where N = 2 this lemma is a special case of the result of
Bagemihl and Seidel [5] cited in §1; for the case where N > 3, which we
require here, we refer to [3, Example 6].

LEMMA 4. Suppose that N > 3. There exist a residual subset Es of
X and a positive superharmonic function v on RN such that v(r{) = +oo
whenever r > 0 and ¢ € Es.

To prove Lemma 4, we show first that if {( € X, then there exists a
positive homogeneous superharmonic function w on RY such that w(r¢) =
+oo for all » > 0. It suffices to deal with the case where ¢ = (1,0,...,0).
In the case where N > 4 we may take w to be the potential given by

wer,...,an) = (@ + ... + %),

which is homogeneous of degree 3 — N. In the case N = 3 we take w to be
the potential given by
U)((El,xg, :ZI3) = f t_1/2{(a:1 — t)2 + 373 + LL’%}_l/2 dt.
0
It is easy to verify that w = +00 on the positive x1-axis, that w # +o00, and
that w is homogeneous of degree —1/2.

Now let {¢1,(2, ...} be a countable dense subset of X'. For each j let w;
be a positive superharmonic function on RY such that w,(r¢;) = +oo for all
r > 0 and w; is homogeneous of degree —1/2 or 3 — N, according as N = 3
or N > 4. Let y € RY be such that w;(y) < +oo for each j, and define v
on RY by

v = 22_jwj/wj(y).

Then v # +o0, since v(y) = 1. Hence v is superharmonic on RY. From
the homogeneity of the functions w; it follows that v is homogeneous. Let
Ey = {¢ € ¥ :v(¢) = 4+o0}. Then E, contains the dense set {(1, (s, ...},
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and hence for each positive integer n the closed set {( € X' : v(¢) < n} is
nowhere dense in Y, so that Ej is a residual subset of X. By the homogeneity
of v, we have v(r() = +oo for each r > 0 and each ¢ € Fj.

To complete the proof of Proposition 2, we take h and E; as in Lemma 3
and v and F5 as in Lemma 4 and define u = h+v and £ = Fq U Ey. It is
clear that u© and E have the properties described.

It would be interesting to determine whether or not it is possible to have
E = 3 in Proposition 2.

6. Theorems 1-3 for sectors. With obvious modifications, our main
results hold for functions harmonic or superharmonic on sectors. An easy
way to see this is to use extension and approximation theorems. Theorems 2
and 3 can be generalized to sectors by observing that if u is superharmonic
on a sector Sp = {re? : r > 0,]0| < 6}, where 0 < 0y < 7, and if
0 < 61 < 6y, then there exists a superharmonic function u on C such that
@ = u on the set S; = {re® : r > 1, |§] < 6;} (see, for example, [2,
Theorem 2]). Theorem 1 can be similarly generalized by using the fact that
if h is_harmonic on Sp, then there exists a harmonic function h on C such
that |h—h| < 1 on S; (see Gauthier et al. [7, Theorem 4]). A generalization
of this harmonic approximation result to higher dimensions (see Gauthier
et al. [8, Theorem 1]) allows a corresponding generalization of Theorem 1’
for harmonic functions on cones.
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