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SECTIONAL CURVATURES OF MINIMAL HYPERSURFACES

IMMERSED IN S2n+1

BY
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Introduction. Let M be a compact minimal hypersurface in the unit
sphere S2n+1 (n > 1) with standard Sasakian structure (φ, ξ, η, g). We
suppose that M is tangent to the structure vector field ξ of S2n+1. We
consider the sectional curvature Kts of M spanned by et and es orthogonal
to the structure vector ξ. The purpose of the present paper is to prove that if
Kts +3g(Jet, es)

2 ≥ 1/(2n−1), then M is congruent to S2n−1(r1)×S1(r2),
where J is defined by φX = JX + u(X)C for any vector X tangent to M ,
C being the unit normal of M and u(X) = −g(X,φC).

The sectional curvature of M spanned by ξ and −φC is always zero.
Thus we must consider the sectional curvatures Kts on the plane section
orthogonal to ξ. Our result is a pinching theorem on a hypersurface M with
induced structure from the Sasakian structure on S2n+1.

We would like to thank the referee for his kind advice to complete our
result.

1. Preliminaries. Let S2n+1 be the (2n + 1)-dimensional unit sphere.
It is well known that S2n+1 admits a standard Sasakian structure (φ, ξ, η, g).
We have

φ2X = −X + η(X)ξ, φξ = 0, η(ξ) = 1, η(φX) = 0,

g(φX,φY ) = g(X,Y ) − η(X)η(Y ), η(X) = g(X, ξ)

for any vector fields X and Y on S2n+1. We denote by ∇ the operator of
covariant differentiation with respect to the metric g on S2n+1. We then
have

∇Xξ = φX, (∇Xφ)Y = −g(X,Y )ξ + η(Y )X

for any vector fields X and Y on S2n+1.
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Let M be an 2n-dimensional hypersurface in S2n+1. Throughout this

paper , we assume that M is tangent to the structure vector field ξ of S2n+1.
We denote by the same g the Riemannian metric tensor field induced

on M from S2n+1. The operator of covariant differentiation with respect to
the induced connection on M will be denoted by ∇. Then the Gauss and
Weingarten formulas are, respectively,

∇XY = ∇XY + g(AX,Y )C and ∇XC = −AX

for any vector fields X and Y tangent to M , where C denotes the unit normal
vector field of M . We call the A appearing here the second fundamental form

of M . It can be considered as a symmetric (2n, 2n)-matrix. If (∇XA)Y = 0
for any vector fields X and Y tangent to M , then A is said to be parallel .

We put φC = −U . Then U is a unit field tangent to M . We define a
1-form u by u(X) = g(U,X) for any vector field X tangent to M , and we
put

φX = JX + u(X)C,

where JX is the tangential part of φX. Then J is an endomorphism on the
tangent bundle T (M), satisfying

(1.1)
JU = 0, Jξ = 0, u(ξ) = 0, u(U) = 1,

J2X = −X + u(X)U + η(X)ξ, g(JX, Y ) = −g(X,JY ).

For any vector field X tangent to M , we have

∇Xξ = φX = ∇Xξ + g(AX, ξ)C,

and so

(1.2) ∇Xξ = JX, Aξ = U.

Moreover, using the Gauss and Weingarten formulas, we obtain (cf. Yano–
Kon [3, 4])

(1.3) ∇XU = JAX,

(1.4) (∇XJ)Y = u(Y )AX − g(AX,Y )U − g(X,Y )ξ + η(Y )X.

We denote by R the Riemannian curvature tensor of M . Then the Gauss
and Codazzi equations of M are, respectively,

(1.5) R(X,Y )Z = g(Y,Z)X − g(X,Z)Y + g(AY,Z)AX − g(AX,Z)AY,

(1.6) (∇XA)Y − (∇Y A)X = 0.

It is well known that a connected complete hypersurface in a sphere with
two constant principal curvatures is locally isometric to the product of two
spheres (cf. Ryan [2]). We can also prove that a hypersurface in a sphere
with parallel second fundamental form has at most two constant principal
curvatures (cf. Ryan [3]).
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2. Pinching theorem. Let M be a minimal hypersurface in S2n+1.
We use the convention that the ranges of indices are

i, j, k = 0, 1, . . . , 2n − 1; r, s, t = 1, . . . , 2n − 1.

From (1.2) we can choose an orthonormal basis e0 = ξ, e1, . . . , e2n−1 of
Tx(M) such that

Aet = λtet + u(et)ξ, t = 1, . . . , 2n − 1.

Generally, we obtain

g(∇2A,A) =
∑

g((R(ei, ej)A)ei, Aej)(2.1)

=
∑

g(R(ei, ej)Aei, Aej) −
∑

g(AR(ei, ej)ei, Aej).

We now compute the right hand side of (2.1). First of all, we have
∑

g(R(ei, ej)Aei, Aej)

= 2
∑

g(R(ξ, et)Aξ,Aet) +
∑

g(R(et, es)Aet, Aes)

= − 2
∑

λ2
t g(Jet, Jet) −

∑

λtλsKts − 2
∑

λ2
t g(Jet, Jet)

= − 4
∑

λ2
t g(Jet, Jet) −

∑

λtλsKts,

where Kts denotes the sectional curvature spanned by et and es, and

−
∑

g(AR(ei, ej)ei, Aej)

= −
∑

g(R(ξ, es)ξ,A
2es) −

∑

g(AR(et, es)et, Aes)

−
∑

g(R(et, ξ)et, AU)

=
∑

λ2
t g(Jet, Jet) +

∑

λ2
t Kts + 2n

− 2g(AU,AU) + (2n − 1) − g(AU,AU)

=
∑

λ2
t Kts +

∑

λ2
t g(Jet, Jet) − 3g(AU,AU) + (4n − 1).

Substituting these equations into (2.1), we find

g(∇2A,A) =
∑

λ2
t Kts −

∑

λtλsKts(2.2)

− 3
∑

λ2
t g(Jet, Jet) − 3g(AU,AU) + (4n − 1).

On the other hand,
∑

λ2
t g(Jet, Jet) + g(AU,AU) =

∑

g(JAet, JAet) + g(AU,AU)

=
∑

g(Aet, Aet) = Tr A2 − 1.

Thus (2.2) becomes

(2.3) g(∇2A,A) = 1

2

∑

(λt − λs)
2Kts − 3(Tr A2 − 1) + (4n − 1),
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and hence

(2.4) − 1

2
∆ Tr A2 + g(∇A,∇A)

= − 1

2

∑

(λt − λs)
2Kts + 3Tr A2 − (4n + 2)

= − 1

2

∑

(λt − λs)
2(Kts + 3g(Jet, es)

2)

+ 3

2

∑

(λt − λs)
2g(Jet, es)

2 + 3Tr A2 − (4n + 2)

= − 1

2

∑

(λt − λs)
2(Kts + 3g(Jet, es)

2)

+ 3

2
|[J,A]|2 + 3Tr A2 − (4n + 2).

We also have

g(∇A,∇A) =
∑

g((∇tA)es, er)
2 + 3

∑

g((∇tA)ξ, (∇tA)ξ)

=
∑

g((∇tA)es, er)
2 + 3|[J,A]|2,

where ∇t denotes covariant differentiation in the direction of et. Thus (2.4)
reduces to

(2.5) − 1

2
∆ Tr A2 +

∑

g((∇tA)es, er)
2

= − 1

2

∑

(λt − λs)
2(Kts + 3g(Jet, es)

2)

− 3

2
|[J,A]|2 + 3Tr A2 − (4n + 2).

Since

Tr A2 =
∑

g(AJei, AJei) + g(AU,AU) + g(Aξ,Aξ),

(1.2) and (1.4) imply

div(∇UU) = 2n − Tr A2 + 1

2
|[J,A]|2.

Hence we have

(2.6) − 1

2
∆ Tr A2 +

∑

g((∇tA)es, er)
2

= − 1

2

∑

(λt − λs)
2(Kts + 3g(Jet, es)

2) + (2n − 2) − 3 div(∇UU).

Suppose that Kts + 3g(Jet, es)
2 ≥ 1/(2n − 1). Then, using Tr A2 =

∑

λ2
t + 2, we have

− 1

2
∆ Tr A2 +

∑

g((∇tA)es, er)
2 ≤ −

∑

λ2
t + (2n − 2) − 3 div(∇UU)

= − Tr A2 + 2n − 3 div(∇UU)

= − 1

2
|[J,A]|2 − 2 div(∇UU).

If M is compact, we have g((∇tA)es, er) = 0 for all t, s and r, that is,
A is η-parallel and JA = AJ . Then g((∇ξA)X,Y ) = g([J,A]X,Y ) = 0
for any vector fields X and Y tangent to M . Hence, by (1.6), the second
fundamental form A of M is parallel. Thus M has two constant principal
curvatures. Since JA = AJ we may set

AU = aU + ξ, a = g(AU,U).
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Then we can prove

Lemma 2.1. Let M be a hypersurface in S2n+1. If AU = aU + ξ, then a
is a constant.

P r o o f. From the assumption we have

(∇XA)U + AJAX = (Xa)U + JAX + JX.

Using the Codazzi equation, we find

g((∇XA)U, Y ) − g((∇Y A)U,X)

= (Xa)u(Y ) + ag(JAX,Y ) + g(JX, Y ) − g(JAAX,Y )

− (Y a)u(X) − ag(JAY,X) − g(JY,X) + g(AJAY,X) = 0.

Hence

(Xa)u(Y ) − (Y a)u(X) + ag((JA + AJ)X,Y )

+ 2g(JX, Y ) − 2g(AJAX,Y ) = 0.

Putting X = U , we obtain Y a = (Ua)u(Y ). Therefore

ag((JA + AJ)X,Y ) + 2g(JX, Y ) − 2g(AJAX,Y ) = 0.

We put β = Ua. Then Xa = βu(X) and Y a = βu(Y ). Thus

∇X∇Y a = (Xβ)u(Y ) + βg(Y, JAX) + βg(U,∇XY ),

which yields

R(X,Y )a = (Xβ)u(Y ) − (Y β)u(X) + βg((JA + AJ)X,Y ) = 0.

Putting X = U or Y = U , we find (Uβ)u(Y ) = Y β and (Uβ)u(X) = Xβ.
Consequently, βg((JA + AJ)X,Y ) = 0. If we assume that AJ + JA = 0,
then g(JX, Y ) = g(AJAX,Y ), which implies

g(JX, JX) = g(JAX,AJX) = −g(JAX, JAX).

Hence JX = 0. This is a contradiction. Consequently, β = 0, that is,
Ua = 0 and then Xa = (Ua)u(X) = 0 for any vector field X tangent to M .
This shows that a is a constant.

Theorem 2.1. Let M be a compact minimal hypersurface in S2n+1

(n > 1). If the sectional curvature K of M satisfies

Kts + 3g(Jet, es)
2 ≥ 1/(2n − 1),

then M is congruent to S2n−1(r1) × S1(r2), where r1 = ((2n − 1)/(2n))1/2

and r2 = (1/(2n))1/2.

P r o o f. Since AJ = JA, we can choose an orthonormal basis e0 = ξ,
e1 = U , e2, . . . , e2n−2 such that en−1+p = Jep (p = 1, . . . , n − 1) and

Aep = λpep, AJep = λpJep, p = 2, . . . , n − 1.
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We consider the matrix
(

a 1
1 0

)

where a = g(AU,U), g(AU, ξ) = 1 and g(Aξ, ξ) = 0. Its eigenvalues λ and
µ satisfy t2 − at − 1 = 0, and hence λ + µ = a and λµ = −1. Moreover, for
any p, q (= 1, . . . , n − 1), p 6= q,

0 = g((R(ep, eq)A)ep, Aeq)

= g(R(ep, eq)Aep, Aeq) − g(AR(ep, eq)ep, Aeq) = − 1

2
(λp − λq)

2Kpq .

From the assumption we see that Kpq + 3g(Jep, eq)
2 = Kpq > 0. Hence

λp = λq for all p and q. Consequently, we can put

λp = λ, p = 2, . . . , n − 1.

Then we may set, from the minimality of M , λ = 1/(2n − 1)1/2 and
µ = −(2n − 1)1/2. Therefore, M has two constant principal curvatures
with multiplicities 2n − 2 and 1. From this and a well known theorem (cf.
Ryan [2]) we have our result (see also Theorem 7.1 in [4]).

R e m a r k. Let CPn denote the complex n-dimensional projective space
equipped with the Fubini–Study metric normalized so that the maximum
sectional curvature is 4. We suppose that the following diagram is commu-
tative:

M S2n+1

N CPn

π

��

//

π

��
//

where M is a hypersurface in S2n+1 tangent to the structure vector field
ξ of S2n+1, N is a real hypersurface in CPn and the vertical arrows are
Riemannian fiber bundles (cf. [5; Chapter V]). Then the sectional curvatures
K of M and K ′ of N satisfy

K ′(X,Y ) = K(X∗, Y ∗) + 3g(X∗, JY ∗)2

for any vectors X and Y tangent to N , where ∗ denotes the horizontal lift
with respect to the connection η (see [5; p. 144, Lemma 1.2]).

On the other hand, Kon [1] proved the following theorem: Let N be
a compact real minimal hypersurface in CPn. If the sectional curvature
K ′ of N satisfies K ′ ≥ 1/(2n − 1), then N is the geodesic hypersphere
π(S2n−1(r1)×S1(r2)), where r1 = ((2n− 1)/(2n))1/2 and r2 = (1/(2n))1/2 .
Our main theorem corresponds to the theorem above in case of hypersurfaces
in an odd-dimensional sphere with contact structure.
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