SECTIONAL CURVATURES OF MINIMAL HYPERSURFACES IMMERSED IN $S^{2 n+1}$

BY

```
HE-JIN KIM (TAEGU), SEONG-SOO AHN (KWANGJU)
    and MASAHIRO KON (HIROSAKI)
```

Introduction. Let M be a compact minimal hypersurface in the unit sphere $S^{2 n+1}(n>1)$ with standard Sasakian structure (ϕ, ξ, η, g). We suppose that M is tangent to the structure vector field ξ of $S^{2 n+1}$. We consider the sectional curvature $K_{t s}$ of M spanned by e_{t} and e_{s} orthogonal to the structure vector ξ. The purpose of the present paper is to prove that if $K_{t s}+3 g\left(J e_{t}, e_{s}\right)^{2} \geq 1 /(2 n-1)$, then M is congruent to $S^{2 n-1}\left(r_{1}\right) \times S^{1}\left(r_{2}\right)$, where J is defined by $\phi X=J X+u(X) C$ for any vector X tangent to M, C being the unit normal of M and $u(X)=-g(X, \phi C)$.

The sectional curvature of M spanned by ξ and $-\phi C$ is always zero. Thus we must consider the sectional curvatures $K_{t s}$ on the plane section orthogonal to ξ. Our result is a pinching theorem on a hypersurface M with induced structure from the Sasakian structure on $S^{2 n+1}$.

We would like to thank the referee for his kind advice to complete our result.

1. Preliminaries. Let $S^{2 n+1}$ be the $(2 n+1)$-dimensional unit sphere. It is well known that $S^{2 n+1}$ admits a standard Sasakian structure (ϕ, ξ, η, g). We have

$$
\begin{gathered}
\phi^{2} X=-X+\eta(X) \xi, \quad \phi \xi=0, \quad \eta(\xi)=1, \quad \eta(\phi X)=0, \\
g(\phi X, \phi Y)=g(X, Y)-\eta(X) \eta(Y), \quad \eta(X)=g(X, \xi)
\end{gathered}
$$

for any vector fields X and Y on $S^{2 n+1}$. We denote by $\bar{\nabla}$ the operator of covariant differentiation with respect to the metric g on $S^{2 n+1}$. We then have

$$
\bar{\nabla}_{X} \xi=\phi X, \quad\left(\bar{\nabla}_{X} \phi\right) Y=-g(X, Y) \xi+\eta(Y) X
$$

for any vector fields X and Y on $S^{2 n+1}$.

[^0]Let M be an $2 n$-dimensional hypersurface in $S^{2 n+1}$. Throughout this paper, we assume that M is tangent to the structure vector field ξ of $S^{2 n+1}$.

We denote by the same g the Riemannian metric tensor field induced on M from $S^{2 n+1}$. The operator of covariant differentiation with respect to the induced connection on M will be denoted by ∇. Then the Gauss and Weingarten formulas are, respectively,

$$
\bar{\nabla}_{X} Y=\nabla_{X} Y+g(A X, Y) C \quad \text { and } \quad \bar{\nabla}_{X} C=-A X
$$

for any vector fields X and Y tangent to M, where C denotes the unit normal vector field of M. We call the A appearing here the second fundamental form of M. It can be considered as a symmetric $(2 n, 2 n)$-matrix. If $\left(\nabla_{X} A\right) Y=0$ for any vector fields X and Y tangent to M, then A is said to be parallel.

We put $\phi C=-U$. Then U is a unit field tangent to M. We define a 1-form u by $u(X)=g(U, X)$ for any vector field X tangent to M, and we put

$$
\phi X=J X+u(X) C,
$$

where $J X$ is the tangential part of ϕX. Then J is an endomorphism on the tangent bundle $T(M)$, satisfying

$$
\begin{align*}
& J U=0, \quad J \xi=0, \quad u(\xi)=0, \quad u(U)=1 \\
& J^{2} X=-X+u(X) U+\eta(X) \xi, \quad g(J X, Y)=-g(X, J Y) . \tag{1.1}
\end{align*}
$$

For any vector field X tangent to M, we have

$$
\bar{\nabla}_{X} \xi=\phi X=\nabla_{X} \xi+g(A X, \xi) C,
$$

and so

$$
\begin{equation*}
\nabla_{X} \xi=J X, \quad A \xi=U \tag{1.2}
\end{equation*}
$$

Moreover, using the Gauss and Weingarten formulas, we obtain (cf. YanoKon [3, 4])

$$
\begin{gather*}
\nabla_{X} U=J A X \tag{1.3}\\
\left(\nabla_{X} J\right) Y=u(Y) A X-g(A X, Y) U-g(X, Y) \xi+\eta(Y) X . \tag{1.4}
\end{gather*}
$$

We denote by R the Riemannian curvature tensor of M. Then the Gauss and Codazzi equations of M are, respectively,

$$
\begin{gather*}
R(X, Y) Z=g(Y, Z) X-g(X, Z) Y+g(A Y, Z) A X-g(A X, Z) A Y, \tag{1.5}\\
\left(\nabla_{X} A\right) Y-\left(\nabla_{Y} A\right) X=0 . \tag{1.6}
\end{gather*}
$$

It is well known that a connected complete hypersurface in a sphere with two constant principal curvatures is locally isometric to the product of two spheres (cf. Ryan [2]). We can also prove that a hypersurface in a sphere with parallel second fundamental form has at most two constant principal curvatures (cf. Ryan [3]).
2. Pinching theorem. Let M be a minimal hypersurface in $S^{2 n+1}$. We use the convention that the ranges of indices are

$$
i, j, k=0,1, \ldots, 2 n-1 ; \quad r, s, t=1, \ldots, 2 n-1 .
$$

From (1.2) we can choose an orthonormal basis $e_{0}=\xi, e_{1}, \ldots, e_{2 n-1}$ of $T_{x}(M)$ such that

$$
A e_{t}=\lambda_{t} e_{t}+u\left(e_{t}\right) \xi, \quad t=1, \ldots, 2 n-1 .
$$

Generally, we obtain

$$
\begin{align*}
g\left(\nabla^{2} A, A\right) & =\sum g\left(\left(R\left(e_{i}, e_{j}\right) A\right) e_{i}, A e_{j}\right) \tag{2.1}\\
& =\sum g\left(R\left(e_{i}, e_{j}\right) A e_{i}, A e_{j}\right)-\sum g\left(A R\left(e_{i}, e_{j}\right) e_{i}, A e_{j}\right) .
\end{align*}
$$

We now compute the right hand side of (2.1). First of all, we have

$$
\begin{aligned}
\sum g\left(R\left(e_{i}, e_{j}\right)\right. & \left.A e_{i}, A e_{j}\right) \\
& =2 \sum g\left(R\left(\xi, e_{t}\right) A \xi, A e_{t}\right)+\sum g\left(R\left(e_{t}, e_{s}\right) A e_{t}, A e_{s}\right) \\
& =-2 \sum \lambda_{t}^{2} g\left(J e_{t}, J e_{t}\right)-\sum \lambda_{t} \lambda_{s} K_{t s}-2 \sum \lambda_{t}^{2} g\left(J e_{t}, J e_{t}\right) \\
& =-4 \sum \lambda_{t}^{2} g\left(J e_{t}, J e_{t}\right)-\sum \lambda_{t} \lambda_{s} K_{t s}
\end{aligned}
$$

where $K_{t s}$ denotes the sectional curvature spanned by e_{t} and e_{s}, and

$$
\begin{aligned}
-\sum g\left(A R \left(e_{i},\right.\right. & \left.\left.e_{j}\right) e_{i}, A e_{j}\right) \\
= & -\sum g\left(R\left(\xi, e_{s}\right) \xi, A^{2} e_{s}\right)-\sum g\left(A R\left(e_{t}, e_{s}\right) e_{t}, A e_{s}\right) \\
& -\sum g\left(R\left(e_{t}, \xi\right) e_{t}, A U\right) \\
= & \sum \lambda_{t}^{2} g\left(J e_{t}, J e_{t}\right)+\sum \lambda_{t}^{2} K_{t s}+2 n \\
& -2 g(A U, A U)+(2 n-1)-g(A U, A U) \\
= & \sum \lambda_{t}^{2} K_{t s}+\sum \lambda_{t}^{2} g\left(J e_{t}, J e_{t}\right)-3 g(A U, A U)+(4 n-1)
\end{aligned}
$$

Substituting these equations into (2.1), we find

$$
\begin{align*}
g\left(\nabla^{2} A, A\right)= & \sum \lambda_{t}^{2} K_{t s}-\sum \lambda_{t} \lambda_{s} K_{t s} \tag{2.2}\\
& -3 \sum \lambda_{t}^{2} g\left(J e_{t}, J e_{t}\right)-3 g(A U, A U)+(4 n-1) .
\end{align*}
$$

On the other hand,

$$
\begin{aligned}
\sum \lambda_{t}^{2} g\left(J e_{t}, J e_{t}\right)+g(A U, A U) & =\sum g\left(J A e_{t}, J A e_{t}\right)+g(A U, A U) \\
& =\sum g\left(A e_{t}, A e_{t}\right)=\operatorname{Tr} A^{2}-1
\end{aligned}
$$

Thus (2.2) becomes

$$
\begin{equation*}
g\left(\nabla^{2} A, A\right)=\frac{1}{2} \sum\left(\lambda_{t}-\lambda_{s}\right)^{2} K_{t s}-3\left(\operatorname{Tr} A^{2}-1\right)+(4 n-1), \tag{2.3}
\end{equation*}
$$

and hence

$$
\begin{align*}
-\frac{1}{2} \Delta \operatorname{Tr} A^{2}+ & g(\nabla A, \nabla A) \tag{2.4}\\
= & -\frac{1}{2} \sum\left(\lambda_{t}-\lambda_{s}\right)^{2} K_{t s}+3 \operatorname{Tr} A^{2}-(4 n+2) \\
= & -\frac{1}{2} \sum\left(\lambda_{t}-\lambda_{s}\right)^{2}\left(K_{t s}+3 g\left(J e_{t}, e_{s}\right)^{2}\right) \\
& +\frac{3}{2} \sum\left(\lambda_{t}-\lambda_{s}\right)^{2} g\left(J e_{t}, e_{s}\right)^{2}+3 \operatorname{Tr} A^{2}-(4 n+2) \\
= & -\frac{1}{2} \sum\left(\lambda_{t}-\lambda_{s}\right)^{2}\left(K_{t s}+3 g\left(J e_{t}, e_{s}\right)^{2}\right) \\
& +\frac{3}{2}|[J, A]|^{2}+3 \operatorname{Tr} A^{2}-(4 n+2) .
\end{align*}
$$

We also have

$$
\begin{aligned}
g(\nabla A, \nabla A) & =\sum g\left(\left(\nabla_{t} A\right) e_{s}, e_{r}\right)^{2}+3 \sum g\left(\left(\nabla_{t} A\right) \xi,\left(\nabla_{t} A\right) \xi\right) \\
& =\sum g\left(\left(\nabla_{t} A\right) e_{s}, e_{r}\right)^{2}+3|[J, A]|^{2},
\end{aligned}
$$

where ∇_{t} denotes covariant differentiation in the direction of e_{t}. Thus (2.4) reduces to

$$
\begin{align*}
-\frac{1}{2} \Delta \operatorname{Tr} A^{2}+\sum g\left(\left(\nabla_{t} A\right) e_{s}\right. & \left., e_{r}\right)^{2} \tag{2.5}\\
= & -\frac{1}{2} \sum\left(\lambda_{t}-\lambda_{s}\right)^{2}\left(K_{t s}+3 g\left(J e_{t}, e_{s}\right)^{2}\right) \\
& \quad-\frac{3}{2}|[J, A]|^{2}+3 \operatorname{Tr} A^{2}-(4 n+2)
\end{align*}
$$

Since

$$
\operatorname{Tr} A^{2}=\sum g\left(A J e_{i}, A J e_{i}\right)+g(A U, A U)+g(A \xi, A \xi)
$$

(1.2) and (1.4) imply

$$
\operatorname{div}\left(\nabla_{U} U\right)=2 n-\operatorname{Tr} A^{2}+\frac{1}{2}|[J, A]|^{2}
$$

Hence we have

$$
\begin{align*}
& -\frac{1}{2} \Delta \operatorname{Tr} A^{2}+\sum g\left(\left(\nabla_{t} A\right) e_{s}, e_{r}\right)^{2} \tag{2.6}\\
& \quad=-\frac{1}{2} \sum\left(\lambda_{t}-\lambda_{s}\right)^{2}\left(K_{t s}+3 g\left(J e_{t}, e_{s}\right)^{2}\right)+(2 n-2)-3 \operatorname{div}\left(\nabla_{U} U\right)
\end{align*}
$$

Suppose that $K_{t s}+3 g\left(J e_{t}, e_{s}\right)^{2} \geq 1 /(2 n-1)$. Then, using $\operatorname{Tr} A^{2}=$ $\sum \lambda_{t}^{2}+2$, we have

$$
\begin{aligned}
-\frac{1}{2} \Delta \operatorname{Tr} A^{2}+\sum g\left(\left(\nabla_{t} A\right) e_{s}, e_{r}\right)^{2} & \leq-\sum \lambda_{t}^{2}+(2 n-2)-3 \operatorname{div}\left(\nabla_{U} U\right) \\
& =-\operatorname{Tr} A^{2}+2 n-3 \operatorname{div}\left(\nabla_{U} U\right) \\
& =-\frac{1}{2}|[J, A]|^{2}-2 \operatorname{div}\left(\nabla_{U} U\right)
\end{aligned}
$$

If M is compact, we have $g\left(\left(\nabla_{t} A\right) e_{s}, e_{r}\right)=0$ for all t, s and r, that is, A is η-parallel and $J A=A J$. Then $g\left(\left(\nabla_{\xi} A\right) X, Y\right)=g([J, A] X, Y)=0$ for any vector fields X and Y tangent to M. Hence, by (1.6), the second fundamental form A of M is parallel. Thus M has two constant principal curvatures. Since $J A=A J$ we may set

$$
A U=a U+\xi, \quad a=g(A U, U)
$$

Then we can prove
Lemma 2.1. Let M be a hypersurface in $S^{2 n+1}$. If $A U=a U+\xi$, then a is a constant.

Proof. From the assumption we have

$$
\left(\nabla_{X} A\right) U+A J A X=(X a) U+J A X+J X
$$

Using the Codazzi equation, we find

$$
\begin{aligned}
& g\left(\left(\nabla_{X} A\right) U, Y\right)-g\left(\left(\nabla_{Y} A\right) U, X\right) \\
&=(X a) u(Y)+a g(J A X, Y)+g(J X, Y)-g(J A A X, Y) \\
&-(Y a) u(X)-a g(J A Y, X)-g(J Y, X)+g(A J A Y, X)=0
\end{aligned}
$$

Hence

$$
\begin{aligned}
(X a) u(Y)-(Y a) u(X)+a g((J A+ & A J) X, Y) \\
& +2 g(J X, Y)-2 g(A J A X, Y)=0
\end{aligned}
$$

Putting $X=U$, we obtain $Y a=(U a) u(Y)$. Therefore

$$
a g((J A+A J) X, Y)+2 g(J X, Y)-2 g(A J A X, Y)=0
$$

We put $\beta=U a$. Then $X a=\beta u(X)$ and $Y a=\beta u(Y)$. Thus

$$
\nabla_{X} \nabla_{Y} a=(X \beta) u(Y)+\beta g(Y, J A X)+\beta g\left(U, \nabla_{X} Y\right)
$$

which yields

$$
R(X, Y) a=(X \beta) u(Y)-(Y \beta) u(X)+\beta g((J A+A J) X, Y)=0
$$

Putting $X=U$ or $Y=U$, we find $(U \beta) u(Y)=Y \beta$ and $(U \beta) u(X)=X \beta$. Consequently, $\beta g((J A+A J) X, Y)=0$. If we assume that $A J+J A=0$, then $g(J X, Y)=g(A J A X, Y)$, which implies

$$
g(J X, J X)=g(J A X, A J X)=-g(J A X, J A X)
$$

Hence $J X=0$. This is a contradiction. Consequently, $\beta=0$, that is, $U a=0$ and then $X a=(U a) u(X)=0$ for any vector field X tangent to M. This shows that a is a constant.

THEOREM 2.1. Let M be a compact minimal hypersurface in $S^{2 n+1}$ $(n>1)$. If the sectional curvature K of M satisfies

$$
K_{t s}+3 g\left(J e_{t}, e_{s}\right)^{2} \geq 1 /(2 n-1)
$$

then M is congruent to $S^{2 n-1}\left(r_{1}\right) \times S^{1}\left(r_{2}\right)$, where $r_{1}=((2 n-1) /(2 n))^{1 / 2}$ and $r_{2}=(1 /(2 n))^{1 / 2}$.

Proof. Since $A J=J A$, we can choose an orthonormal basis $e_{0}=\xi$, $e_{1}=U, e_{2}, \ldots, e_{2 n-2}$ such that $e_{n-1+p}=J e_{p}(p=1, \ldots, n-1)$ and

$$
A e_{p}=\lambda_{p} e_{p}, \quad A J e_{p}=\lambda_{p} J e_{p}, \quad p=2, \ldots, n-1
$$

We consider the matrix

$$
\left(\begin{array}{ll}
a & 1 \\
1 & 0
\end{array}\right)
$$

where $a=g(A U, U), g(A U, \xi)=1$ and $g(A \xi, \xi)=0$. Its eigenvalues λ and μ satisfy $t^{2}-a t-1=0$, and hence $\lambda+\mu=a$ and $\lambda \mu=-1$. Moreover, for any $p, q(=1, \ldots, n-1), p \neq q$,

$$
\begin{aligned}
0 & =g\left(\left(R\left(e_{p}, e_{q}\right) A\right) e_{p}, A e_{q}\right) \\
& =g\left(R\left(e_{p}, e_{q}\right) A e_{p}, A e_{q}\right)-g\left(A R\left(e_{p}, e_{q}\right) e_{p}, A e_{q}\right)=-\frac{1}{2}\left(\lambda_{p}-\lambda_{q}\right)^{2} K_{p q} .
\end{aligned}
$$

From the assumption we see that $K_{p q}+3 g\left(J e_{p}, e_{q}\right)^{2}=K_{p q}>0$. Hence $\lambda_{p}=\lambda_{q}$ for all p and q. Consequently, we can put

$$
\lambda_{p}=\lambda, \quad p=2, \ldots, n-1 .
$$

Then we may set, from the minimality of $M, \lambda=1 /(2 n-1)^{1 / 2}$ and $\mu=-(2 n-1)^{1 / 2}$. Therefore, M has two constant principal curvatures with multiplicities $2 n-2$ and 1 . From this and a well known theorem (cf. Ryan [2]) we have our result (see also Theorem 7.1 in [4]).

Remark. Let $\mathbb{C} P^{n}$ denote the complex n-dimensional projective space equipped with the Fubini-Study metric normalized so that the maximum sectional curvature is 4 . We suppose that the following diagram is commutative:

where M is a hypersurface in $S^{2 n+1}$ tangent to the structure vector field ξ of $S^{2 n+1}, N$ is a real hypersurface in $\mathbb{C} P^{n}$ and the vertical arrows are Riemannian fiber bundles (cf. [5; Chapter V]). Then the sectional curvatures K of M and K^{\prime} of N satisfy

$$
K^{\prime}(X, Y)=K\left(X^{*}, Y^{*}\right)+3 g\left(X^{*}, J Y^{*}\right)^{2}
$$

for any vectors X and Y tangent to N, where * denotes the horizontal lift with respect to the connection η (see [5; p. 144, Lemma 1.2]).

On the other hand, Kon [1] proved the following theorem: Let N be a compact real minimal hypersurface in $\mathbb{C} P^{n}$. If the sectional curvature K^{\prime} of N satisfies $K^{\prime} \geq 1 /(2 n-1)$, then N is the geodesic hypersphere $\pi\left(S^{2 n-1}\left(r_{1}\right) \times S^{1}\left(r_{2}\right)\right)$, where $r_{1}=((2 n-1) /(2 n))^{1 / 2}$ and $r_{2}=(1 /(2 n))^{1 / 2}$. Our main theorem corresponds to the theorem above in case of hypersurfaces in an odd-dimensional sphere with contact structure.

REFERENCES

[1] M. Kon, Real minimal hypersurfaces in a complex projective space, Proc. Amer. Math. Soc. 79 (1980), 285-288.
[2] P. J. Ryan, Homogeneity and some curvature conditions for hypersurfaces, Tôhoku Math. J. 21 (1969), 363-388.
[3] -, Hypersurfaces with parallel Ricci tensor, Osaka J. Math. 8 (1971), 251-259.
[4] K. Yano and M. Kon, Generic submanifolds of Sasakian manifolds, Kodai Math. J. 3 (1980), 163-196.
[5] —,—,CR Submanifolds of Kaehlerian and Sasakian Manifolds, Birkhäuser, Boston, 1983.

KYUNGPOOK NATIONAL UNIVERSITY
CHOSUN UNIVERSITY
KWANGJU, 501-759
TAEGU, 702-701
KOREA
hirosaki university
hirosaki, 036
JAPAN

Reçu par la Rédaction le 9.6.1993; en version modifiée le 22.3.1994

[^0]: 1991 Mathematics Subject Classification: 53C25, 53C40.
 Research supported by the basic science research institute program, Korea Ministry of Education, 1992-114.

