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ON STRONGLY CLOSED SUBALGEBRAS OF B(X)

BY

W. ŻELAZKO (WARSZAWA)

Let X be a real or complex Banach space. The strong topology on
the algebra B(X) of all bounded linear operators on X is the topology
of pointwise convergence of nets of operators. It is given by a basis of
neighbourhoods of the origin consisting of sets of the form

(1) U(ε;x1, . . . , xn) = {T ∈ B(X) : ‖Txi‖ < ε, i = 1, . . . , n},
where x1, . . . , xn are linearly independent elements of X and ε is a positive
real number. Closure in the strong topology will be called strong closure
for short. It is well known that the strong closure of a subalgebra of B(X)
is again a subalgebra. In this paper we study strongly closed subalgebras
of B(X), in particular, maximal strongly closed subalgebras. Our results
are given in Section 1, while in Section 2 we give the motivation for this
study and pose several open questions.

1. Maximal strongly closed algebras of operators. Call a proper
strongly closed subalgebra A of B(X) a maximal strongly closed algebra
(m.s.c.a.) if for any subalgebra A1 satisfying A ⊂ A1 ⊂ B(X) we have
either A1 = A, or A1 is a strongly dense subalgebra of B(X). Let X0 be a
proper closed subspace of X, i.e. (0) 6= X0 6= X, and put

A(X0) = {T ∈ B(X) : TX0 ⊂ X0}.
One can easily see that A(X0) is a proper subalgebra of B(X).

Proposition 1. For any proper closed subspace X0 of X, the algebra
A(X0) is a maximal strongly closed algebra.

P r o o f. If T 6∈ A(X0), then there is an x0 in X0 such that

(2) inf{‖Tx0 − x‖ : x ∈ X0} > ε > 0.

Let U(ε;x0) be as in (1). Then (2) implies that T + U(ε;x0) ∩ A(X0) = ∅,
which means that A(X0) is strongly closed. It remains to be shown that
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A(X0) is maximal, i.e. alg(A(X0), Q) is strongly dense in B(X) for every
Q in B(X) \ A(X0). So, let Q 6∈ A(X0). Then there is an x0 ∈ X0 such
that y0 = Qx0 6∈ X0. We shall be done if we show that for any linearly
independent elements x1, . . . , xn in X and any y1, . . . , yn ∈ X there is an
operator T in alg(A(X0), Q) with Txi = yi, i = 1, . . . , n.

Suppose that x1, . . . , xk ∈ X \ X0 and xk+1, . . . , xn ∈ X0 (if k = 0 all
xi are in X0 and if k = n they are in X \ X0), and choose fi ∈ X∗ with
fi(xj) = δij , 1 ≤ i, j ≤ n, where δij is the Kronecker symbol. We assume,
moreover, that fi is in X⊥

0 = {f ∈ X∗ : X0 ⊂ ker f} for 1 ≤ i ≤ k. Thus
for 1 ≤ i ≤ k the one-dimensional operators fi ⊗ xi are in A(X0). Choose
f0 in X∗ so that f0 ∈ X⊥

0 and f0(y0) = 1. Then f0 ⊗ yi and fi ⊗ x0 are in
A(X0) for i = 1, . . . , n. Define

Ti =
{

fi ⊗ yi for 1 ≤ i ≤ k,
(f0 ⊗ yi)Q(fi ⊗ x0) for k + 1 ≤ i ≤ n.

Clearly all Ti are in alg(A(X0), Q) and Tixj = δijyj , 1 ≤ i, j ≤ n. Thus
T = T1 + . . . + Tn is as required.

Proposition 2. If dim X0 < ∞ or codim X0 < ∞, then A(X0) is max-
imal in B(X) in the sense that if A1 is a subalgebra of B(X) satisfying
A(X0) ⊂ A1 ⊂ B(X), then either A1 = A(X0), or A1 = B(X).

P r o o f. Assume first that dim X0 < ∞, and let X0 = span{x1, . . . , xn},
where x1, . . . , xn are linearly independent. We have to show that
alg(A(X0), Q) = B(X) for every Q in B(X) \ A(X0). Observe first that
Qxi 6∈ X0 for some i, since otherwise Q ∈ A(X0). We can assume that
y1 = Qx1 6∈ X0.

Let T ∈ B(X) and put ui = Txi, i = 1, . . . , n. Choose Pi, Vi in A(X0)
so that Piy1 = ui, Vixi = x1 and Vjxi = 0 for i 6= j (one can easily construct
such operators on span{y1, x1, . . . , xn} and extend them to the whole of X
using the fact that they are finite-dimensional). We have PiQVixi = ui and
PjQVjxi = 0 for i 6= j. Thus( n∑

j=1

PjQVj

)
xi = ui, or

(
T −

n∑
j=1

PjQVj

)
xi = 0 for i = 1, . . . , n.

This means that R=T−
∑n

j=1 PjQVj is inA(X0), and so T =R−
∑n

j=1 PjQVj

is in alg(A(X0), Q). Hence, in this case alg(A(X0), Q)=B(X).
Similarly we treat the case codim X0 < ∞.We have dim X⊥

0 = codim X0,
so that there are linearly independent functionals f1, . . . , fn such that X⊥

0 =
span{f1, . . . , fn}. Choose xi in X so that fi(xj) = δij , 1 ≤ i, j ≤ n. Let
Q ∈ B(X) \A(X0). We have to show that alg(A(X0), Q) = B(X). Observe
first that there is an i such that Q∗fi is not in X0. Otherwise Q∗X⊥

0 ⊂ X⊥
0 ,

which means that f(Qx) = 0 for every f in X⊥
0 and every x in X0. But this
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implies that Qx ∈ X0 whenever x ∈ X0, or Q ∈ A(X0)—a contradiction.
Therefore we can assume that q1 = Q∗f1 6∈ X0.

Choose x0 in X0 so that q1(x0) = 1. Let T ∈ B(X) and put hi =
T ∗fi, i = 1, . . . , n. Set Pi = hi ⊗ x0, so that Pi ∈ A(X0), i = 1, . . . , n. Put
Vi = f1 ⊗ xi, i = 1, . . . , n. Then Vi ∈ A(X0) and

V ∗
j fi = (xj ⊗ f1)fi = fi(xj)f1 = δijf1, 1 ≤ i, j ≤ n.

Thus
P ∗

j Q∗V ∗
j fi = δijP

∗
j Q∗f1 = δijP

∗
j q1 = δijhj .

This implies ( n∑
j=1

P ∗
j Q∗V ∗

j

)
fi = hi = T ∗fi, i = 1, . . . , n,

or (
T ∗ −

n∑
j=1

P ∗
j Q∗V ∗

j

)
f = 0 for all f in X⊥

0 .

This means that

f
([

T −
n∑

j=1

VjQPj

]
x
)

= 0

for all f in X⊥
0 and all x in X, hence im[T −

∑n
j=1 VjQPj ] ⊂ X0. Thus

R = T −
∑n

j=1 VjQPj ∈ A(X0), so that we have T = R −
∑n

j=1 VjQPj ∈
alg(A(X0), Q). The conclusion follows.

The following result is a partial converse to Proposition 2.

Proposition 3. Let H be a separable Hilbert space, and let H0 be a
closed subspace of H with dim H0 = codim H0 = ∞. Then there is a norm
closed subalgebra A of B(H) such that

(3) A(H0)  A  B(H).

P r o o f. Choose an orthonormal basis (ei)∞i=1 in H so that H0 is the
closure of span{e2i−1}∞i=1. Put Qx = (x, e1)e2, so that Q 6∈ A(H0). Let S
be the unilateral shift given by Sei = ei+1. We shall show that S does not
belong to the norm closure A of the algebra A0 = alg(A(H0), Q), so that A
is the desired algebra.

It is sufficient to show that

(4) lim
i

(We2i−1, e2i) = 0

for all W in A0. Since I ∈ A0 and Q2 = 0, each W in A0 can be written as

(5) W =
k∑

i=1

Vi + R0,
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where R0 ∈ A(H0) and each Vi is of the form

(6) V = RmQRm−1Q . . . R2QR1

with Ri ∈ A(H0). Since (R0e2i−1, e2i) = 0 for all i, in view of (5) it is
sufficient to prove (4) for W = V of the form (6). We have

V e2i−1 = ciRme2,

where ci = (R1e2i−1, e1)(R2e2, e1) . . . (Rm−1e2, e1), so that the sequence (ci)
is bounded by ‖R1‖ . . . ‖Rm−1‖. Now (4) follows from limi(Rme2, e2i) = 0.

2. Motivation and open problems. As the motivation for the study
of strongly closed algebras of operators we mention two well-known prob-
lems.

I. The problem of Fell and Doran. Let X be a topological vector space
and L(X) the algebra of all continuous linear operators on X. Let A be an
algebra over the same field of scalars as X (i.e. R or C). A representation
T of A on X is a homomorphism a → Ta of A into L(X), with Te = I
if A has unit e. A representation T is said to be irreducible if no proper
closed subspace X0 of X is invariant with respect to all Ta, or, equivalently,
if every orbit

O(T ;x0) = {Tax0 : a ∈ A},
where x0 6= 0, is dense in X. Similarly, T is n-fold irreducible (n ∈ N) if for
any n-tuple x1, . . . , xn of linearly independent elements of X the orbit

O(T ;x1, . . . , xn) = {(Tax1, . . . , Taxn) ∈ Xn : a ∈ A}
is dense in Xn equipped with the Cartesian product topology. Finally, T is
totally irreducible if it is n-fold irreducible for every n in N. The problem
posed in [1] by Fell and Doran (Problem II, p. 321, see also [5]) is as follows.

Let X be a complete locally convex space and suppose that T is an
irreducible representation on X of a complex algebra A such that the com-
mutant T ′ = {S ∈ L(X) : TaS = STa for all a in A} consists only of
scalar multiples of the identity operator. Does it follow that T is totally
irreducible?

The problem makes sense for an arbitrary topological vector space X and
also for real spaces and algebras. The problem is open for Banach spaces
and even for Hilbert spaces, of course if the dimension of X is infinite.

If X is a Banach space, then a representation T on X is totally irreducible
if and only if the algebra {Ta ∈ B(X) : a ∈ A} is strongly dense in B(X).
Thus, if we are looking for a counterexample to the Fell and Doran Problem,
we must construct a proper strongly closed subalgebra of B(X) with trivial
commutant and with no proper invariant subspace. Our algebras A(X0)
have trivial commutants, but X0 is an invariant subspace.
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II. The Transitive Algebra Problem (see [4], Chapter VIII). Let H be
a complex Hilbert space. An algebra A ⊂ B(H) is said to be transitive
if it is strongly closed, contains the identity operator, and has no proper
invariant subspace. The Transitive Algebra Problem is the question whether
a transitive algebra on H must be equal to B(H).

Again this leads to the study of strongly closed subalgebras of B(H).
The following remarks can be useful in studying strongly closed subal-

gebras of B(X).
Let M be a proper closed linear subspace of Xn, n ≥ 1. Assume that M

contains a point x̃ = (x̃1, . . . , x̃n) with linearly independent coordinates. Put

A(M) = {T ∈ B(X) : (x1, . . . , xn) ∈ M implies (Tx1, . . . , Txn) ∈ M}.
It is easy to see that A(M) is a strongly closed subalgebra of B(X) and our
assumption on M implies that A(M) 6= B(X), since otherwise M would be
dense in Xn. On the other hand, if A is a proper strongly closed subalgebra
of B(X), then there are linearly independent elements x1, . . . , xn in X such
that the orbit

O(A;x1, . . . , xn) = {(Tx1, . . . , Txn) ∈ Xn : T ∈ A}
is not dense in Xn. If M is the closure of this orbit in Xn, then we easily
see that A ⊂ A(M). Thus we have

Proposition 4. Every proper strongly closed subalgebra of B(X) is con-
tained in a proper strongly closed subalgebra of the form A(M), for some
proper closed subspace M of Xn. In particular , every maximal strongly
closed algebra must be of the form A(M).

Let A be a strongly closed subalgebra of B(X). We say that it is of order
n if it is contained in a proper algebra of the form A(M) with M ⊂ Xn,
and is not contained in any proper algebra A(M) with M ⊂ Xk, k < n.
By Proposition 4 every proper strongly closed subalgebra of B(X) has some
positive order. It is clear that every strongly closed algebra of operators
which has a proper invariant subspace is of order 1, and by Proposition 1 it
is contained in an m.s.c.a. of order 1. We do not know whether this is true
for algebras of order higher than one. In fact, we do not know any example
of an infinite-dimensional m.s.c.a. of order higher than one. Both questions
could be answered in the affirmative if we had an affirmative answer to the
following

Problem 1. Is every proper strongly closed subalgebra of B(X) con-
tained in some maximal strongly closed algebra?

(The usual technique of the Kuratowski–Zorn Lemma fails here, because
we can have a chain A1 ⊂ A2 ⊂ . . . of proper strongly closed algebras such
that the union

⋃∞
i=1 Ai is a strongly dense subalgebra of B(X).)
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There exist algebras of order 2. For example, if T is an operator in B(l1)
without a proper closed invariant subspace (see [5]), then the commutant
T ′ is a proper strongly closed subalgebra of B(l1) which is not of order 1,
and it is of order 2 because it coincides with A(M), where M is the graph
of T .

Problem 2. Does there exist a Banach space X such that B(X) has
proper strongly closed subalgebras of arbitrarily high orders?

Or a weaker question:

Problem 3. Does there exist, for every natural n, a Banach space X
such that B(X) has a proper strongly closed subalgebra of order n?

We do not even know the answer to the following question.

Problem 4. Does there exist a Banach space X such that B(X) has a
subalgebra of order 3?

An affirmative answer to Problem 4 would give a negative solution of
the Problem of Fell and Doran: the representation given by the identity
map A → A is the desired counterexample. It is irreducible since A is
not of order 1 and it has trivial commutant since A is not of order 2. The
Transitive Algebra Problem would be solved in the negative by showing that
for a complex Hilbert space H there is a subalgebra of B(H) of order higher
than one.

If X is a complex finite-dimensional space, then every proper subalgebra
of B(X) is of order 1 (the Burnside Theorem, see [2], p. 276). For a finite-
dimensional real space it is possible to have an m.s.c.a. of order 2 (this is the
only example of an m.s.c.a. of order greater than one known to the author).
Take the space R4 interpreted as real quaternions x = a + bi + cj + dk.
The basis of B(R4) is given by the operators Tu

v , u, v ∈ (1, i, j, k), given by
x → uxv. The commutant

(T i
1)
′ = span{T i

1, T
i
i , T

i
j , T

1
k , T 1

1 , T 1
i , T 1

j , T 1
k }

is an m.s.c.a. of order two. This example shows that for a real finite-di-
mensional Hilbert space the Transitive Algebra Problem is answered in the
negative. We do not know whether such an example is possible in infinite
dimensions.

Problem 5. Let X be an infinite-dimensional Banach space. Is it pos-
sible to have a maximal strongly closed algebra on X which is a commutant
of some element in B(X)?
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Added in proof. Proposition 1 is essentially known. In case of a Hilbert space it
follows immediately from Corollary 2 of [3], or from Theorem 8.12 of [4]. The proofs can
be adjusted so that they cover the case of a Banach space.
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