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On spirals and fixed point property

by

Roman M a ń k a (Warszawa)

Abstract. We study the famous examples of G. S. Young [7] and R. H. Bing [2]. We
generalize and simplify a little their constructions. First we introduce Young spirals which
play a basic role in all considerations. We give a construction of a Young spiral which does
not have the fixed point property (see Section 5) . Then, using Young spirals, we define
two classes of uniquely arcwise connected curves, called Young spaces and Bing spaces.
These classes are analogous to the examples mentioned above. The definitions identify the
basic distinction between these classes. The main results are Theorems 4.1 and 6.1.

1. Introduction. All spaces are assumed to be metrizable. A space X
has the fixed point property iff for every mapping f : X → X there is a
point x0 ∈ X such that f(x0) = x0 (by a mapping we mean a continuous
function). A classical result of dimension theory says that every mapping
from a closed subset of a 1-dimensional space X into the 1-sphere S1 can be
extended onto the whole space (see e.g. [3], Th. 3.2.10). Therefore if X has
the fixed point property, then X contains no topological circle. Thus we have

Proposition. Let X be a 1-dimensional arcwise connected space. If X
has the fixed point property , then X is uniquely arcwise connected i.e. for
each pair of distinct points x, y ∈ X there exists a unique arc in X from x
to y , denoted by xy).

The converse is not true. An important example was constructed by
G. S. Young in 1960 (see [7]). Since that time, for topologists working in
this area, it has been clear that Young’s example required a more detailed
study (several unproved claims about this example can be found in [2] and
[4]). For this reason we undertake such a study in this paper.

If D is a space homeomorphic to the unit closed n-ball Bn in Rn, then
intD denotes the subset of D corresponding to the interior of Bn, and by
∂D we denote the subset of D corresponding to the boundary of Bn in Rn
(= the unit (n− 1)-sphere Sn−1).
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2. Rays. By a ray we mean here a uniquely arcwise connected space
P which can be obtained as the image of a surjective one-to-one mapping
ϕ : [0,∞)→ P ; ϕ is called a parametrization of P . Such a mapping induces
a linear order ≤P on P corresponding to the natural order of the reals. Then
ϕ(0) is the smallest point in P and it is also denoted by oP ; we call it the
origin of P (these notions are independent of the choice of a parametrization:
if ψ is another parametrization of P then there is a homeomorphism h :
[0,∞)→ [0,∞) such that ψ = ϕ ◦ h. For a ∈ P we define

P (a) = {x ∈ P : a ≤P x} .
Thus P = P (oP ). It is clear that P (a) is a ray; we call it the subray of P
determined by a. If P is a subset of a space X then we define the limit set
of P (in X) by the formula

L(P ) =
⋂

a∈P
P (a) .

It is also the limit set of every subray of P . Clearly P = P ∪ L(P ).
We deal with very special rays—topological half-lines, i.e. spaces homeo-

morphic to [0,∞).

2.1. Proposition. If P is a topological half-line in a space X , then:

(1) P ∩ L(P ) = ∅,
(2) if L(P ) contains at least two points then P is locally connected at

x ∈ P iff x ∈ P ,
(3) P is irreducible between oP and any point x0 ∈ L(P ), i.e. no proper

closed connected subset of P contains both x0 and oP (cf. [5]).

P r o o f. (1) simply follows from the fact that ϕ−1(C) is compact for a
compact set C ⊂ P . (2) trivially follows from (1).

(3) simply follows from (1) and the fact that every point x ∈ P − {oP }
separates P between oP and L(P ).

It is a standard fact that if X is a uniquely arcwise connected space, then
every point x0 ∈ X determines a partial order≤x0 onX given by the formula

x ≤x0 y ≡ x0x ⊂ x0y .

As usual, x <x0 y ≡ (x ≤x0 y and x 6= y). In the sequel we use the following

2.2. Proposition [6]. Let X be as above and let f : X → X be a map-
ping. If f(x0) 6= x0 for some x0 ∈ X, then there exists a unique ray P in X
satisfying the following conditions:

(1) oP = x0,
(2) p <x0 f(p) for every p ∈ P , and P is maximal with respect to this

property ,
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(3) P ∩ pf(p) is an arc for every p ∈ P ,
(4) if there is a point p0 ∈ P such that no 3-od in X has its vertex on

P (p0) (≡ no point of P (p0) is a branch point of X ), then f(L(P )) = L(P ).

3. Young spirals. By a double Warsaw circle we mean a compact space
W = A0∪A1, where A0, A1 are disjoint topological half-lines in W such that
L(A0), L(A1) are disjoint arcs, A0∩L(A1) = {oA0} and A1∩L(A0) = {oA1}.
Clearly, W is a continuum containing no circle, it has two arc components
A0 ∪ L(A1) and A1 ∪ L(A0), and W is not locally connected at x iff x ∈
L(A0) ∪ L(A1). We also have

3.1. Proposition. (1) Every proper subcontinuum of W has the fixed
point property.

(2) If a mapping f : W → W has no fixed point , then f is surjective,
L(A1) = f(L(A0)) and L(A0) = f(L(A1)).

P r o o f. (1) follows from classical results (see [2], Ths. 6 and 8). Thus
the first assertion of (2) follows from (1). It remains to show the equalities.

One easily sees that f(L(A0)) ⊂ L(A0) ∪ L(A1) (otherwise f(W ) would
be arcwise connected, hence contained in one arc component of W , which is
impossible by the initial part of the proof). We must have f(L(A0)) ⊂ L(A1)
since L(A0) is an arc. Then f(A1) ⊂ A0∪L(A1), and consequently f(A0) ⊂
A1 ∪ L(A0). Then f(A0(a)) is a subray of A1 for some a ∈ A0. Let x1 <
x2 ≤ . . . be a cofinal sequence of A0(a). Since the A0(xn) are continua con-
verging to L(A0), f(A0(xn)) converges to f(L(A0)). But L(A1) ⊂ f(A0(xn))
since f(A0(xn)) is a subray of A1 for every n ≥ 1. It follows that f(L(A0)) =
L(A1); the other equality follows by an analogous argument.

R e m a r k. There exist uncountably many topological types of double
Warsaw circles (see [1] for stronger results).

By a Young spiral we mean a continuum Y such that Y = S, where
S is a topological half-line with L(S) being a double Warsaw circle (see
Fig. 1).

With this notation we have

3.2. Proposition. (1) If a subcontinuum of Y does not have the fixed
point property , then it contains L(S).

(2) If f : Y → Y is a fixed point free mapping , then f(S) ⊂ S, x <S f(x)
for every x ∈ S, and f(L(S)) = L(S).

P r o o f. (1) follows from 3.1(1). In order to prove that f(S) ⊂ S, sup-
pose, to the contrary, f(S)∩L(S) 6= ∅. Since f(S) is arcwise connected, f(S)
must be a subset of an arc component of L(S). Then f(Y ) = f(S) would be
a proper subset of L(S), contrary to (1). This proves the inclusion. The rela-
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Fig. 1. A Young spiral

tion x <S f(x) easily follows. Consequently, f(S(x)) ⊂ S(x) for every x ∈ S.
It follows that f(L(S)) ⊂ L(S), and the reverse inclusion follows from (1).

4. Young spaces. Let S be a Young spiral with L(S) = A0∪A1 a double
Warsaw circle (see definition above). By a Young space we mean a uniquely
arcwise connected continuum X = S∪a0a1 such that a0a1∩ (A0∪L(A1)) =
{a0}, a0a1 ∩ S = {oS} and a0a1 ∩ (A1 ∪ L(A0)) = {a1}. Thus the arc a0a1

meets each arc component of S in a single point (see Fig. 2).

Fig. 2. A Young space

4.1. Theorem. A Young space X = S∪a0a1 has the fixed point property
iff the Young spiral S does.

P r o o f. Suppose there is a fixed point free mapping f : S → S. We shall
show that f can be extended to a fixed point free mapping f∗ : X → X.
Hence we must define f∗ on a0a1. Note that a0a1 = a0oS ∪ oSa1 and the
arcs a0oS , oSa1 meet only in oS . We have f(oS) ∈ S − {oS} (see 3.2)
and f(ai) ∈ A1−i ∪ L(Ai) (see 3.1 and 3.2). Define f∗ on aioS to be a
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homeomorphism transforming this arc onto the arc f(ai)f(oS) (in this or-
der), i = 0, 1. This gives a continuous extension of f onto X. Note that
f(ai)f(oS) = f(ai)a1−i∪a1−ioS ∪oSf(oS). Since f(ai)a1−i ⊂ A1−i∪L(Ai),
it follows that oioS ∩ f∗(aioS) = {oS}, hence f∗ has no fixed point.

Suppose that there is a fixed point free mapping f : X → X. To get
a contradiction, it suffices to show that f maps S into itself. Let x0 = oS .
Since f(x0) 6= x0, by Proposition 2.2 there exists a ray P in X satisfying
conditions (1)–(4) of that proposition. Since every ray in X satisfies condi-
tions from 2.2(4), we have f(L(P )) = L(P ). It follows that P = S (otherwise
L(P ) is an arc or a point). By 2.2(2), x <oS f(x) for every x ∈ P . It follows
that f(S) ⊂ S, which completes the proof.

5. Example. There exists a Young spiral Y = S without the fixed point
property (see Fig. 3).

The construction is done in the plane R2. Let α : R2 → R2 be the an-
tipodal mapping α(x, y) = (−x,−y). The image α(Z) of a set (or a point)
Z will be sometimes also denoted by Z ′.

Let g : (0, 1]→ [1, 3] be the mapping given by

g(x) = 2 + sin
π

x

and let Γ denote the graph of g, i.e. Γ = {(x, g(x)) : x ∈ (0, 1]}. Set
a = (0,−3), b = (2, 0), c = (1, 2). Then A = ab ∪ bc ∪ Γ is a topological
half-line with oA = a (we denote by uv the line segment in R2 with end
points u, v). The set A ∪A′ is a double Warsaw circle and α determines a
fixed point free mapping on it.

Let gn : [0, 1]→ [1, 4], n = 1, 2, . . . , be mappings satisfying the conditions

(1) gn(0) = 3 + 1/n, gn(1) = 2 + 1/n,
(2) g1(x) > g2(x) > . . . for every x ∈ [0, 1],
(3) gn(x)→ g(x) as n→∞ for x > 0,
(4) supx∈[0,1] |gn(x)− gn+1(x)| → 0 as n→∞.

Denote by Γn the graph of gn.

R e m a r k. Note that such a sequence always exists: for instance,

gn(x) = 3 +
1
n
−
(

1− sin
π

x

)
x1/n

satisfy the above conditions.

Set an = (0,−3− 1/n), bn = (2 + 1/n, 0), cn = (1, 2 + 1/n) and put

S =
∞⋃
n=1

(anbn ∪ bncn ∪ Γn ∪ a′nb′n ∪ b′nc′n+1 ∪ Γn+1) .
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Fig. 3. A Young spiral without the fixed point property

Note that S is a topological half-line and Y = S is a Young spiral with
L(S) = A ∪A′. We are going to prove that there is a fixed point free map-
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ping f : Y → Y . We define f as follows:

f(p) =





α(p) for p ∈ A ∪A′ ∪⋃∞n=1(anbn ∪ a′nb′n ∪ Γ ′n+1),
(1− t)b′n + tc′n+1 for p = (1− t)bn + tcn ∈ bncn, 0 ≤ t ≤ 1,
(1− t)bn + tcn for p = (1− t)b′n + tc′n+1 ∈ b′nc′n, 0 ≤ t ≤ 1,
(−x,−gn+1(x)) for p = (x, gn(x)) ∈ Γn.

One easily checks that f is well defined, fixed point free, and extends the
antipodal map α restricted to A∪A′. It remains to prove that f is continu-
ous at every point p0 ∈ Y . The only nontrivial case is when p0 ∈ L(A). So,
let p1, p2, . . . be a sequence in Y converging to p0. We have to prove that
f(pi)→ f(p0) as i→∞. Since f(p0) = α(p0), it suffices to consider the case
where pi ∈

⋃∞
n=1 Γn, i.e. pi = (xi, gni(xi)). Then ni → ∞ as i → ∞. We

have to show that f(pi)→ α(p0) as i→∞. Since α(pi)→ α(p0) it suffices
to show that |f(pi)− α(pi)| → 0. But

|f(pi)− α(pi)| = |(−xi,−gni+1(xi))− (−xi,−gni(xi))|
= |gni(xi)− gni+1(xi)|

and by (4) these numbers tend to 0, which completes the construction.

6. Bing spaces. By a Bing space we mean a uniquely arcwise connected
continuum X = S ∪ a0oS , where S = S ∪ A0 ∪ A1 is a Young spiral (in its
standard presentation), a0oS ∩ (A0∪L(A)) = {a0}, a0oS ∩ (A1∪L(A0)) = L
is a continuum and a0oS ∩ S = {oS} (see Fig. 4). Let a1 be the greatest
point of L (in the order of a0oS from a0 to oS).

Fig. 4. A Bing space

6.1. Theorem (comp. [2]). Every Bing space X has the fixed point prop-
erty. There exists a Bing space X0 and a 2-cell D such that D ∩ X0 is an
arc and X0 ∪ D does not have the fixed point property. Moreover , we can
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choose a decreasing sequence of discs D ⊃ D1 ⊃ D2 ⊃ . . . converging to a
point such that for every n, X0 and Dn have the above property.

P r o o f. Let f : X → X be a mapping. We have to prove that f has a
fixed point. Suppose not.

Applying 2.2 we get a ray P in X emanating from a1 with f(L(P )) =
L(P ) and with a1f(a1)∩P being an arc. It follows that P = a1oS∪S, hence
L(P ) = L(S) = A0 ∪A1. Then f(a1) ∈ L(P ). Since a1f(a1) meets P along
an arc, we must have f(a1) ∈ P . This is impossible since P ∩ L(P ) = ∅. It
remains to prove the second part of the theorem.

To this end, take S to be a Young spiral without the fixed point prop-
erty (see the Example). Define X0 to be the Bing space S ∪ a0oS in which
L = {a1}.

We claim that X0 has the desired property. In order to prove this, choose
arbitrary points u ∈ int a0a1 and v ∈ int a1oS . Attach a 2-cell D to X0 in
such a way that D ∩X0 = uv ⊂ ∂D (see Fig. 5).

Fig. 5. Retraction of X0 ∪D onto a Young space (only the arc oSp lies above the plane
containing the rest of the constructed sets)

Let (uv)∗ ⊂ ∂D be the arc with endpoints u and v complementary to uv
in ∂D. Let S∗ = (uv)∗ ∪ voS ∪ S. Hence S∗ is a topological half-line with
oS∗ = u. Since S∗ is homeomorphic to S, S∗ is a Young spiral without the
fixed point property. Hence, by 4.1, the Young space X1 = S∗ ∪ a0a1 does
not have the fixed point property. We conclude that X0 ∪D does not have
the fixed point property since there exists a retraction of X0 ∪D onto X1.
To complete the proof it remains to note that there is a decreasing sequence
of discs in D converging to a1 such that each of them can play the role of
D in the above proof.
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