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Introduction. Let M be a compact minimal hypersurface in the unit
sphere S$2"*+1 (n > 1) with standard Sasakian structure (¢,&,7,9). We
suppose that M is tangent to the structure vector field £ of S?"*1. We
consider the sectional curvature K;s of M spanned by e; and e, orthogonal
to the structure vector £. The purpose of the present paper is to prove that if
Kis+3g(Jeg,e5)? > 1/(2n—1), then M is congruent to S?"~1(ry) x St(ry),
where J is defined by ¢ X = JX + u(X)C for any vector X tangent to M,
C' being the unit normal of M and u(X) = —g(X, ¢C).

The sectional curvature of M spanned by & and —¢C is always zero.
Thus we must consider the sectional curvatures K;; on the plane section
orthogonal to &. Our result is a pinching theorem on a hypersurface M with
induced structure from the Sasakian structure on S?7*1.

We would like to thank the referee for his kind advice to complete our
result.

1. Preliminaries. Let S?"*! be the (2n + 1)-dimensional unit sphere.
It is well known that S?"*! admits a standard Sasakian structure (¢, £, 7, g).
We have

9(¢X,9Y) = g(X,Y) —n(X)n(Y), n(X) =g(X,§)
for any vector fields X and Y on S?"*!. We denote by V the operator of

covariant differentiation with respect to the metric g on S?"*!. We then
have

for any vector fields X and Y on S27+!,
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Let M be an 2n-dimensional hypersurface in S?"*!. Throughout this
paper, we assume that M is tangent to the structure vector field & of S?"*1.

We denote by the same g the Riemannian metric tensor field induced
on M from S?"*!. The operator of covariant differentiation with respect to
the induced connection on M will be denoted by V. Then the Gauss and
Weingarten formulas are, respectively,

VxY =VxY +g(AX,Y)C and VxC=-AX

for any vector fields X and Y tangent to M, where C' denotes the unit normal
vector field of M. We call the A appearing here the second fundamental form
of M. It can be considered as a symmetric (2n, 2n)-matrix. If (VxA)Y =0
for any vector fields X and Y tangent to M, then A is said to be parallel.

We put ¢C = —U. Then U is a unit field tangent to M. We define a
1-form u by u(X) = g(U, X) for any vector field X tangent to M, and we
put

pX = JX 4+ u(X)C,

where JX is the tangential part of $.X. Then J is an endomorphism on the
tangent bundle T'(M), satisfying

JU=0, J¢=0, u) =0, uU)=1,
X =X +u(X)U +n(X)¢,  g(JX,Y)=—g(X,JY).
For any vector field X tangent to M, we have

Vx& =X = Vx&+g(AX,)C,

(1.1)

and so

(1.2) Vxé=JX, AfE=U.

Moreover, using the Gauss and Weingarten formulas, we obtain (cf. Yano—
Kon [3, 4])

(1.3) VxU = JAX,

(1.4) (VxJ)Y =u(Y)AX — g(AX,Y)U — g(X,Y)¢+n(Y)X.

We denote by R the Riemannian curvature tensor of M. Then the Gauss
and Codazzi equations of M are, respectively,

(15)  R(X,Y)Z=g(Y,Z)X — g(X,2)Y + g(AY, Z)AX — g(AX, Z)AY,
(1.6) (VxA)Y — (VyA)X = 0.

It is well known that a connected complete hypersurface in a sphere with
two constant principal curvatures is locally isometric to the product of two
spheres (cf. Ryan [2]). We can also prove that a hypersurface in a sphere
with parallel second fundamental form has at most two constant principal
curvatures (cf. Ryan [3]).
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2. Pinching theorem. Let M be a minimal hypersurface in S27*1.
We use the convention that the ranges of indices are

,75,k=0,1,...,2n—1; rst=1,...,2n—1.

From (1.2) we can choose an orthonormal basis ey = £, e1,...,e3,_1 of
T.,.(M) such that

Aey = Mieg +ule)s, t=1,...,2n—1.
Generally, we obtain
(21)  g(V’A,A) = Y g((Rler ;) A)er, Acy)
= > g(R(e;, ej)Ae;, Aej) — > g(AR(e;, €5)e;, Aej).
We now compute the right hand side of (2.1). First of all, we have
Y- g(R(es,e5)Ae;, Aej)
=22 9(R(&; er) AL, Aer) + 5 g(R(er, e5) Aey, Aes)
= =23 Mg(Jes, Jer) — S MdeKis — 23 M g(Jey, Jey)
= =43 MNg(Jer, Jer) = X MAs Ky,
where K;; denotes the sectional curvature spanned by e; and e,, and
—2_9(AR(e;, ¢5)e;, Ae;)
= — Y g(R(E es)€, A%e;) — Yo g(AR(er, e5)e, Aes)
— 2. 9(R(er, §)er, AU)
= Y Mg(Jer, Jer) + 3 A Ko +2n
—29(AU, AU) + (2n — 1) — g(AU, AU)
= YN Ky + Y N2g(Jey, Jer) — 3g(AU, AU) + (4n — 1).
Substituting these equations into (2.1), we find

(2.2) Q(VQAa A) = Z)‘?Kts =D MAs K
— 33 N2g(Jey, Jey) — 3g(AU, AU) + (4n — 1).
On the other hand,
S ATg(Jer, Jer) + g(AU, AU) = Y- g(J Aey, J Aey) + g(AU, AU)
= Y g(Ae;, Aey) = Tr A% — 1.
Thus (2.2) becomes

(2.3) g(VZA,A) = LS (N — XKy — 3(Tr A% — 1) 4 (4n — 1),

1
2



312 H.-J. KIM ET AL.

and hence
(24) —L1ATr A%+ ¢(VA,VA)
= — 13\ = A)?Kys +3Tr A2 — (4n +2)
= = X = A2 (Kis + 3g(Jer, €5)?)
+ 32\ = A)g(Jer,e5)” +3Tr A — (4n + 2)
= — 2 = A2 (s + 3g(Jer e)?)
+ 2|[J, A]* + 3Tr A2 — (4n + 2).

We also have
g(VA,VA) = Y g((Vid)es, er)” + 33 g((ViA)E, (Vi A)E)
= Y 9((ViA)es, e.)? +3|[J, Al %,

where V; denotes covariant differentiation in the direction of e;. Thus (2.4)
reduces to

(25)  —1ATrA?2+ Y g((Vid)es, e,)?
= — % (At — AS)Q(Kts + 39(<]€t765)2)
— 3|[J,A]? +3Tr A2 — (4n +2).
Since
TrA* =Y g(AJe;, Ade;) + g(AU, AU) + g(AE, A€),
(1.2) and (1.4) imply
div(VyU) = 2n — Tr A% + 3|[J, A]|2.
Hence we have
(26) —3ATrA?+3 g((ViA)es, e)?
= =23 (M — )2 (Kys +39(Jer, e5)?) + (2n — 2) — 3div(Vy ).
Suppose that K;s + 3g(Jes,es)? > 1/(2n — 1). Then, using Tr A? =
S A2 + 2, we have
LA A? + Y g(ViA)es,e)2 < — S A2 + (20 — 2) — 3div(VuU)
= —TrA? +2n — 3div(VyU)
= — 1|[J, A]]? — 2div(VgU).
If M is compact, we have g((V;A)es,e.) = 0 for all ¢, s and r, that is,
A is n-parallel and JA = AJ. Then ¢g((V:A)X,Y) = ¢g([J,AlX,Y) =0
for any vector fields X and Y tangent to M. Hence, by (1.6), the second

fundamental form A of M is parallel. Thus M has two constant principal
curvatures. Since JA = AJ we may set

AU =aU+¢E, a=g(AU,U).
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Then we can prove

LEMMA 2.1. Let M be a hypersurface in S*" 1. If AU = aU + &, then a
18 a constant.

Proof. From the assumption we have
(VxA)U + AJAX = (Xa)U + JAX + JX.

Using the Codazzi equation, we find

9(VxAU,Y) = g((Vy AU, X)

= (Xa)u(Y)+ag(JAX,)Y)+g(JX,Y) — g(JAAXY)
— (Ya)u(X) —ag(JAY, X) — g(JY, X) + g(AJAY, X) = 0.

Hence

(Xa)u(Y) — (Ya)u(X) + ag((JA+ AJ)X,Y)

+29(JX,Y) — 29(AJAX,Y) = 0.
Putting X = U, we obtain Ya = (Ua)u(Y"). Therefore
ag((JA+ AD)X,Y) +29(JX,Y) — 2g(AJAX,Y) = 0.
We put 8 = Ua. Then Xa = fu(X) and Ya = fu(Y). Thus
VxVya = (XBu(Y) + Bg(Y, JAX) + Bg(U, VxY),
which yields
R(X,Y)a = (XB)u(Y) — (YB)u(X) + Bg((JA+ANX,Y) = 0.
Putting X =U or Y = U, we find (UB)u(Y) =Y and (UPB)u(X) = Xp.
Consequently, Bg((JA + AJ)X,Y) = 0. If we assume that AJ + JA =0,
then g(JX,Y) = g(AJAX,Y), which implies
g(JX,JX) = g(JAX, AJX) = —g(JAX, JAX).

Hence JX = 0. This is a contradiction. Consequently, 6 = 0, that is,

Ua = 0 and then Xa = (Ua)u(X) = 0 for any vector field X tangent to M.
This shows that a is a constant.

THEOREM 2.1. Let M be a compact minimal hypersurface in S*"+1
(n > 1). If the sectional curvature K of M satisfies

Ko+ 3g(Jer,es)? > 1/(2n — 1),

then M is congruent to S~ 1(ry) x S(ry), where ry = ((2n —1)/(2n))'/?
and 5 = (1/(2n))1/2.

Proof. Since AJ = JA, we can choose an orthonormal basis ey = &,
e1 =U, eg,...,ea,_9 such that e,,_1., =Je, (p=1,...,n—1) and

Aep, = Npep, Ade, =N Je,, p=2,...,n—1.
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a 1

10
where a = g(AU,U), g(AU,&) = 1 and g(A¢&, &) = 0. Its eigenvalues A and
 satisfy t2 — at — 1 = 0, and hence A + = a and A = —1. Moreover, for

any p,q (=1,...,n—1),p#q,
0= g((R(ep, eq)A)ey, Aeq)
= g(R(€p> eq)Aep,Aeq) - g(AR(ep, eq)emAeq) = _%()‘p - )‘q)sz'

We consider the matrix

From the assumption we see that K, + 3g(Je,,e,)> = K,y > 0. Hence
Ap = Aq for all p and g. Consequently, we can put

Ap=AX, p=2,...,n—1

Then we may set, from the minimality of M, A = 1/(2n — 1)'/2 and

i = —(2n — 1)/2. Therefore, M has two constant principal curvatures
with multiplicities 2n — 2 and 1. From this and a well known theorem (cf.
Ryan [2]) we have our result (see also Theorem 7.1 in [4]).

Remark. Let CP™ denote the complex n-dimensional projective space
equipped with the Fubini-Study metric normalized so that the maximum
sectional curvature is 4. We suppose that the following diagram is commu-
tative:

N——CP"

where M is a hypersurface in S?"*! tangent to the structure vector field
€ of §?"T1 N is a real hypersurface in CP™ and the vertical arrows are
Riemannian fiber bundles (cf. [5; Chapter V]). Then the sectional curvatures
K of M and K’ of N satisfy

K'(X,)Y)=K(X*,Y*) +3g(X*,JY*)?

for any vectors X and Y tangent to N, where * denotes the horizontal lift
with respect to the connection 7 (see [5; p. 144, Lemma 1.2]).

On the other hand, Kon [1] proved the following theorem: Let N be
a compact real minimal hypersurface in CP". If the sectional curvature
K" of N satisfies K’ > 1/(2n — 1), then N is the geodesic hypersphere
(821 (ry) x SY(ry)), where r1 = ((2n —1)/(2n))"/? and ry = (1/(2n))'/2.
Our main theorem corresponds to the theorem above in case of hypersurfaces
in an odd-dimensional sphere with contact structure.
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