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AN APPLICATION OF MODULES OF GENERALIZED FRACTIONS
TO GRADES OF IDEALS AND GORENSTEIN RINGS

BY

H. ZAKER I (TEHRAN)

1. Introduction. Let A be a commutative Noetherian ring. The grade
of a proper ideal a of A was defined by D. Rees in [5] as the least integer
i ≥ 0 such that ExtiA(A/a, A) 6= 0. It is well known that the definition of
grade of an ideal a of A can be generalized by defining the grade of a on a
finitely generated A-module M such that aM 6= M both as the maximum
of lengths of M -sequences contained in a and the least integer i ≥ 0 such
that ExtiA(A/a,M) 6= 0.

In this note we shall extend the above definition of grade to non-zero
A-modules M which have the property that whenever a is an ideal of
A and x1, . . . , xn is a poor M -sequence contained in a such that a ⊆
Z(M/(

∑n
i=1Axi)M), then a ⊆ p for some p ∈ AssA(M/(

∑n
i=1Axi)M).

(In this note, for an A-module N , the set of zero divisors on N is denoted
by Z(N).) Our extended definition of grade is based on the theory of mod-
ules of generalized fractions which was introduced by Sharp and the author
in [7]. Indeed, we shall show that if M is an A-module with the above prop-
erty, then the set Ui+1 = {(x1, . . . , xi, 1) : x1, . . . , xi is a poor M -sequence}
is a triangular subset of Ai+1 for all i ≥ 0, and, for an ideal a of A with
aM 6= M , the length of all maximal M -sequences contained in a is the least
integer i ≥ 0 such that

{x ∈ U−i−1
i+1 M : ax = 0} 6= 0,

where U−i−1
i+1 M is the module of generalized fractions of M with respect to

Ui+1. Also, in this note, we shall use modules of generalized fractions to
obtain characterizations of Gorenstein rings.

Let us recall briefly the main ingredients in the construction of modules of
generalized fractions. Throughout this note, A will denote a commutative
ring (with identity). For an ideal a of A and an A-module M , we shall
denote the submodule {m ∈ M : am = 0} by ann(a,M). When discussing
modules of generalized fractions, we shall use the notation of [7], except that
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we shall use slightly different notation concerning matrices, in that round
brackets will now be used instead of square ones; we shall agree to use
n-tuples (a1, . . . , an) of elements of A and 1 × n row matrices (a1, . . . , an)
over A interchangeably. We still use > to denote matrix transpose and, for
n ∈ N, Dn(A) to denote the set of all n×n lower triangular matrices over A.

A triangular subset of An is a non-empty subset U of An such that
(i) whenever (x1, . . . , xn) ∈ U , then (xα1

1 , . . . , xαn
n ) ∈ U for all choices of

α1, . . . , αn ∈ N, and (ii) whenever x, y ∈ U , then there exist z ∈ U and
H,K ∈ Dn(A) such that Hx> = Ky> = z>. Given such a U and an A-
module M , one can construct (see Section 2 of [7]) the module of generalized
fractions U−nM = {ax : a ∈ M,x ∈ U}, where a

x denotes the equivalence
class of (a, x) ∈M ×U under the equivalence relation ∼ on M ×U defined
as follows. For a, b ∈ M and x, y ∈ U we write (a, x) ∼ (b, y) if and only if
there exist (z1, . . . , zn) =: z ∈ U and H,K ∈ Dn(A) such that

Hx> = z> = Ky> and |H|a− |K|b ∈
( n−1∑
i=1

Azi

)
M.

Now U−nM is an A-module under the operations

a

x
+
b

y
=
|H|a+ |K|b

z
and r

a

x
=
ra

x

for r ∈ R, a, b,∈ M , x, y ∈ U and any choice of z ∈ U and H,K ∈ Dn(A)
such that Hx> = z> = Ky>.

The above concept is indeed a generalization of the familiar concept of
ordinary module of fractions: see [7, 3.1].

2. The results. Throughout this section M is an A-module. We say
that a sequence x1, . . . , xn of elements of A is a poor M -sequence if

(Ax1 + . . .+Axi−1)M : xi = (Ax1 + . . .+Axi−1)M

for all i = 1, . . . , n; it is an M -sequence if, in addition, M 6= (Ax1 + . . . +
Axn)M .

The following theorem, which is proved in [4, 3.2] by elementary means,
plays an important role in this note.

2.1. Theorem. Let x1, . . . , xn be a poor M -sequence and let y1, . . . , yn
be a sequence of elements of A such that

H(y1, . . . , yn)> = (x1, . . . , xn)>

for some H ∈ Dn(A). Then the map from M/(
∑n
i=1Ayi)M to

M/(
∑n
i=1Axi)M induced by multiplication by |H| is a monomorphism, and

y1, . . . , yn is also a poor M -sequence.
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2.2. Corollary. Let U be a triangular subset of An which consists
entirely of poor M -sequences. Let m ∈M and (x1, . . . , xn) ∈ U . Then

m

(x1, . . . , xn)
= 0

in U−nM if and only if m ∈ (
∑n−1
i=1 Axi)M .

P r o o f. (⇒) Suppose that m
(x1,...,xn) = 0. Then there exist (y1, . . . , yn) ∈

U and H = (hij) ∈ Dn(A) such that

H(x1, . . . , xn)> = (y1, . . . , yn)> and |H|m ∈
( n−1∑
i=1

Ayi

)
M.

Now, hn1x1 + . . .+ hnnxn = yn; hence

h11 . . . hn−1n−1

(
yn −

n−1∑
i=1

hnixi

)
m ∈

( n−1∑
i=1

Ayi

)
M.

We may now use [7, 2.2] to see that

h11 . . . hn−1n−1m ∈
( n−1∑
i=1

Ayi

)
M : yn =

( n−1∑
i=1

Ayi

)
M.

Therefore, by 2.1, m ∈ (
∑n−1
i=1 Axi)M.

(⇐) Use [7, 3.3(ii)].

We shall need to use a result of A. M. Riley concerning the saturation
of triangular subsets. For an arbitrary triangular subset U of An, the set

Ũ = {x ∈ An : xH> ∈ U for some H ∈ Dn(A)}
is called the saturation of U ; it is easily seen to be a triangular subset of
An containing U . Riley proves in [6, Chapter II, 2.9] by direct calculation
that the natural homomorphism U−nM → Ũ−nM is an isomorphism. (The
reader is referred to [2, 2.3] for another proof of this.)

The next theorem provides an explicit description, in a certain situation,
of the elements of a submodule of a module of generalized fractions which
is annihilated by an ideal of A.

2.3. Theorem. Let a be an ideal of A and let U be a triangular subset of
An which consists entirely of poor M -sequences. Suppose that there exists
x = (x1, . . . , xn) ∈ U such that x1, . . . , xn ∈ a. Then each element of
ann(a, (U × {1})−n−1M) can be written in the form m

(x1,...,xn,1)
for some

m ∈M .

P r o o f. By the above result of Riley and 2.1, we can suppose that U is
saturated. Let
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X =
b

(y1, . . . , yn, 1)
∈ ann(a, (U × {1})−n−1M),

where b ∈ M and (y1, . . . , yn) ∈ U . We may assume that there exists
H ∈ Dn(A) such that

H(x1, . . . , xn)> = (y1, . . . , yn)>.

Then, by [2, 3.2], (x1, . . . , xi, xi+1yi+1, yi+2, . . . , yn) ∈ U for each i =
0, . . . , n; hence (x1, . . . , xi, yi+1, . . . , yn) ∈ U since U is saturated and

(x1, . . . , xi, xi+1yi+1, yi+2, . . . , yn)> = D(x1, . . . , xi, yi+1, . . . , yn)>,

where D is the diagonal matrix diag(1, . . . , 1, xi+1, 1, . . . , 1).
Suppose, inductively, that i is an integer with 0 ≤ i < n and it has been

proved that

X =
mi

(x1, . . . , xi, yi+1, . . . , yn, 1)
for somemi ∈M . This is certainly the case when i = 0. We have xi+1X = 0.
Hence by 2.2,

xi+1mi = x1m
′
1 + . . .+ xim

′
i + yi+1m

′
i+1 + . . .+ ynm

′
n

for some m′
1, . . . ,m

′
n ∈M . Therefore, again by 2.2,

X =
xi+1mi+1

(x1, . . . , xi, xi+1yi+1, yi+2, . . . , yn, 1)

=
yi+1m

′
i+1

(x1, . . . , xi, xi+1yi+1, yi+2, . . . , yn, 1)

=
m′
i+1

(x1, . . . , xi+1, yi+2, . . . , yn, 1)
.

This completes the inductive step and the result is proved by induction.

Theorem 2.3 has some immediate consequences which we record here.

2.4. Consequences. (1) Let the situation be as in 2.3. Then, in view
of 2.2 and 2.3, the A-homomorphism

φ :
( n∑
i=1

Axi

)
M : a → ann(a, (U × {1})−n−1M)

given by φ(m) = m
(x1,...,xn,1)

is surjective and kerφ = (
∑n
i=1Axi)M . Hence( n∑

i=1

Axi

)
M : a

/( n∑
i=1

Axi

)
M ∼= ann(a, (U × {1})−n−1M).

(2) For z = (z1, . . . , zn) ∈ An, let Uz = {(zα1
1 , . . . , zαn

n ) : α1, . . . , αn ∈ N}
(a triangular subset of An). Let the situation be as in 2.1, and let V be the
saturation of Ux. (Note that, in view of [7, 3.9] and 2.1, each element of
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Ux, V and Uy is a poor M -sequence.) Let a be an ideal of A and suppose
that y1, . . . , yn ∈ a. Then, by (1)

ann(a, (Uy × {1})−n−1M)

∼=
( n∑
i=1

Ayi

)
M : a

/( n∑
i=1

Ayi

)
M ∼= ann(a, (V × {1})−n−1M)

∼=
( n∑
i=1

Axi

)
M : a

/( n∑
i=1

Axi

)
M ∼= ann(a, (Ux × {1})−n−1M).

For the remaining part of this section, we shall assume that A is Noethe-
rian and that, whenever a is an ideal of A and x1, . . . , xn is a poor M -
sequence contained in a such that a ⊆ Z(M/(

∑n
i=1Axi)M), then a ⊆ p for

some p ∈ AssA(M/(
∑n
i=1Axi)M). At this stage, under the above assump-

tions, we can establish the following.

2.5. Theorem. For each positive integer n, let Vn be the set of all poor
M -sequences of length n. Then

(i) Vn is a triangular subset of An for all n ∈ N;
(ii) if a is an ideal of A such that aM 6= M , then the length of a maximal

M -sequence in a is the least integer i (≥ 0) such that ann(a, U−i−1
i+1 M) 6= 0,

where Un+1 = Vn × {1} for all n ∈ N and U1 = {1}.

P r o o f. (i) First note that, for all n ∈ N, (1, . . . , 1) ∈ Vn and that,
in view of [7, 3.9], (xt11 , . . . , x

tn
n ) ∈ Vn whenever (x1, . . . , xn) ∈ Vn and

t1, . . . , tn ∈ N. Thus we have to check the second condition of the definition
of triangular subsets. We shall do this by induction on n. It is clear that V1

is a triangular subset of A1.
Suppose, inductively, that n > 1 and we have proved that Vn−1 is a

triangular subset. Let (x1, . . . , xn), (y1, . . . , yn) ∈ Vn. Then, by induction,
there exists (z1, . . . , zn−1) ∈ Vn−1 such that

zi ∈
( i∑
j=1

Axj

)
∩

( i∑
j=1

Ayj

)
for i = 1, . . . , n− 1. Since

n−1∑
i=1

(Axi)M :
n∑
i=1

Axi =
( n−1∑
i=1

Axi

)
M,

it follows from 2.4(2) that
n−1∑
i=1

(Azi)M :
n∑
i=1

Axi =
( n−1∑
i=1

Azi

)
M ;
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hence
∑n
i=1Axi 6⊆ p for all p ∈ AssA(E), where E = M/(

∑n−1
i=1 Azi)M .

Similarly,
∑n
i=1Ayi 6⊆ p for all p ∈ AssA(E). Therefore, in view of the

above assumption which we imposed on M , there exists zn ∈ (
∑n
i=1Axi) ∩

(
∑n
i=1Ayi) such that zn 6∈ Z(E). This completes the inductive step.
(ii) Let a be an ideal of A such that aM 6= M . Let x1, . . . , xn be a max-

imal M -sequence in a. Then (Ax1 + . . .+Axi)M : a = (Ax1 + . . .+Axi)M
for all i = 0, . . . , n−1, and, by our assumption on M, (Ax1+. . .+Axn)M : a
6= (Ax1 + . . .+Axn)M . Hence, by 2.4(1), n is the least integer i such that
ann(a, U−i−1

i+1 M) 6= 0.

Now that 2.5 has been proved, we can give the following definition.

2.6.Definition. For all n ≥ 0, let Un+1 be the set of all (x1, . . . , xn, 1) ∈
An+1 such that x1, . . . , xn is a poor M -sequence. Let a be an ideal of A
such that aM 6= M . Then the grade of a on M , grade(a,M), is the length
of any maximal M -sequence contained in a (they have the same length by
2.5(ii)) and also the least integer n (≥ 0) such that ann(a, U−n−1

n+1 M) 6= 0.

It is easy to see that the above definition of grade has the following
property.

2.7. Proposition. Let a1, . . . , ar be ideals of A such that aiM 6= M for
all i = 1, . . . , r. Then

grade
( r⋂
i=1

ai,M
)

= grade
( r∏
i=1

ai,M
)

= min{grade(ai,M) : 1 ≤ i ≤ r}.

The next propositions, for which we shall assume that A is local with
maximal ideal m and dimA = n, provide characterizations of Gorenstein
local rings. The reader is referred to [1] and [3] for several equivalent defi-
nitions of Gorenstein rings. In particular, recall that A is Gorenstein if and
only if, equivalently, either the injective dimension idA(A) of A is n or A is
Cohen–Macaulay and dimA/m((a : m)/a) = 1 for some (respectively, any)
parametric ideal a of A.

2.8. Proposition. Let Un+1 = {(x1, . . . , xn, 1) : x1, . . . , xn is a poor
A-sequence}. Then the following statements are equivalent :

(i) A is a Gorenstein ring ;
(ii) dimA/m(ann(m, U−n−1

n+1 A)) = 1;
(iii) U−n−1

n+1 A is a non-zero injective A-module.

P r o o f. The case n = 0 is clear. So, suppose that n > 0. By 2.4(1)
and the above observations we see that (i)⇔(ii). Also, if (iii) holds, then A
is Cohen–Macaulay and, for a parametric ideal q of A, the ring A/q is self-
injective, since A/q ∼= ann(q, U−n−1

n+1 A) by 2.4(1) and the latter A/q-module
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is injective. Hence (i) follows. Therefore, in order to complete the proof, we
show that (i)⇒(iii).

Let b be an ideal of A and let f : b → U−n−1
n+1 A be an A-homomorphism.

Since b is finitely generated, there exists an A-sequence x1, . . . , xn such that

f(b) ⊆ A
1

(x1, . . . , xn, 1)
.

Also, by the Artin–Rees Theorem,

b ∩
( n∑
i=1

Axi

)t+1

⊆
( n∑
i=1

Axi

)
b

for some t ≥ 0. Therefore, in view of 2.2, we have

im f ⊆ ann(q, U−n−1
n+1 A) and b ∩ q ⊆ ker f,

where q =
∑n
i=1Ax

t+1
i . Hence f induces an A/q-homomorphism

f∗ : (b + q)/q → ann(q, U−n−1
n+1 A).

On the other hand, it follows from the hypothesis and 2.4(1) that
ann(q, U−n−1

n+1 A) is an injective A/q-module. Thus, there exists X ∈
ann(q, U−n−1

n+1 A) such that f(y) = f∗(q + y) = yX for all y ∈ b. It therefore
follows that U−n−1

n+1 A is an injective A-module.

It is a well known change of rings theorem that if x ∈ m \ Z(A), A =
A/Ax, and M is an A-module such that x 6∈ Z(M), then idĀ(M/xM) =
idA(M)− 1. Next, we shall apply this theorem to give a characterization of
Gorenstein local rings in terms of the injective dimension of a certain module
of generalized fractions. To do this, we need to introduce some further
notation. For a sequence x1, . . . , xi (i ≥ 0) of elements of a commutative
ring R, we shall use U(x)i+1 to denote the triangular subset

{(xα1
1 , . . . , xαi

i , 1) : α1, . . . , αi ∈ N}
of Ri+1. Note that if i = 0, then U(x)i+1 = {1} and U(x)−i−1

i+1 R ∼= R.

2.9. Proposition. The following statements are equivalent :

(i) A is a Gorenstein ring ;
(ii) if x1, . . . , xi is a subset of a system of parameters for A, then

idA(U(x)−i−1
i+1 A) = n− i.

P r o o f. (i)⇒(ii). We prove this by induction on n. The case n = 0
is clear. Let n ≥ 1, and suppose that the result is true for n − 1. Let
x1, . . . , xi be a subset of a system of parameters for A. Let Un+1 be as in
2.8. If i = n, then, with the aid of [8, 3.6] and 2.2, it is easy to see that
the natural A-homomorphism U(x)−n−1

n+1 A → U−n−1
n+1 A is an isomorphism;

hence, by 2.8 and the hypothesis, U(x)−n−1
n+1 A is an injective A-module. So,
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we may assume that i < n. Let xi+1 ∈ A be such that x1, . . . , xi, xi+1 forms
a subset of a system of parameters for A, and let ψ : A → A/Axi+1 be the
natural homomorphism. Then ψ(A) is a Gorenstein ring of dimension n− 1
and ψ(x1), . . . , ψ(xi) is a subset of a system of parameters for ψ(A). Hence,
by induction,

idψ(A)(U(ψ(x))−i−1
i+1 ψ(A)) = n− 1− i.

Next, using 2.2, it is easy to see that xi+1 6∈ Z(U(x)−i−1
i+1 A) and that the

map φ : U(x)−i−1
i+1 A→ U(ψ(x))−i−1

i+1 ψ(A) given by

φ

(
a

(xα1
1 , . . . , xαi

i , 1)

)
=

ψ(a)
(ψ(x1)α1 , . . . , ψ(xi)αi , ψ(1))

is an A-epimorphism and kerφ = xi+1U(x)−i−1
i+1 A. Therefore, by the above-

mentioned change of rings theorem, idA(U(x)−i−1
i+1 A) = n − i. The result

now follows by induction.
(ii)⇒(i). This is clear by Bass’ fundamental theorem in [1]. Note that it

follows from the hypothesis that idA(A) = n.

I would like to thank Professor R. Y. Sharp for useful discussions which
I had with him.
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